
Using asynchronous tuple space access primitives

(Bonita primitives) for process co-ordination

Antony Rowstron

Computer Laboratory, University of Cambridge, New Museums Site,

Pembroke Street, Cambridge CB2 3QG, UK

Abstract. In this paper an interactive talk program is used to demon-

strate the di�erence between the Linda primitives and the recently pro-

posed Bonita primitives. Both use the concept of shared tuple spaces

for inter-agent communication, but the Bonita primitives provide asyn-

chronous tuple space access. The paper demonstrates the performance

gains and the novel co-ordination patterns achievable using the Bonita

primitives.

1 Introduction

The concept of shared tuple spaces is the foundation of the Linda[1] co-ordination

language. Linda provides asynchronous process communication but synchronous

tuple space access. The Bonita[3] primitives are a set of asynchronous tuple

space access primitives. In distributed environments the need for such primitives

is driven by both functionality and performance concerns. The implementation of

the C-Bonita uses the run-time system used in the York Linda Kernel II[2] and

the primitives are described in detail in Rowstron et al.[3]. A detailed description

of Linda can be found in Carriero et al.[1].

In order to compare the use of the Bonita primitives and the Linda primi-

tives the implementation of a talk tool is considered. The talk program requires

an arbitrary number of people should be able to communicate concurrently (in-

teractively) using the talk program and the text that makes the conversation

should be stored for future reference. The people involved in the conversation

can dynamically alter. An initialisation section displays the conversation to date,

and the main section allows the user to participate in the conversation.

1.1 C-Linda version

This initialisation code (lines 1{9, Figure 1) assumes that each conversation uses

a unique tuple space (in this case represented by a tuple space handle called con),

and this has been initialised and a tuple representing a counter of the number of

messages in the conversation is present. Each line of the conversation is a simple

tuple of the form [index

integer

; name

string

; textline

string

], and the counter tuple

contains the value of index for the next line to be inserted.



1 out(con, user_name);

2 in(con, ?num_lines); /* Get counter */

3 out(con, num_lines, user_name, "Joining");

4 out(con, ++num_lines);

5 init_window(); /* Set up the window */

6 for (pos = 0; pos < num_lines; pos++) {

7 rd(con, pos, ?name, ?text);

8 print_screen(name,text);

9 }

10 next = num_lines;

11 while (!exit_status) {

12 /* If available display next line */

13 if (inp(con, next, ?name, ?text)) {

14 print_screen(name,text);

15 next++;

16 }

17 if (ready_line(text)) {

18 in(con, ?num_lines);

19 out(con, num_lines+1);

20 out(con, num_lines, user_name, text);

21 }

22 }

23 in(con, user_name);

Fig. 1. The talk program using C-Linda.

The �rst operation is to insert

a tuple containing the users name

(line 1). This is so other users can

ask who is currently active in a

conversation. When a user exits

the tuple containing the name is

removed (line 16). A line in the

conversation is inserted to indi-

cate that the a new person has

joined the conversation (lines 2{

4). This is achieved by removing

the counter tuple (line 2), and then

inserting a new conversation line

(line 3), and then replacing the in-

cremented counter tuple (line 4).

Then, each line of the conversa-

tion is read and printed on the

screen (lines 6{9). The main sec-

tion code (lines 10{23, Figure 1) of

the C-Linda program uses polling

for detecting the tuple containing

the next line of the conversation in

the tuple space and for getting user input text. An inp primitive is used to keep

checking if a tuple containing a new line of the conversation has been inserted

into the tuple space (line 13). If so, it is displayed and the local counter in-

cremented thus enabling checking for the next tuple. The function ready line

manages the input of text from the keyboard and checks if a line of text is

ready. If a line of text is ready it is inserted into the conversation by retrieving

the counter tuple (line 18), reinserting it incremented (line 19), and then adding

the tuple to the conversation (line 20).

1.2 C-Bonita version

The initialisation code (lines 1{12, Figure 2) for the C-Bonita version function-

ally does exactly the same as the C-Linda version. It should be noted that the

Bonita primitives can emulate the Linda primitives, hence the Linda primitives

are provided as macros. The second part of the initialisation code uses pipelining

of tuple space accesses. The requesting of all tuples is achieved within the for

loop (line 7) and the dispatch primitive (line 8). The request identi�er for each

of the dispatch primitives is stored, to be used when retrieving the results. The

for loop (line 9) and the obtain primitive (line 10) retrieve the requested tuples.

The C-Bonita main section code (lines 13{29, Figure 2) again uses polling to

check if the next line of the conversation is available or if there is user input

ready. The polling of the next line of the conversation does not use inp but in-

stead requests the tuple using a dispatch primitive (lines 14 and 20) and checks

for the tuples arrival using the arrived primitive (line 17).



1 dispatch(con, user_name); /* Place name in ts */

2 in(con, ?num_lines); /* Get the line counter */

3 dispatch(con, num_lines, user_name, "Joining");

4 dispatch(con, ++num_lines);

5 init_window(); /* Set up the window */

6 /* Get lines of text - pipelining the ts access */

7 for (pos = 0; pos < num_lines; pos++)

8 arr[pos] = dispatch(con, pos, ?n, ?text, NONDEST);

9 for (pos = 0; pos < num_lines; pos++) {

10 obtain(arr[pos]);

11 print_screen(n,text);

12 }

13 next = num_lines;

14 ref = dispatch(con, next, ?n, ?text, NONDEST);

15 while (!exit_status) {

16 /* If next line here then display it */

17 if (arrived(ref)) {

18 print_screen(n,text);

19 /* Request the next line of the conversation */

20 ref = dispatch(con, ++next, ?n, ?text, NONDEST);

21 }

22 if (ready_line(text_input)) {

23 in(con, ?num_lines);

24 dispatch(con, num_lines+1);

25 dispatch(con, num_lines, user_name, text_input);

26 }

27 }

28 in(con, user_name);

Fig. 2. The talk program using C-Bonita.

It should be noted that

the dispatch primitive

on line 14 is used to re-

quest the �rst tuple con-

taining a text line that

was not displayed dur-

ing the initialisation sec-

tion, and subsequent tu-

ples containing text lines

are requested by the one

on line 20. If a con-

versation tuple is avail-

able then the arrived

primitive retrieves it (line

17), and the text dis-

played (line 18). The func-

tion ready line is used

to manage and check the

text input by the user. If

a line of text is available,

the counter is retrieved

(line 23), and then in-

cremented and reinserted

(line 24) and then the tu-

ple with the line of text is

inserted (line 25). At the end the users' name is removed from the tuple space

(line 28).

2 Comparison of the C-Linda and C-Bonita programs

By examining the two programs it is clear to see that the C-Linda version ap-

pears more compact and in some ways more elegant. The fundamental di�erence

between the two initialisation sections is the way in which the tuples representing

the text of the past conversation is retrieved. The C-Bonita version pipelines

access to the tuple space, whereas the C-Linda version does not. This cannot

lead to the C-Bonita version taking longer, and in most cases will provide a

speed-up. This is because when using a rd primitive, a message is sent to the

system managing the tuple spaces (kernel), the kernel processes the message,

and a reply message is sent back. When this is received the rd has completed

and the program continues to perform the next rd primitive. In the C-Bonita

version the the request for the next tuple is not dependent on the receipt of the

result for the previous request.

The results shown in Table 1 show the time taken to retrieve a number of tu-

ples from a tuple space. These were produced using a network of Silicon Graph-

ics Indy workstations connected by a non-dedicated 10Mbit/s Ethernet LAN



network. The kernel used was the York Kernel II[2] but using it as a single

centralised server, instead of using it as a distributed server (this favours the

C-Linda version). The test programs were executed on a di�erent Indy Work-

station to the one which the kernel was executing on. The C-Linda test program

was lines 6{9 of Figure 1, and the C-Bonita test program was lines 7{12 of Fig-

ure 2. The results for the C-Bonita version demonstrate the speed advantage

of pipelining the tuple space accesses.

Number of C-Linda C-Bonita C-Bonita

tuples (seconds) (seconds) speedup

1 0.004 0.004 0 (0%)

10 0.033 0.019 0.014 (42%)

100 0.362 0.197 0.165 (46%)

1000 4.645 2.683 1.962 (42%)

Table 1. Timings for retrieving tuples.

The fundamental di�erence be-

tween the two main sections is the

way in which the tuples represent-

ing the next line of text in a con-

versation are retrieved. In the C-

Linda version this is achieved us-

ing the inp primitive and in the C-

Bonita version this is achieved us-

ing a dispatch and arrived prim-

itives. The C-Linda approach has

a disadvantage over the C-Bonita

approach due to the level of communication between the user process and the

kernel. The C-Bonita approach requires two messages to pass between the user

process and the kernel (dispatching the template and reply tuple). Arrived is

simply a local check within the user process to see if the reply message has ar-

rived, there is no extra communication with the kernel. An inp is two messages

(a dispatch and a reply), but the reply will either contain a tuple or a value

indicating no matching tuple was found. Each time an inp both messages are

required. This also increase the load on the kernel, because it must process each

message and create a reply.

3 Conclusions

We have briey compared the Linda primitives and the Bonita primitives using

a simple example, and shown that the Bonita primitives are better suited to

the type of co-ordination required in agent systems. A full copy of the paper

is available as Technical Report No. 422 from the Computer Laboratory, Cam-

bridge University. The author would like to thank Dr. Andy Hopper and ORL

Ltd, Cambridge for funding this work.

References

1. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4):444{458, 1989.

2. A. Rowstron and A. Wood. An e�cient distributed tuple space implementation for

networks of workstations. In Euro-Par'96, LNCS 1123, pages 510{513. Springer-

Verlag, 1996.

3. A. Rowstron and A. Wood. Bonita: A set of tuple space primitives for distributed

coordination. In HICSS-30, volume 1, pages 379{388. IEEE CS Press, 1997.


