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Abstract. WCL is an inter-agent co-ordination language designed for

Internet and Web based agent systems. WCL is based on shared asso-

ciative memories called tuple spaces, as introduced in Linda.

In this paper we describe a novel run-time system for WCL. This dis-

tributed run-time system is radically di�erent from traditional run-time

systems supporting tuple spaces because it performs on-the-
y analysis of

the usage of tuple spaces and moves tuple-space data between machines

dynamically. Experimental results show that this approach provides sig-

ni�cant speed improvements.

1 Introduction

Linda has been used with considerable success since the mid eighties [1{3] for

inter-process co-ordination in the �eld of parallel processing. The early imple-

mentations were all \closed" in the sense that all the processes wishing to com-

municate had to be known at compile time. In the last few years there has been

a drive to produce \open" implementations for workstations on a LAN, which

do not require all the communicating processes to be known at compile time [4].

Still more recently, there have been attempts to create tuple space systems which

support geographically distributed computing over the Internet. Announcements

by Sun Microsystems about JavaSpaces show the level of commercial interest in

the use of tuple spaces for inter-agent co-ordination over the Internet.

This recent work on tuple space systems for the Internet falls into two cate-

gories: new access primitives and new run-time systems. New tuple-space access

primitives include WCL [5], Bonita [6], Sun JavaSpaces [7] and IBM TSpaces

[8]. Examples of run-time systems supporting tuple spaces over the Internet are

PageSpace [9] and C

2

AS [10].

This paper outlines the run-time system currently being developed for WCL.

All other tuple space run-time systems for Internet based co-ordination have been

developed by making incremental adjustments to LAN based implementations,

such as in PageSpace [9], C

2

AS [10], and WWW-Paradise.

WCL is designed to provide general purpose support for geographically dis-

tributed applications { not for high performance parallel computing. For exam-

ple, the run-time described in this paper will not provide high performance for



parallel image processing. The sort of applications we have been working on to

date are small example applications; such as talk tools, shared white boards,

asynchronous conferencing tools, event based applications, and agent based in-

formation gathering applications.

In this paper we describe a new distributed run-time system (or \kernel")

used to support WCL. This run-time system builds on experience of creating

LAN implementations, in particular the York Kernel II [11], but utilizes more

much advanced on-the-
y analysis of tuple space usage to enable the migration

of tuple spaces around a group of machines which are collectively running the

kernel. This allows the system to tune itself automatically and dynamically to

provide better performance, and this happens with no extra load being placed

on the programmer using WCL. The kernel exploits the location transparency

inherent in tuple space based co-ordination languages.

Although the system described in this paper is currently a prototype system,

it demonstrates the advantages and speed of such a system. It should also be

noted, that although designed to support WCL, this kernel could support any

set of access primitives. It is a general purpose tuple space management system.

Section 2 brie
y describes WCL, Section 3 describes the architecture of the

run-time system, Section 4 shows some initial results for the kernel, and Section 6

describes the problems of transactions and how we plan to overcome them in

this WCL implementation.

2 WCL

Bonita [6] was a �rst attempt at creating a new set of access primitives for

tuple spaces that did not use synchronous tuple space access. The traditional

Linda primitives are synchronous: the primitives block the thread of execution

which performs the operation. Latency is high over the Internet, and synchronous

primitives often block for signi�cant periods. WCL was created after gaining the

practical experience of using Bonita for real applications. Currently, all other

tuple space languages use synchronous tuple space access

1

. The fundamental

objects of WCL are the same as in all tuple space systems inspired by Linda:

tuples, templates and tuple spaces:

Tuple A tuple is an ordered collection of typed �elds. For example the tuple

h10

int

; \Hello World"

str

i, contains two �elds.

Template A template is similar to a tuple, but the �elds do not need to have

values. The templates: hj10

int

; \Hello World"

str

ji and hj10

int

; 2

str

ji will

1

From an agents point of view primitives like inp and rdp provide synchronous tuple

space access. The thread of execution in the agent performing the operation blocks

until the tuple space has been searched for the tuple { if the tuple space is stored

on the other side of the world then the time this takes can be considerable because

of network latency. Hence, from an agents perspective the operation is synchronous

with respect to the tuple space. A more detailed description is presented in Rowstron

[6]



both match the tuple above. Matching is performed associatively. The num-

ber of �elds in the template and tuple must be equal, the type of every �eld

must match, and either the value of the �elds must be the same, or the

template �eld must have the \unspeci�ed" value, represented here by 2.

Tuple space A tuple space is a logical shared associative memory that is used

to store tuples. A tuple space implements a bag or multi-set, so it can contain

multiple identical tuples. There is no ordering of the tuples within a tuple

space.

Agents communicate by inserting tuples into, and removing tuples from,

shared tuple spaces. Note that while Linda originally had only one tuple space,

used by all agents, WCL provides for many separate tuple spaces, as is usual

for modern implementations. WCL does provide a global tuple space. Tuple

space handles can be passed between agents in tuples inserted in tuple spaces.

Co-ordination through tuple spaces provides two basic properties: temporal and

spatial separation of agents. Temporal separation means that two agents can

communicate even though they do not exist concurrently, because the tuple

spaces through which the agents communicate can persist longer than the life-

times of individual agents. Spatial separation means that agents can be anony-

mous, and other agents do not need to know their location or indeed their iden-

tity in order to communicate with them. These properties make the use of tuple

spaces over the Internet ideal, and they allow the designer of run-time systems

much freedom.

WCL is only a co-ordination language, and has to be embedded into a host

computation language. Currently, bindings for Java and C++ have been devel-

oped. It should be noted that agents written in one language can communicate

with agents written in another.

The access primitives provided in WCL are described in detail in Rowstron

[5] and a detailed justi�cation of why there are so many primitives is also given.

Amongst the primitives provided by WCL there are asynchronous versions of

the traditional in, out and rd Linda primitives and asynchronous versions of

the bulk primitives collect [12] and copy-collect [13], as well as primitives

supporting the streaming of tuples which also provide a simple event model. A

brief overview of the WCL primitives is now presented:

First the operation used to create new tuple spaces.

tscreate() Create a tuple space and return the handle to that tuple space.

Next are the classic synchronous Linda operations, and their asynchronous

equivalents.

out sync(ts, tuple) Insert tuple into the tuple space ts. When the primitive

terminates the tuple is guaranteed to be present (visible) in the tuple space.

in sync(ts, template) This destructively retrieves a tuple which matches the

template from the tuple space ts. The matched tuple is returned. The prim-

itive is synchronous so the executing agent will block until a matching tuple

becomes available.



rd sync(ts, template) This is the same as in sync except the tuple is not

removed.

out async(ts, tuple) Insert tuple into the tuple space ts. When the primitive

terminates the tuple is not guaranteed to be present in the tuple space, but

will appear in the tuple space as soon as possible.

reply id = in async(ts, template) This is an asynchronous destructive re-

quest for a tuple that matches the template template from tuple space ts. The

primitive returns a reply identi�er (reply id) immediately and does not wait

until a tuple matching the template is available (hence it is an asynchronous

primitive).

reply id = rd async(ts, template) This is the same as in async except the

tuple is not removed.

The next operations provide a combined out and in.

touch sync(ts, tuple) This primitive inserts the tuple into the tuple space

ts and then attempts to destructively read it from the tuple space. This

primitive is synchronous and when the primitive returns the tuple tuple is

no longer present in the tuple space. When the tuple is inserted in the tuple

space if there are other primitives blocked that could match the tuple being

inserted then they compete for the inserted tuple and the winner is non-

deterministic.

touch async(ts, tuple) This primitive is the same as touch sync except the

primitive does not block.

Next we have operations to check on and if necessary to abandon pending

asynchronous operations.

check async(reply id) This primitive is used to check if the tuple associated

with the reply identi�er reply id is available. This primitive is asynchronous,

so if the associated tuple is available then it is returned, but if it is not

available then an empty tuple is returned. The primitive does not block.

check sync(reply id) This primitive is the same as check async except it

blocks until the result associated with reply id is available.

cancel(reply id) This primitive cancels the request associated with the reply

identi�er reply id.

The move and copy operations provide for bulk transfer of tuples between

tuple spaces. These operations are all considered to be atomic.

move sync(ts

src

, ts

dest

, template) This moves all the tuples that match the

template template from the tuple space ts

src

to the tuple space ts

dest

. The

primitive returns a count of the number of tuples moved. If the source and

destination tuple space are the same, then the `moved' tuples are always

visible.

copy sync(ts

src

, ts

dest

, template) This primitive is the same as move sync

except the matched tuples are copied from the source to the destination

tuple space. A count of the number of tuples copied is returned.



reply id = move async(ts

src

, ts

dest

, template) This moves all the tuples

that match the template template from the tuple space ts

src

to the tuple

space ts

dest

. The movement operation does return a count of the number

of tuples moved, but unlike the synchronous version, the primitive does not

block and returns a request identi�er, which is used with either check sync

or check async to actually retrieve the number of tuples moved.

reply id = copy async(ts

src

, ts

dest

, template) This primitive is the same

as move async except the matched tuples are copied from the source to the

destination tuple space.

These last operations speed up bulk transfer of tuples to an agent and provide

a basic event mechanism.

reply id = bulk in async(ts, template) This primitive is used to retrieve

all tuples that match the template template from the tuple space ts. The

matched tuples are removed from the tuple space ts. The primitive re-

turns a reply identi�er reply id which is then used in conjunction with the

check async and check sync primitives to retrieve the matched tuples, one

tuple at a time. The tuples can be considered as being streamed to the user

agent. It should be noted that there is no way to determine the number of

tuples returned, but this primitive can be used in conjunction with the copy

and move family of primitives.

reply id = bulk rd async(ts, template) This primitive is the same as the

bulk in async primitive except the returned tuples are not removed from

the tuple space it ts.

reply id = monitor(ts, template) This places a monitor on a tuple space

for tuples that match the template template. All the tuples within the tuple

space ts that match the template template are streamed back to the user

agent, and any tuples subsequently inserted are also sent to the user agent.

The primitives returns a reply identi�er reply id which is used in conjunction

with the check async and check sync primitives to retrieve the returned

tuples, one tuple at a time. A monitor is guaranteed to match and return

any tuple inserted that matches the template, regardless of whether the tuple

is also matched by another primitive.

It should be noted that reply id values returned by some of asynchronous

primitives has no meaning other than for use with the

check sync and check async primitives and the reply id only has any context

within the agent that performed the asynchronous primitive. It can not be passed

to another agent and then that agent use it to retrieve the result.

3 Run-time System Architecture

The run-time System architecture has been designed from the beginning to use

data location transparency and to support geographically distributed computing.

The entire run-time system, usually running across several machines, is called the



kernel. The kernel is composed of three distinct sections; the control system, the

tuple management system and the agent libraries. The current implementation is

very much an experiment to discover techniques that are useful for creating tuple

space support on a large scale. The initial aim has been to demonstrate that the

bulk movement of tuples is a useful tool for developing such kernels. Only the

agent libraries are speci�c to WCL, the other parts of the kernel provide a generic

tuple space management system. The architecture of the kernel is designed to

be independent of the host language and to support multiple host languages.

The tuple management system uses multiple tuple servers. A tuple server

is designed to provide agents with an e�cient data access service. It processes

instructions to insert tuples, instructions to return tuples, and instructions to

move tuple spaces. A separate layer, the control system, determines when a tuple

space should be moved, and dispatches the instructions to the individual tuple

servers. Agents connect to the control layer, and to the tuple servers as required.

The separation between the control layer and the tuple storage layer has been

made so that the tuple servers can be as e�cient as possible. The tuple servers

are the potential bottleneck of the system, therefore the quicker they can service

requests the sooner blocked agents can continue. The control role is separated

from the tuple management role, and performed on di�erent machines, and even

at di�erent geographical locations.

3.1 Tuple management system

The tuple servers are distributed geographically around the area being sup-

ported. Each tuple server manages many entire tuple spaces. To use the analogy

of Douglas [4] the tuple spaces can be considered as layers of a layered cake.

Most LAN based run-time systems have tuple servers managing a slice of the

cake, so each tuple server manages a small part of many tuple spaces. Alterna-

tively, some LAN based systems have all the tuple spaces managed by a single

centralized server (the entire cake). In our system each tuple server manages one

or more layers of the cake, in other words each server manages multiple entire

tuple spaces. This has an advantage from the point of view of fault tolerance, as

it makes it cheap to take a snapshot of a tuple space, since there is no need for

global synchronization between di�erent tuple servers.

The approach of storing an entire tuple space on one of many single servers is

di�erent from other kernels. This approach makes the system bad for `high per-

formance parallel processing'

2

because multiple processes can not concurrently

access the data, where as when the tuples of a single tuple space are distributed

over multiple servers then multiple access to di�erent tuples which are from the

same tuple space is possible. Indeed, we have been involved in the development

of several such run-time systems [4, 14, 11]. However, in such run-times providing

fault tolerance of tuple spaces is di�cult, supporting many of the more complex

access primitives is di�cult (requiring global synchronization between all servers

storing the tuple spaces). Across a LAN this can be achieved but if this is then

2

Or at least no worse than for traditional single process centralized kernels!



further distributed the latency between tuple servers impairs the performance

greatly - this has been demonstrated when we attempted to run the C

2

AS [10]

kernel across multiple sites in Europe.

However, there is nothing theoretically to stop a single tuple server in this

context in fact being distributed across several machines connected by a fast

LAN. In many ways the work on this kernel was an experiment to see if storing

entire tuple spaces on a single server really could work and if the migration of

these tuple spaces between single servers was possible and still provide reasonable

performance.

Finally, it should be noted that the tuple servers are written in C++ and use

sockets directly so as to have complete control over their communication.

3.2 Control system

The control system acts as a manager, with which the tuple servers register,

and the control system also presents agents with their entry point to the sys-

tem. Currently, the control system uses a \well known" Internet address and

port. When an agent is started this is either provided on the command line or

read from an initialization �le. When an agent connects to the control system it

tells the control system its geographical location, and is passed a handle for the

universally accessible tuple space, called the Global Tuple Space. The geograph-

ical location of an agent is also speci�ed either on the command line or in the

initialization �le.

When the tuple servers register with the control layer they specify their

geographical location, and this de�nes the areas over which they provide the

best coverage. The geographical model used is one in which named regions are

completely contained within other named regions, forming a tree structure like

a �le system directory structure (see �gure 1 for a graphical representation).

Currently, the locations are fairly large and the name space is fairly shallow, so

for example a location might be Cambridge-UK-Europe. However, the granularity

of locations can be as �ne as required. For example, a tuple server running on

our machine might for example use the location 428-Austin-CL-CU-Cambridge-

Anglia-England-UK-Europe-World. Where 428 is the o�ce number, Austin is

the building, CL is the department, CU is Cambridge University, Cambridge is

the town, Anglia the region, UK the country etc. An agent on the same machine

would share the same location description. It should be noted that a tuple server

can serve tuples to and accept tuples from an agent running anywhere.

The aim of the geographical descriptions is to provide a gross indication to

the run-time system of where tuple spaces should be stored when being accessed

by agents. Therefore, the tuple server running on a machine in Cambridge would

not be a good choice to store a tuple space being used only by agents currently

running in California. However, if they were all running in England it may well

be a good choice. When a tuple server registers, as well as telling the control

layer its geographical location, it also provides information about its processing

power. This enables the control system to ensure that the load placed upon

the tuple server is acceptable for its power. This information could be obtained



automatically by making the tuple servers perform tests when they initialize, and

then the servers could monitor the load on the machine and reduce or increase

their processing power co-e�cient with the control layer as appropriate.

In the prototype control system, agents can come and go freely. Tuple servers

can join at any time, but currently can not leave. In a full implementation of

the system this would of course be necessary and there are no fundamental

reasons why this is hard. The control system would need to be told that a tuple

server wanted to leave and it could then arrange to move all tuple spaces from

that tuple space server to other servers. It should be noted that an agent can re-

register to provide di�erent geographical location information. This is important

if migrating agents are to be supported.

The control system generates tuple space handles (global names for tuple

spaces), monitors tuple space usage and decides when tuple spaces should be

moved. Every time an agent becomes capable of using a tuple space the control

system is informed, and every time an agent loses the ability to use a tuple

space the control system is informed. Therefore, the control system maintains

an overview of all the tuple spaces, and which agents are currently using them.

Although, the control system is currently centralized, the kernel has been de-

signed to allow the control system to lag behind, thus overcoming the problem of

it becoming a bottleneck. We are currently investigating the possibility of a de-

centralized control system. However, a centralized control system does have the

advantage that it can perform garbage collection using the method of Menezes

and Wood [15].

Agent A

Cambridge

Agent B

York

Server B

Cambridge

Server C

Siegen

Server A

York

 United Kingdom  Germany

 Europe

Fig. 1. Information stored in control system.

Figure 1 shows the information stored and managed in the control system. It

shows three tuple servers, one in Siegen, one in Cambridge and one in York. All

the servers are grouped geographically and hierarchically (eg. Europe contains



both the United Kingdom and Germany). There are also two agents, whose

locations are York and Cambridge. The clouds represent tuple spaces, and their

position shows which tuple server is physically looking after them.

The control system attempts to optimize the performance of the system by

moving tuple spaces to the best position within the entire system. Therefore,

in Figure 1 the control system analyses its usage and location information and

observes that the two agents using the tuple space stored at Siegen are in fact in

the United Kingdom. Therefore, it decides to move the tuple space. If both the

agents were at the same physical location then the tuple space would be moved

to the tuple server at that location. However, either of the tuple servers in the

United Kingdom could be just as good, therefore the control system looks at the

number of tuple spaces on each and then makes a decision to migrate it to either

Cambridge or York. As more agents use it, the position of the tuple space may

change again.

The current prototype system uses a very simple heuristic to decide when

tuple spaces should be moved. It is based solely on the geographical information

provided when the agents and tuple servers are started. Section 5 describes our

current work on how this can be extended.

The replication of tuple spaces is not currently supported, mainly because

access controls to tuple spaces have not yet been implemented. Access controls

will provide information needed to sensibly decide when to replicate tuple spaces.

It should also be noted that like the tuple servers, the control system is also

written in C++ and uses sockets directly.

3.3 Agent library

The agent library is the part of the kernel that is embedded into each agent.

These routines manage all the interaction with the other parts of the kernel,

provide local tuple storage data structures, and determine where to �nd tuple

spaces. All of this functionality is transparent to the programmer, who simply

uses the high level WCL primitives. The fragment of C++ code shown in Figure 2

demonstrates the code a programmer writes to create a tuple space whose handle

is stored in the variable TS1 and then inserts a tuple into the tuple space of the

form [x

int

; \D"

str

].

TupleSpaceHandle TS1;

int x = 10;

TS1.createts();

out async(TS1, WCL INT(x), WCL STR(\D"), WCL END);

Fig. 2. Example using WCL primitives embedded in C++.

So far, agent libraries have been written for C++ and Java. Agents writ-

ten in one language can communicate with agents written in other languages. It

should be noted that the Java embedding supports only the basic primitive types



in Java, rather than objects. However, the control system and the tuple man-

agement system are unaware of the types embedded within a tuple. Therefore,

a language embedding could add types, provided the new `type codes' do not

interfere with existing embeddings. Currently, we control the type codes strictly,

but we are considering schemes that would support the dynamic allocation of

type codes managed by the control system.

The Java embedding is written in Java and can be used in either applets

or stand-alone applications. If it is being used in an applet it detects this and

connects to a proxy which is running on the web server which provided the

applet. The proxy server is then able to forward the requests to the appropriate

servers. Once the security model in Java is relaxed, the applets will be able to

communicate directly with the servers.

3.4 Tuple space management and migration

In the last sections we have described the basic structure of the kernel, and now

we consider brie
y how the interaction between the agent library and the tuple

server and control layer is managed.

Since tuple spaces migrate around the system, how does an agent know where

to �nd a particular tuple space? Tuple spaces are identi�ed by tuple space han-

dles, which contain a globally unique tag and information (IP address and port

number plus other information) about which tuple server is thought to be stor-

ing the tuple space. When an agent wishes to access a tuple space it looks at

this information and if a connection is not already open to the appropriate tuple

server, it opens a new connection and sends the requests to that tuple server.

If that tuple server still holds the tuple space then the appropriate operations

are performed there and the results returned to the agent. However, if the tuple

space has migrated, then the tuple server will return to the agent a \forwarding

address", in the form of a new tuple space handle with more up-to-date location

information, but the same unique tag as before. The agent stores this and uses

this new tuple space handle whenever it is presented with the superseded tuple

space handle. It is not feasible to expect a tuple server to maintain a list of

all tuple spaces it has ever seen for all of its life, so the tables are periodically


ushed. If the tuple server receives operations on a tuple space it no longer knows

about, then the agent which sent the operations is informed. That agent must

then query the control system to �nd the current location of the tuple space.

The same mechanism can be used to allow servers to be removed. If the agent

can not connect to a tuple server, it can ask the control layer where a tuple space

is. The control system, given any tuple space handle, can provide an up-to-date

version of that tuple space handle because it controls the movement of tuple

spaces, so it knows their current locations. Because of the globally unique tag

within a tuple space handle it is not necessary for the control system to store

all tuple space handles ever associated with a tuple space; outdated tuple space

handles can always be matched by the control system to the up-to-date one.

The current kernel is scalable and could support thousands of tuple spaces

and agents, but performs best when there are a small number of agents using



each tuple space. Because a tuple space is stored on a single tuple server at

a particular location all the access for that tuple space must be sent to that

tuple server. However, if several `popular' tuple spaces are stored on a single

tuple server, one or more of them can be moved to other tuple servers, so as to

balance the load between them. It is safe to say that this kernel supports more

agents, and provides better access, over the whole system, than existing LAN

based implementations extended for use over the Internet.

The migration of a tuple space is not as simple as it may at �rst seem; often

there will be operations pending on a migrating tuple space and care must be

taken that these complete correctly. Another concern is that there are primitives

in WCL that must be applied to all the tuples in a tuple space rather than a

subset. A problem is introduced because an agent can be informed that a tuple

space has been moved to a new tuple server, and then contact that tuple server,

before the messages containing the tuple space is received by the next tuple

server. Therefore, some primitives have to be queued because otherwise it is

possible to introduce race conditions. The tuple space handle has information

encoded in it that allows a tuple server to know whether the tuple space handle

represents a new tuple space, or whether a tuple space handle represents a tuple

space being moved. Therefore we ensure that commands to a new tuple space

are never queued awaiting the arrival of non-existent tuples.

4 Experimental results

The aim of the prototype is to investigate the migration of tuple spaces, and

we now present some experimental results which demonstrate the e�ectiveness

of tuple space migration in kernels for Internet based co-ordination. The experi-

mental results were obtained by running the kernel across three sites; Cambridge

University (UK), the University of York (UK) and the University of Siegen (Ger-

many). At Cambridge the tuple server was run on a Linux PC workstation, at

Siegen on a DEC Alpha workstation and at York on a SGI Indy workstation.

The results shown in Figure 3 show the time taken to insert (out sync) and

retrieve (in sync) 2500 tuples from a tuple space. The columns show the location

of the agent performing the insertion or retrieval. The rows show where the tuple

space was being stored at the start of the test. For the retrieval timings two

times are given, marked (\disabled" and \enabled"). The row marked \disabled"

shows the time when the migration of tuple spaces was disabled, and the row

marked \enabled" shows the time when it was enabled. It should be noted that

the retrieval timings include the time taken to register with the system, so this

ensures that the times represent the time to move the tuple space as well as

retrieve the tuples. This is important because if the time taken to fetch and move

the tuples was greater than just fetching them then there is no point in migrating

the tuples. When the migration is enabled the �nal location of the tuple space

will be the same location as the agent performing the retrieval operation. The

speedup (number of times faster) obtained when using tuple space migration is

shown on the row below the two retrieval results.



Obviously, the results are highly dependent on network load, and the results

presented here were gathered early on a Sunday morning, when network tra�c

in Europe was low. It should also be noted that the insertion timings are for

synchronous insertion.

Tuplespace Type of Agent Location

Location Operation York Cambridge Siegen

York 2500 out sync 6.79 60.44 114.55

(disabled) 2500 in sync 11.35 56.31 115.56

(enabled) 2500 in sync 11.35 2.94 9.73

Speedup - 19.2 11.9

Cambridge 2500 out sync 63.11 1.50 106.16

(disabled) 2500 in sync 62.64 2.32 112.91

(enabled) 2500 in sync 11.65 2.32 8.40

Speedup 5.4 - 13.4

Siegen 2500 out sync 108.21 110.23 4.51

(disabled) 2500 in sync 120.22 112.23 7.57

(enabled) 2500 in sync 11.86 3.77 7.57

Speedup 10.1 29.8 -

Fig. 3. Insertion (out sync) and retrieval (in sync) timings.

These results demonstrate that the use of bulk movement of tuple spaces

within the kernel gives a large increase in performance. This performance in-

crease is due to reduced communication across the Internet, the ability to tune

packet sizes to an optimum size for routing through the Internet, and the much

lower latency of performing local operations compared to operations at a remote

site. It should be noted that the results presented here do not deal with con-

current access to tuple spaces by more than one agent { this is because of the

di�culty of setting up experiments over multiple sites that test this repeatably

enough to present results in this paper. The tests of concurrent access to a tuple

space by multiple agents does show a speedup when using migration. Indeed,

this demonstrated that some care might have to be taken to prevent continuous

migration between tuple servers. However, the nature of most tuple space appli-

cations makes this unlikely anyway, and a \resistance" to migrating too often

can be added in the control layer.

It should be noted that the migration of a tuple space may result in faster

access for some agents accessing the tuple space, whilst providing slower access

for other agents. However, the aim is that on average all the agents can access

the tuple space quicker. If this is not the case then the migration of a tuple space

can be regarded as a failure.



5 Migration control experiments

Some consideration has been made as to how the simplistic heuristic of when to

move a tuple space can be extended, for example by adding dynamic checking of

communication latency between agents and tuple servers and by using historical

data. Our initial investigations have concentrated on using the \historical" load

on the Internet as a way to predict when and where network load will again be

high. This was motivated by an observation from using the Internet that at some

times of the day access to many countries is far slower than at other times of

the day. For example, from the UK access in the afternoon to USA is very slow.

We set up an experiment to use the UNIX ping tool every �fteen minutes

to measure the time taken for a round-trip to a number of sites. Each time

10 packets were sent, and the results then analyzed. Figure 4 provides the av-

erage packet round trip time from a machine at the Computer Laboratory at

Cambridge University to a number of other computers around the world. The

results are shown for only three days, starting 00:00 on the 20th May 1998 GMT,

and the last reading is at 00:00 on the 23rd May 1998 GMT. This represents

three days during the working week. We monitored many sites during the time,

and sites were chosen because of their geographical location and because of the

routers that were `normally' chosen to reach them (we detected this using the

UNIX traceroute tool).
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What is interesting is that the round trip time to the machines in the USA

increases noticeably when America goes to work, and drops again when working

day �nishes. The traces for the weekends interestingly show no such increase.

What is also interesting is that there is no such peak for machines located outside

the USA. The latency remains constant.

This was interesting because we had expected to see latency increase when-

ever a country was at work! Ping uses ICMP packets, so there is no retransmission

of lost packets, as there would be for the TCP connections used by the WCL

system. Therefore, we next examined the number of lost packets. Figures 5 and 7

show respectively the results for the sites outside Europe and the results for the

two sites in Europe (used in the previous experiment).
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It is interesting that the number of packets to all countries outside Europe

rises when the USA is working. By contrast, the number of packets lost in Europe

is very small.

By using traceroute to these addresses and to other randomly chosen class C

addresses we were able to investigate where the packet loss was occurring. Tra�c

from Cambridge to sites in the USA travel from external-gw.ja.net across the

Atlantic to teleglobe.net and thence via other Teleglobe routers to other service

providers. Unsurprisingly, most of the delay is introduced on the link across the

Atlantic. However, hardly any packets were dropped on our side of the Atlantic
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| most of the lost packets were dropped by telegloble.net or other Teleglobe

routers.

Although geographical position provides a strong indication of latency and

tra�c capacity between sites (if for no other reason than the speed of light!), we

have come to the conclusion that in many ways the service providers (who provide

the routers) de�ne the true geography of the Internet. Rather than using physical

geography we need to build an \image" of how the Internet is interconnected,

and the times when certain key routers are liable to be busy in order to determine

when a it is a good time to move a tuple space.

Future work on taming the current wild nature of the Internet will dramati-

cally a�ect how one should both measure network capacity and how to use these

measurements to decide when to migrate data. For example, end-to-end band-

width negotiation and tra�c-smoothing gateways would both have a big impact

in this area.

6 Further work

The existing prototype needs improvement in a number of areas before it is

sophisticated and robust enough for wider use:

Surviving agent failure The kernel can survive agent failure, but agent fail-

ure is still a problem for applications. Agents must remove tuples from a
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Fig. 7. Percentage of packets lost to Siegen and York.

tuple space, for example to increment a counter or claim a lock. If an agent

terminates unexpectedly while holding such a tuple, then the whole applica-

tion may deadlock.

Some implementations [16, 17, 7] o�er solutions to this problem based on

transactions, but none of them are completely satisfactory.

All the implementations take a similar approach. Two new commands are

added, start and commit. The start command causes all tuples inserted

to be held, and all tuples removed by the co-ordination commands in between

the start and the commit to be held. When the commit occurs any inserted

tuple appear in the tuple space. This way, if the commit is never reached

the inserted tuples do not appear in the tuple spaces and any removed tuples

can be replaced in the tuple spaces.

The problem with extra locking operations like start and commit is that

they alter the underlying semantics of the co-ordination fragments they are

placed around. This is demonstrated by the code fragments given in Figure 8.

Fragment One Fragment Two

out(10

integer

); in(10

integer

);

in(11

integer

); out(11

integer

);

Fig. 8. Example of transaction problems.



The two fragments of pseudo code shown in Figure 8 are assumed to be per-

formed on the same tuple space, and represent a trivial but yet important

co-ordination construct using tuple spaces. This construct is an explicit syn-

chronization between the two fragments. If the start and commit are placed

around the co-ordination construct in Fragment two then this does not alter

the semantics. However, if the start and commit are placed around the

co-ordination construct in Fragment one then Fragment two will deadlock.

The tuple inserted in Fragment one into the tuple space will not appear

until after the tuple inserted in Fragment two has been read, but this can

not occur until after the tuple inserted in Fragment two appears in the tuple

space, thus the Fragments deadlock.

In order to overcome this problem we have used the novel approach of mi-

grating \co-ordination fragments" from agents to tuple servers, which we

have called mobile co-ordination [18]. These fragments will contain WCL

operations with Java. This technique has also improved latency since fewer

round-trips are necessary, and it reduces the bandwidth needed for similar

reasons.

Surviving tuple server failure The development of a fault tolerant kernel

will be facilitated by our approach of storing a tuple space on a single tuple

server, because this makes it easy to take a snapshot of a tuple space, as in

the LAN-based PLinda [16]. It will be necessary to replicate the tuple space

over perhaps multiple sites.

Control system The control system is centralized, and for reliability and load

sharing this needs to be changed to a distributed version. Also we need to

work on the algorithms and techniques used to control when tuple spaces

are moved. This will include taking account of network topology, capacity

and recent and historic load.

Tuple and tuple space management We need to add access control mech-

anisms to tuple spaces and potentially tuples. This will also allow us to

consider garbage collection of tuple spaces and tuples.

7 Conclusions

In this paper we have described a novel implementation of a distributed kernel

supporting tuple spaces, which can be used for the co-ordination of geograph-

ically distributed agents over the Internet. The kernel uses tuple space usage

analysis to transparently move tuple spaces to the tuple servers which can best

support the dynamically changing access patterns of the agents.

Recent interest in tuple space based systems for the Internet and recent

product announcements shows the importance that tuple spaces may play in the

future. If the true potential of the tuple space paradigm is to be ful�lled the

development of run-time systems which support them in a scalable and e�cient

manner must be developed. We are currently addressing this, and the current

prototype implementation represents an initial step in the right direction.

The work on implementations has revealed a weakness both in the current

prototype and the WCL languages, in their inability to support fault tolerance.



This is to be addressed with the concept of mobile co-ordination. This should

be seen as complementary to the mobile tuple space concept presented in this

paper.

Some implementors of tuple space systems for wide area use have suggested

that centralized implementations are preferable to distributed ones. However, the

experimental results from our prototype distributed kernel show the potential

performance gains from bulk data migration. In some cases we have observed

a 30-fold speed increase. These �gures argue compellingly for distributed tuple

space run-time systems.
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