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Linda is a mature co-ordination language that has been in use for several

years. However as a result of recent work on the model we have found a

simple class of operation that is widely used in many di�erent algorithms

which the Linda model is unable to express in a viable fashion. An example

algorithm which uses this operation is the composition of two binary

relations. By examining how to implement this in parallel using Linda

we demonstrate that the approaches possible using the current Linda

primitives are unsatisfactory. This paper demonstrates how this \multiple

rd problem" can be overcome by the addition of a primitive to the Linda

model, copy-collect. This builds on previous work on another primitive

called collect[3]. The parallel composition of two binary relations using

the copy-collect primitive can be achieved with maximal parallelism.
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1 Introduction

Linda[5] is a co-ordination language, providing mechanisms to allow concur-

rent process to communicate. The process communication is asynchronous and

is performed through tuple spaces, which are associative shared memories. Pro-

cesses which communicate can be both spatially and temporally decoupled.

Indeed, two process can communicate even if one has terminated before the

other has started. The Linda model is described in more detail in Section 2.

While working on the implementation of parallel image processing algorithms

in Linda[20] it emerged that there is a particular operation that the Linda

model can not perform adequately. The operation is described as a multiple

rd. In order to demonstrate the multiple rd problem an example is used,

the parallel composition of two binary relations. The example is introduced in
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Section 4. Two approaches are suggested that use the current Linda primitives

in Sections 5 and 6, and through experimental results presented in Section 7

the problems of both approaches are shown. A new primitive is then introduced

in Section 8, and how this primitive overcomes the multiple rd problem is then

shown. The three approaches are then compared at a theoretical level, with

the use of a simple model for each of the methods.

2 The Linda Model

A detailed description of Linda can be found in Carriero et al.[5]. The primary

primitives are:

out(tuple) This places the tuple into a tuple space.

in(template) This removes a tuple from a tuple space. The tuple removed

is associatively matched using the template

1

and the tuple is returned to

the calling process. If no tuple that matches exists then the calling process

is blocked until one becomes available.

rd(template) This primitive is identical to in except the matched tuple is

not removed from the tuple space, and a copy is returned to the calling

process.

eval(active-tuple) The active-tuple contains one or more functions, which

are then evaluated in parallel with each other and the calling process. When

all the functions have terminated a tuple is placed into the tuple space with

the results of the functions as its elements.

The Linda Model is intended to be an abstraction, and as such is independent

of any speci�c machine architecture. This has meant that alternatives and

extensions to the basic Linda model have been proposed and investigated.

The extensions that are used currently in the York Kernel I and II[22,8] are:

multiple tuple spaces The concept of multiple tuple spaces was introduced

by Gelernter as part of Linda 3[10], and involved the addition of a type

ts and a primitive tsc. The idea of adding multiple tuple spaces has led

to many di�erent proposals of how multiple tuple spaces could be incor-

porated within Linda[12,13], and many implementations include multiple

tuple spaces in one form or another[8,19,11,17,14,15].

Multiple tuple spaces were introduced as an e�ective way of hiding in-

formation. Information within a tuple space can only be accessed by those

processes that know about the tuple space. As the use of Linda has changed

to incorporate di�erent styles of distributed computing the need to hide

tuples has become increasingly important to ensure that other processes
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Sometimes referred to as an anti-tuple.
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neither maliciously nor accidently tamper with the tuples that other pro-

cesses are using. When multiple tuple spaces are added to Linda there are

two issues: whether tuple spaces are �rst class objects, and the relationship

between the tuple spaces. If the tuple spaces are �rst class objects then a

tuple space can be an element of a tuple, and treated like any other �rst

class value. Generally most implementations do not support �rst class tu-

ple spaces because making tuple spaces �rst class introduces many complex

questions involving the semantics of the primitives, for example what does

it mean to insert a tuple into a tuple space that another process has con-

sumed? The tuple spaces can either be unrelated or they can be related

creating some form of hierarchy[12,13]. Most implementations adopt a 
at

structure. As far as the work described in this paper is concerned the rela-

tionship between tuple spaces is not important, just the fact that multiple

tuple spaces are incorporated into Linda.

The collect primitive [3]. Given two tuple space handles (ts1 and ts2)

and a tuple template, then collect(ts1, ts2, template) moves tuples

that match template in ts1 to ts2, returning a count of the number of

tuples transferred. This primitive by its very nature requires multiple tuple

spaces.

2.1 Linda Semantics

Linda was originally proposed as what might be characterised as an `engineer-

ing solution' to the problem of coordinating parallel processes independently

of their computational aspects. This resulted in an loosely, and informally,

speci�ed semantics for the Linda operations, and then Linda developed incre-

mentally in an evolutionary manner from this informal basis.

However, as research interest, and implementational work, increased it be-

came clear that the lack of a formal speci�cation of Linda's operations was

needed, not least because di�erent implementors interpreted the informal def-

initions in di�erent ways, giving rise to a number of inconsistent de facto `se-

mantics'. Consequently, many attempts (for example [2,7,6,13,16]) have been

made to specify the meaning of the extant Linda operations post facto. This

is a much more di�cult task than de�ning the semantics of a system from

scratch, without the demands of being `backwardly compatible' with existing

informal de�nitions. This di�culty is highlighted by the fact that, despite the

many attempts, there is no generally accepted formal speci�cation for Linda.

The main reason for the lack of generally accepted Linda semantics is that

the `design space' | the set of reasonable alternative interpretations of the

Linda operations | is very wide (a recent survey [4] of some of the open

questions identi�ed a dozen more or less orthogonal choices which could be
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made). This indicates that there is unlikely to be a uniquely \correct" speci�-

cation of Linda. In addition, most of the formal systems used in specifying the

semantics of computational systems have some di�culty in capturing some

of the intuitively fundamental properties of Linda | principally due to its

combination of non-determinism and asynchrony | in a way which useful to

a Linda implementor, or natural to a Linda user.

This lack of a generally accepted formal semantics has meant that as new

proposals for additions or modi�cations to Linda are made, an informal de-

scription of their meanings is the norm, as will be the case in section 8 when

we introduce the copy-collect primitive as a solution to the multiple-rd

problem. If and when a suitable semantic formalism is developed, the infor-

mal descriptions will be more rigorously speci�ed | in fact discovering how

well proposed formalisms capture the intuitive meanings of such operations

will be a measure of their quality.

3 The multiple rd problem

In this section, an expressive limitation of the Linda model is identi�ed, which

is referred to as the multiple rd problem. A multiple rd is de�ned as an op-

eration where two or more processes are required to concurrently, and non-

destructively read one or more tuples from a tuple space which match the same

template, where there are at least two or more tuples that match the template,

and at least two of the processes can be satis�ed by the same tuples. The

problem is that a multiple rd cannot be performed e�ciently using the cur-

rent Linda model if two or more tuples are concurrently and non-destructively

read from a tuple space using the same template.

As an example consider a tuple space containing a number of tuples with each

containing two �elds, representing peoples' names such as h\Antony"

string

;

\Rowstron"

string

i . This tuple space is shared among many processes that

may require access to the tuples. How would all the tuples representing people

whose surname is Rowstron be retrieved by a process?

Initially, the answer would appear to be the repeated use of the rd primitive.

The template hj2

string

; \Rowstron"

string

ji will match a tuple whose surname

is Rowstron. This will only work if there is a single tuple which matches the

template. If all the names of an entire family are in the tuple space, or there

are several unrelated people with the same surname stored in the tuple space,

the repeated use of a rd will not work. The semantics of rd mean that if

more than one tuple matches a template the tuple returned is chosen non-

deterministically.
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There are only two methods that enable many processes to concurrently and

non-destructively access a tuple space using the standard Linda model. One

method is to use a designated tuple as a binary semaphore and the other is to

organise the tuples as a stream. Before these two methods are examined and

evaluated another example containing the multiple rd problem is described.

4 Parallel composition of two binary relations

A binary relation is de�ned as a relation de�ned between two sets. The binary

relation de�nes a subset, B, of the Cartesian product of the two sets. Therefore,

given two sets, T and X, the Cartesian product, T �X, is de�ned as:

f(t; x) : (t 2 T ) and (x 2 X)g (1)

If the ordered pair (s

1

; s

2

) belongs to the set B, then the binary relation B is

said to hold between the two values. This binary relation could for example be

\less than", so s

1

< s

2

. Given two binary relations, R and S, their composition,

R � S, is de�ned as:

f(a; d) : ((a; b) 2 R) and ((c; d) 2 S) j b = cg (2)

In this example it is assumed that the ordered pairs in each set are held in

separate tuple spaces, with each tuple representing a single ordered pair. After

performing the composition, a new tuple space will be created containing the

resulting tuples. This is shown in Figure 1.

[1,3]

[4,7]

[5,6]

[2,3]

[3,7]

Tuple space R

[3,7]

[6,12]

[5,8]

[9,10]
[3,9]

[5,12]

[2,9] [1,9]

[1,7]

[2,7]

Tuple space S Tuple space R  S

Fig. 1. Composition of two binary relations represented using three tuple spaces.

Due to the properties of the composition of binary relations it should be simple

to implement in parallel, with every pair in tuple space R being compared with

every pair in tuple space S concurrently. The results for each pair in tuple

space R are independent of the results for any other pair in tuple space R. So

a number of processes are used. Each process takes a pair from tuple space

R, and checks the chosen pair with every pair in tuple space S. If the second

element of the pair from tuple space R is the same as the �rst element in a pair

from tuple space S, a new pair is produced. This new pair contains the �rst
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element of the pair from tuple space R and the second element from the pair

from tuple space S. The �nest grained parallel approach using this method will

use a process for every pair in tuple space R. The detecting of the elements

in tuple space S which match, is an associative look up which indicates that

Linda should be ideal because of the associative matching properties it has.

The multiple rd problem is seen within the parallel composition of two bi-

nary relations because there are several processes that need to concurrently

access the tuple space S non-destructively. The stream and semaphore meth-

ods of solving the multiple rd problem are now considered, using the parallel

composition of two binary relations as an example.

5 Tuple semaphores

The �rst method considered for overcoming the multiple rd problem is using

a tuple as a binary semaphore, or lock tuple. The lock tuple is a single and

unique tuple that allows user processes to control access to a tuple space.

The general concept is that a process obtains the lock tuple, then destructively

removes the matching tuples, using either inp or collect.

2

Once all the tuples

have been removed they are replaced, and then the lock tuple reinserted. The

removal of tuples is acceptable because only a single process can obtain the

lock tuple and therefore access the tuple space at any one time

3

provided the

tuple space is returned to the same state as it was when the lock tuple was

removed no other process will be aware that the tuples have been removed

and replaced.

In the case of the parallel composition of binary relations, the ISETL-Linda[8]

code for a worker process is shown in Figure 2. Each worker process removes

a tuple from tuple space R and then tries to remove the lock tuple in tuple

space S. There is only one lock tuple in the tuple space S so all but one of the

processes will block on the in primitive (line A in Figure 2). When a worker

process retrieves the lock tuple, it has unrestricted access to the tuple space

S.

The worker process creates a template using the second �eld of the tuple re-

moved from tuple space R as the �rst element of the template. In this example,

the template is then used by a collect to move all the tuples that match the

2

If the Linda implementation supports neither of these or it supports them but

does not provide out ordering (see Section 8) then the semaphore method can not

be used, and streams must be used.

3

Provided the all the processes accessing the tuple space adhere to the use of the

lock tuple.
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template in tuple space S to a local tuple space. The same operation can be

performed using inp.

The worker process then removes each of the tuples from the local tuple space

using the in primitive. The worker process then places the tuple back into

tuple space S. Because of the �ne grained nature of the worker processes

used in the composition of binary relations, as the worker process returns the

tuples to tuple space S, it also calculates any results and places them in the

results tuple space C. If the computation \associated" with each tuple is more

complex then either the worker process can place another copy of each tuple

in a di�erent tuple space for processing, once all the tuples from tuple space S

have been replaced, or further processes, can be spawned to actually perform

the calculations.

Once all the tuples in the local tuple space have been processed and replaced in

S, the lock tuple is also replaced in S. This means that tuple space S contains

all the tuples that were present when the worker process obtained the lock

tuple. The tuple which acts as the semaphore can only be replaced when the

tuple space is in its original state. If the tuple is returned prior to this then

the other processes are not guaranteed to �nd all the tuples that they require.

comp_worker := func(R,S,C);

local my_val, my_ts, my_comb, todo;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|); -- Get the element from R

dummy := lin(S,|["lock"]|); -- Get the lock (A)

todo := lcollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Grab matching tuples in S

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|); -- Process each

lout(C,[my_val(1),my_comb(2)]); -- Create result tuples

lout(S,my_comb); -- Replace tuple in S

end while;

lout(S,["lock"]); -- Let the lock tuple go

return ["TERMINATED"];

end func;

Fig. 2. A worker process using a tuple as a binary semaphore or lock tuple.

There are two reasons why tuple semaphores are not an acceptable solution

to the multiple rd problem.

{ Firstly, the solution requires the processes that use a tuple space to agree to

use the lock tuple, and there is no guarantee that other processes will con-

form to this. Consider the example given in the introduction of this paper,

involving a tuple space containing a set of names. There is no reason why
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several processes performing di�erent and unrelated tasks may all require

access to the name tuples within the tuple space concurrently. Suppose one

process does not conform to the use of a lock tuple, either maliciously or by

accident, then all the processes can no longer reliably have access to all the

possible tuples.

{ Secondly, such an approach creates a sequential bottleneck for the access of

the tuple space as only one process can access the tuple space at any one

time. Therefore, in the parallel composition of binary relations example, the

only speed up achieved is the parallel reading of the tuples from tuple space

R. The majority of the time that the program executes only a single worker

is active, creating a sequential solution because only one process can access

the tuple space S at any one time. Consequently, the use of this method is

not normally acceptable because the sequential access produces bottlenecks.

6 Streams

The second approach is to use a stream. The basis of this approach is to remove

the multiple rd problem of having many tuples which match the template to

be used. This is achieved either by using information which is already in the

tuple, or by adding a unique �eld to each tuple. This means that a unique

template can be generated which will match a single tuple in the tuple space.

Any processes which wants to use the tuples within the tuple space must be

aware of the �elds used within the tuple, and, if necessary, how the �eld is

generated. Processes accessing the tuple space use the rd primitive to retrieve

every tuple, and use a local check to see if the tuple is required.

Consider the example of the parallel composition of binary relations and as-

suming that the tuple space S contains the �ve tuples (as shown in Figure 1):

h3

int

; 7

int

i; h6

int

; 12

int

i; h3

int

; 9

int

i; h5

int

; 8

int

i; h9

int

; 10

int

i:

There is no unique �eld that allows each tuple to be independently chosen.

Therefore a unique �eld is added to each of the tuples:

h1

int

; 3

int

; 7

int

i; h2

int

; 6

int

; 12

int

i;

h3

int

; 3

int

; 9

int

i; h4

int

; 5

int

; 8

int

i; h5

int

; 9

int

; 10

int

i:

After adding the extra �rst �eld, each tuple contains a unique �eld, and the

relationship across the tuples between the unique �elds is known (an integer

counter that is incremented by one for each tuple). This allows a process to

access the tuple space using the template hjindex

integer

; 2

integer

; 2

integer

ji
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where index is a value between one and �ve in this example. Every worker

process takes a tuple from tuple space R, and then reads every tuple from

tuple space S, using the index �eld to match each tuple in turn. The worker

process checks if the returned tuple is actually required and either discards it

or uses it accordingly. If the implementation supports the rdp primitive then

this removes the need to check the tuple locally, but all tuples still have to

be checked. A template of the form hjindex

integer

; R(2)

integer

;2

integer

ji would

be used, where R(2) is the second element from the tuple retrieved from the

tuple space R. The rdp primitive would then be used returning either the

matching tuple or a value to indicate it was not found. Every tuple still has

to be checked. The ISETL-Linda code for a worker process using the stream

method is shown in Figure 3.

comp_worker := func(R,S,C,NumTupS);

-- NumTupS - No. of tuples in S

local my_val, my_comb;

my_val := lin(R,|[?int,?int]|); -- Get a tuple from R

while (NumTupS > 0) do -- Check all tuples in S

my_comb := lrd(S,|[NumTupS,?int,?int]|);

NumTupS := NumTupS - 1;

if (my_comb(2) = my_val(2)) then -- Does the tuple match?

lout(C,[my_val(1),my_comb(3)]);

end if;

end while;

return ["TERMINATED"];

end func;

Fig. 3. A worker process using streams.

In this example it is necessary to add an extra �eld but sometimes a unique

�eld is already present within the tuple. For example, when an image is stored

in a tuple space, with each pixel being stored as a tuple of the form:

hx-coordinate

integer

; y-coordinate

integer

; pixel value

integer

i:

A process may want to access all pixels that are of a particular value. Here

the obvious template would be hj2

integer

;2

integer

; pixel value

integer

ji. However,

if many processes wish to perform the operation in parallel it will introduce

the multiple rd problem. Assuming that the coordinate system used within

the image will be known to the accessing processes, and there is only one pixel

value for each coordinate, the coordinate �elds within the tuple can be used

as the unique �elds. The processes can then use a stream approach, reading

every coordinate to check if the pixel value is the one required, and discarding

if it is not.
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With the stream method all the worker processes can perform the accessing

of a tuple space in parallel, however there are two problems that make this

approach unacceptable:

{ Firstly, it negates the advantages of the tuple matching abilities of Linda.

Every tuple in the stream structure must be read. If there are many tuples

in a tuple space and only a few are required, the time and communication

costs of reading every tuple are considerable. This is compounded if the

implementation does not support rdp, because additional processing within

the user process of the returned tuple is needed to check if the tuple is one

that is required.

{ Secondly, every tuple in the tuple space requires a unique �eld to be added,

and any process using the tuples must be aware of the unique �eld and how

it is generated. This dilutes the natural use of a tuple space as the data

structure by adding another structure (a stream) to the tuples within the

tuple space. In order to achieve this, either the producer must be aware

of the need to add this unique �eld in which case the cost of adding it is

minimal, or the tuples must be pre-processed to add the unique �eld before

being used.

Even if the producer can add the extra �eld, and so no pre-processing of the

tuples is required, the communication and time costs of checking every tuple

explicitly using either rd or rdp is unacceptable unless the majority of tuples

within a tuple space match the template.

7 Experimental results

In order to show the problems of both the binary semaphore and stream

methods the execution times of parallel composition of binary relations using

both these methods are considered. The experimental results presented in

this section are obtained using ISETL-Linda executing on a Transputer based

Meiko CS-1 parallel computer using the York Kernel I[9]. For the experiments

the cardinality of the tuple space R is set to �ve; the cardinality of tuple

space S is 50. For every pair (represented as a single tuple) in tuple space R

there are four pairs (again, represented as single tuples) in tuple space S that

match, therefore the cardinality of the composition tuple space C is 20. The

worker processes are altered to enable them to be instructed on how many

tuples are processed from tuple space R. Thus, a single worker computes the

results for all �ve pairs in tuple space R, whereas �ve worker processes each

compute the results for a single pair from tuple space R, as in the example code

segments Figure 2 and 3. This is used to show that the semaphore method

forces sequential access to tuple space S, whilst the stream approach allows

parallel access to tuple space S.

10



The execution time does not include the time taken to spawn the worker

processes, and does not include the time taken to create the tuple spaces S

and R. In the stream approach it is assumed that the producer added the

unique �eld to the tuples as they are created, thus avoiding the need to pre-

process the tuples to add the unique �eld. All execution times are given in

ticks, where 15625 ticks is the equivalent of one second.

The performance for both the methods of solving the multiple rd problem are

compared against a sequential version. The code for the sequential version is

shown in Figure 4. The sequential version takes each tuple from tuple space R,

then uses the collect primitive to destructively move to another tuple space

every tuple from tuple space S in which the �rst element of the tuple is the

same as the second element of current tuple chosen from tuple space R. The

moved tuples are then destructively read using the in from the other tuple

space, processed and then placed back in to tuple space S. The result tuples

are placed in tuple space C. The sequential version uses the tuple spaces to

store data structures as do the parallel versions.

comp_worker := proc(R,S,C,NumTupR);

- NumTupR is the number of tuples in R

local my_val, my_ts, my_comb, todo, loop;

my_ts := |{}|;

for loop in [1 .. NumTupR] do -- For all tuples in R

my_val := lin(R,|[?int,?int]|); -- Get the a tuple

todo := lcollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Process the matched tuples

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

lout(S,my_comb);

end while;

end for;

end proc;

Fig. 4. The code for the sequential composition of binary relations.

7.1 The binary semaphore method

Figure 5 shows the execution times taken for the version using the lock tuple

method when the number of worker processes are varied from between one

and �ve. Also shown is the time taken for a sequential version of the program.

The timings are given in ticks, which are arbitrary units of time.

The sequential version is slightly faster than the parallel version using the lock
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Fig. 5. Execution time for the parallel composition of binary relations when using

the binary semaphore method.

method and one worker process. This is because the sequential implementation

is similar to the lock method except that a lock tuple is not used, as only one

process can ever access the tuple space. This means the the di�erence in the

execution times represents the cost of fetching and replacing the lock tuple.

When two worker processes are used the execution time is slightly less than

the execution time of the sequential version. This is achieved because of the

parallel access to the tuple space R. The fetching of a tuple from tuple space R

is the only work that can be parallelised; the access to tuple space S is forced

to be sequential.

There is no performance gain by increasing the number of worker processes

above two. For a parallel algorithm of this nature it would be expected that

the addition of further worker processes would lead to a shorter execution

time. In this case, when there are two worker processes one will consume

three tuples from tuple space R and the other will consume two tuples from

tuple space R. Five worker processes will each consume only one tuple from

tuple space R, implying that as the number of worker processes are increased

the work each worker has to do drops. This is shown in Figure 6 where the

solid line represents the time a worker process is accessing tuple space S, and

the dotted line represents the time when the worker is accessing tuple space

R. The solid thick black lines represent the time when a worker process is

blocked awaiting the lock tuple. The length of the time taken by the longest

worker is the execution time of the program. Figures 6(a) and 6(b) show that

the time taken by the longest worker process when both two and �ve worker
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processes are used is the same. If three or four worker processes are used then

the longest worker process will again take the same time.

As the number of worker processes increase there is no performance increase

because there is nothing more that can be achieved in parallel. When there are

�ve worker processes, each will consume only one tuple from tuple space R.

However, the program takes the same length of time as that with two worker

processes because there is no gain in having more than two worker processes

access tuple space R in parallel. This is shown in Figure 6, where the solid

lines represent the time when a worker process is accessing tuple space S,

the dotted lines represent the time that the worker process is accessing tuple

space R, and the solid black bars represent the time when the worker process is

blocked awaiting the lock tuple. The length of time taken by the longest worker

represents the time the program takes. Hence, by looking at Figures 6(a) and

6(b) it can be seen that the time taken by the longest worker process in each

case is the same.

P2

P1

(a) Execution pattern using two worker processes.

P1

P2

P3

P4

P5

(b) Execution pattern using �ve worker processes.

Fig. 6. Execution patterns for two and �ve worker processes using the semaphore

method.

7.2 The stream method

Figure 7 shows the execution times taken for the version using the stream

method when the number of worker processes are varied from between one

and �ve. Again the time taken for the sequential version is also shown and

the predicted execution times are also shown. The predicted execution time is

calculated on the basis of the time taken for one worker process.

The results show that the execution time is dependent upon the number of
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Fig. 7. Execution time for the parallel composition of binary relations when using

the stream approach.

worker processes used. The solution is parallel so the time taken depends on

the worker process or processes which consume the most tuples from tuple

space R. When either three or four worker processes are used then in both

cases the most tuples from tuple space R a single worker process consumes

is two. Subsequently the execution times when using three or four worker

processes are same.

Although there is a speedup as the number of worker process is increased,

the execution times are always greater than the sequential version. This is

because all the tuples have to be read in regardless of whether they are actually

required. The cost of reading all the tuples, regardless of whether they are to

be used is an expensive operation.

7.3 Experimental conclusions

The experimental results show the dilemma that a programmer faces with the

multiple rd problem within the Linda model. The binary semaphore method

provides no speed increase as the number of worker processes used increases

but is slightly faster than the sequential version when two or more worker

processes are used. The stream method shows a speed up as the number of

worker processes are increased but it takes a longer time to execute than the

sequential version, even when �ve worker processes are being used.

What makes this multiple rd problem more frustrating is that it is intuitively
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the case that several non-destructive reads of a tuple should be possible in

parallel. Within the Linda model there is no notion of synchronisation between

primitives, and hence two Linda primitives can be executed concurrently, and

indeed the York Linda kernels[9,22] support concurrent primitive operations.

8 The copy-collect primitive

In order to overcome the multiple rd problem the addition of a new primitive

to the Linda model has been proposed, a relative of the collect primitive[3].

The informal semantics of the copy-collect primitive are:

n = copy-collect (ts1, ts2, template) This primitive copies tuples that

match template from one speci�ed tuple space (ts1) to another speci�ed

tuple space (ts2). A count of the number of tuples copied (n) is returned.

Tuple space ts1 is known as the source tuple space and tuple space ts2 is

known as the destination tuple space.

To determine how many tuples are copied a series of rules are used. These

rules are:

(i) If a copy-collect primitive and no other Linda primitives are per-

formed using the source tuple space concurrently, then all the tuples

that match the template will be copied to the destination tuple space.

(ii) If a copy-collect primitive and a rd primitive are performed using the

same source tuple space concurrently, and one or more tuples exist that

can satisfy both templates, then all the matching tuples will be copied

to the destination tuple space and the rd primitive will return some

matching tuple.

(iii) If two copy-collect primitives are performed using the same source

tuple space concurrently, and one or more tuples exist that can sat-

isfy both templates, then all the matching tuples will be copied to the

destination tuple space for each of the copy-collect primitives.

(iv) If a copy-collect primitive and an out primitive are performed con-

currently, and the out primitive is placing a tuple into the source tuple

space that matches the template used in the copy-collect primitive,

then the result is a non-deterministic choice between copying the in-

serted tuple or not. All other matching tuples will be copied.

(v) If a copy-collect primitive and an in primitive are performed using the

source tuple space concurrently, and one or more tuples exist that can

satisfy both templates, then the copy-collect primitive either copies

all the tuples, or all the tuples minus the matched tuple that the in

primitive returns (the choice is non-deterministic).

(vi) If a copy-collect primitive and a collect primitive are performed con-

currently using the same source tuple space, then the number of tuples

copied is non-deterministic within the bounds of zero to the maximum
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number of tuples present that match the template. The number of tu-

ples that the collect primitive will move will be the number of tuples

present that match the template.

If any primitive occurs concurrently with a copy-collect primitive that

does not use either a template which matches one or more tuples that the

copy-collect primitive template matches, or the source tuple space, then

there is no interference between them. The exception is when the primitive

is either a collect primitive or a copy-collect primitive performed on

the destination tuple space with a template that matches one or more of

the tuples being copied. Then each tuple placed into the destination tuple

space is non-deterministically copied or moved by the collect primitive or

copy-collect primitive being performed on the destination tuple space.

When a value is returned by a copy-collect primitive the copied tuples

are present within the destination tuple space.

The copy-collect primitive will never live-lock | it will always complete

and return a value. Rule 4 states that if an out primitive occurs concurrently

with a copy-collect primitive then the inserted tuple may or may not be

included in the copied tuples. Is it possible for one process to perform many

primitives concurrently with another processes performing a copy-collect

primitive? Within Linda there is no notion of time associated with a primitive.

Therefore, it can be assumed at the model level that all primitives take the

same time. Hence, the maximum number of out primitives that can occur

concurrently with a copy-collect primitive is the number of user processes

minus one. This means that the copy-collect primitive will always complete

provided there are a �nite number of processes. Pragmatically a copy-collect

primitive may take longer than a single out primitive and therefore, several

out primitives may occur concurrently with the copy-collect primitive. Due

to the semantics given above for the copy-collect primitive it is up to the

implementor to ensure that the copy-collect primitive completes and does

not live lock.

The copy-collect primitive assumes that there is out ordering[9], which

means that if a single process performs two sequential outs to the same tuple

space, the second tuple can not appear in the tuple space before the �rst tuple.

The example processes shown in Figure 8 demonstrate why out ordering is

required. Let us assume that the tuple space ts1 is only accessible from the

two processes shown. Process One places two tuples into the tuple space ts1.

Process Two performs an in on one of the tuples and then performs an inp

on the other. When using out ordering then there is only one outcome of these

two processes, Process Two removes the tuple h\DONE"

string

i and then the

variable x is assigned the value one, and the tuple h10

integer

i is copied to ts2.

However, if out ordering is not used then the copy-collect might copy no

tuples.
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Process One Process Two

out(ts1, [10]); in(ts1, |["DONE"]|);

out(ts1, ["DONE"])); x := copy-collect(ts1, ts2, |[?int]|);

Fig. 8. out ordering example.

If out ordering is not used, then there is no way for a programmer to ensure

that all the tuples are present within a tuple space before the copy-collect

is performed. Enforcing out ordering is quite achievable, even in distributed

implementations. For more information see Rowstron et al.[21].

9 Using copy-collect to solve the multiple rd problem

The copy-collect primitive has the functionality to overcome the multiple

rd problem. The primitive allows several processes to concurrently copy the

tuples they require. Consider again the example where a tuple space is used

to store a number of tuples containing peoples names. All the people with the

same surname are required. Using the copy-collect primitive it is possible

to extract into a separate tuple space all the tuples with the same surname.

Hence, to extract all people with the surname Rowstron, a copy-collect

primitive is performed using the template hj2

string

; \Rowstron"

string

ji.

Figure 9 shows the use of the copy-collect primitive to overcome the mul-

tiple rd problem. The shared tuple space is called image ts and the processes

are called P

A

, P

B

and P

C

. Each process creates a tuple space (image ts P

x

)

to which only they have access. They then perform a copy-collect primitive

using the source tuple space as image ts and the destination tuple space as

image ts P

x

. Once the tuples have been copied to the destination tuple space

each process can retrieve each tuple in turn using the in primitive. Each pro-

cess knows the number of tuples in the tuple space because the copy-collect

primitive returns a counter of the number moved, and by destructively re-

moving them ensures that the same tuple is never read twice. Because the

tuple space cannot be accessed by any other process the destructive removal

of tuples does not a�ect any other process. The example in Figure 9 has two

of the processes requiring all the pixels which are set (the third �eld set to

one) and the other process requiring all the pixels which are not set (the third

�eld set to zero).

The parallel composition of two binary relations used as an example in the

previous sections, is now used to show in more detail how copy-collect prim-

itive overcomes the multiple rd problem in more detail. The worker process

using the copy-collect method is shown in Figure 10. The general structure
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Fig. 9. Using the copy-collect primitive to solve the multiple rd problem.

of the approach is the same as in the solutions given in the previous sections,

with each worker process removing a tuple from tuple space R. The worker

process then creates a template using the retrieved tuple for use with the

copy-collect primitive. The second �eld of the retrieved tuple from tuple

space R is used as the �rst �eld of the template. The second �eld of the tem-

plate is left as a formal of type integer. A copy-collect primitive is then

performed which copies the tuples from tuple space S to a tuple space which

the worker process creates. The counter returned by the copy-collect prim-

itive is then used to control an iterative loop which destructively reads the

tuples from the tuple space and creates the result tuples in tuple space C.

comp_worker := func(R,S,C);

local my_val, my_ts, todo, my_comb;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|); -- Get the tuple from R

todo := lcopycollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Process all matched tuples

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

end while;

return ["TERMINATED"];

end func;

Fig. 10. The worker process using the copy collect primitive.
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10 Experimental results

The experimental results presented in this section as in the previous sections

are obtained using ISETL-Linda running on a Transputer based Meiko CS-1

parallel computer using the York Kernel I. The copy-collect primitive was

added to the run-time system by Douglas[9], and the implementation is naive.

As in the previous section the worker process was altered to enable the number

of tuples from tuple space R to be consumed to be speci�ed.

For the experimental results the same con�guration for R and S is used as used

in the experimental results presented in the previous sections. Figure 11 shows

the execution times for the worker processes for computing the composition

of two binary relations using copy-collect, the best execution time of the

other two methods (using a lock tuple with four worker processes), and the

expected execution time for the copy-collect method is shown.
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Fig. 11. Execution time for the parallel composition of binary relations when using

the new copy-collect primitive.

Figure 11 shows some interesting results. Firstly, the execution time using

a single process is less than the best time achievable using any number of

worker processes for any of the other methods. This is because the number of

tuple space operations that have to be performed is signi�cantly less. The time

taken when three and four worker processes are used is similar, for the same

reason that in the stream method the time taken for three and four worker

processes is similar. The expected results are calculated using the time taken

for the single worker process and dividing it by the number of tuples in tuple

space R, which is �ve. As with the stream method, because there is parallel
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access it is expected that with �ve worker processes, each processes a single

tuple from tuple space R, and therefore, the time each worker takes should

be one �fth of the time the single worker process takes. The actual execution

times are greater than predicted because the underlying run-time system is

\saturating"; in other words the run-time system is receiving more requests

than it can process, so becomes a bottleneck. However the performance even

with the run-time system saturating is twice as fast as the best time produced

by the semaphore or the stream methods.

Sections 8 and this section demonstrate how the copy-collect primitive

solves the multiple rd problem. A worker creates a \local" copy of the tu-

ples that it requires using a copy collect primitive and then destructively

reads them from that local tuple space. For example, given a tuple space

containing an image with each pixel a separate tuple ([x coord, y coord,

value]) the command copy collect(image ts, local ts, |[?int,?int,

1]|) copies all the tuples with a pixel value of one into the local tuple space.

Given the tuple space containing tuples representing �rst names and surnames.

Each process would then use the copy-collect primitive with the template

hj2

string

; \Rowstron"

string

ji, which will copy all the tuples with a surname of

\Rowstron" to a separate tuple space, where they can be destructively pro-

cessed.

So far with all the experimental results the execution time for a speci�c car-

dinality of binary relations S and R have been considered. Now the e�ect of

making more tuples in tuple space S match each tuple in tuple space R is

considered. For this the cardinality of tuple space R is again �xed at �ve. Fig-

ure 12 shows the execution times for �ve worker processes when the number of

tuples in the tuple space S that match each tuple in tuple space R is increased

from one to 50 (the cardinality of tuple space S is 50).

As the number of tuples in tuple space S that each tuple in tuple space R

matches increases there will be an increase in the computation time within

each worker process associated with the calculation and placement of the result

tuples in tuple space C. Hence, although it might be expected that the stream

method should take a constant time because all tuples in tuple space S are

always read by every worker process, the actual time increases slightly. This

increase is attributable to the extra computation that the worker processes

perform. The time taken for the semaphore method increases uniformly with

the addition of the extra tuples in tuple space S that match each tuple in tuple

space R. The reason why the execution time increases at a greater rate than

the other methods, is that the other methods are parallel. So when the number

of tuples that match each element in tuple space R increases by one, each of

the �ve worker processes process one more tuple. If the method is parallel then

this is performed concurrently. Because the semaphore method is sequential

the �ve tuples are processed sequentially. This leads to an increase in the
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Fig. 12. Execution time for the parallel composition versus the number of pairs in

tuple space S which each pair in tuple space R matches.

execution time which is �ve times larger than the increase for the parallel

methods for every extra tuple from tuple space S which matches each element

in tuple space R. The execution time for the copy-collect method increases

as the number of matching tuples in tuple space S increases. As more tuples

match, not only is there the extra computation costs associated with each extra

tuple processed by the worker processes but there is extra communication as

the number of tuple space operations is proportional to the number of tuples

in tuple space S that match each tuple in tuple space R.

However, the performance of the stream method seems to perform better

when approximately 70% of the pairs within the tuple space S match each

pair in tuple space R. The exact performance of the di�erent methods de-

pends on the underlying Linda run-time system implementation. In this case

the kernel is saturating at this point, because all the worker processes wish

to perform the copy-collect primitive simultaneously. In the York Kernel

II[22,21] the performance of the copy-collect method is always better than

a stream approach because of a more e�cient implementation approach for

the copy-collect primitive (see Section 12).

This has shown how the new primitive would be used, and it can be seen

how it would work for all cases where a multiple rd is required, and therefore

solves the multiple rd problem. In general, a worker creates a \local" copy of

the tuples that it requires using a copy collect and then destructively reads

them from that local tuple space. For example, given a tuple space containing

an image with each pixel a separate tuple ([x coord, y coord, value]) the
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command: copy collect(image ts, local ts, |[?int, ?int, 1]) would

copy all the tuples with a value of one into the local tuple space.

11 Alternative proposals

As with any abstract model there have been many proposals to alter the

model. Two of particular interest are; One the proposal for another primitive;

rd()all[1]

4

. The informal semantics of rd()all are:

rd (template)all(function) This primitive will apply the function to all

tuples in a tuple space that match the template.

This primitive can potentially be used to solve the multiple rd problem because

it applies the function to all tuples that match the template within the tuple

space. Therefore, in the parallel composition of binary relations one could

consider creating a worker which removes a tuple from tuple space R and

then performs a rd()all. A worker process using this primitive is shown in

Figure 13.

comp_worker := func(R,S,C);

local my_val;

my_val := lin(R,|[?int,?int]|); -- Get the tuple from R

rd(|[my_val(2),?x]|)all(lout(C,[my_val(1),x]);

return ["TERMINATED"];

end func;

Fig. 13. The worker process using the copy collect primitive.

Anderson[1] notes that there are speci�c problems with such a primitive. The

suggestion is that the operation is not atomic, so essentially a cycle is cre-

ated where a tuple is fetched, the function applied to it, and then the next

tuple fetched. He states that this is due to the implementational di�culties

of creating an atomic primitive. However, such a primitive raises much deeper

questions whether it is perceived as atomic or non-atomic. What happens if

the function removes tuples from the tuple space that the rd()all would

match? What if the function adds tuples to the tuple space? Is there any rea-

son why the function should not be executed in parallel? It would also imply

that the primitive has the "interesting" ability to live-lock, especially if it is

not atomic. It is also unclear what information the primitive actually returns.

However, it should also be noted that rd()all does not require multiple tuples

spaces, and could be incorporated into systems with or without them.

4

The same primitive appears to have been suggested under a number of other

names including rd*.
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The copy-collect primitive is much simpler. It does not attempt to fold

communication and computation into the same primitive. It also returns in-

formation which is valuable to the programmer. The information allows the

number of worker processes evaled to be controlled for example. If there are

many tuples that match, more worker processes will be required than if fewer

tuples match.

In Objective Linda[15] the primitives are bounded. This is achieved by adding

a maximum and minimum number of tuples that the primitive can return. By

specifying a maximum number of in�nite-matches all matching tuples are re-

turned. This therefore can be used to overcome the multiple rd problem. How-

ever, the primary di�erence is that the copy-collect primitive (and collect

primitive) do not return tuples. The tuples are copied or moved from one tuple

space to another and therefore, their storage is still controlled by the system

that manages the tuples. The bounded primitives in Objective Linda return

bags of tuples, which have to be stored locally within the user process. In

Objective Linda this leads to special local data structures with special oper-

ations, including a primitive to count the number of items in the local data

structure.

12 Implementation of copy-collect

Having demonstrated the need for the copy-collect primitive, we now brie
y

consider how the primitive can be implemented in an e�cient manner. The

primitive has been implemented in all our distributed kernels[22,9].

There are two concerns about implementing the copy-collect primitive. One

is that the primitive apparently implies duplication of the matched tuples.

Because of the nature of the primitive there is the chance that large numbers

of tuples will be physically duplicated. Pragmatically this depends on the

implementation of the run-time system, and how tuples are stored within it.

It is quite possible that all tuples which are identical are stored in the same

place within the run-time system which enables the tuple to be tagged as

belonging to several tuple spaces, without being physically duplicated. This

approach is to be adopted in York Kernel III, a distributed run-time system.

The second concern is that the copy-collect primitive may lead to the un-

necessary movement of tuples around a run-time system. York Kernel I[9]

implements a copy-collect which never moves tuples internally during the

execution of a copy-collect primitive. This is a distributed run-time sys-

tem which places tuples within the distributed system based on their content

rather than the tuple space to which they belong. Hence regardless of which

tuple space a tuple belongs, it will always appear in the same place within the
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distributed kernel. Therefore, when a copy-collect primitive is performed

tuples never move from one place within the distributed run-time system to

another place.

However, the bulk movement of tuples has been shown in some circumstances

to be desirable. The York Kernel II[22,21] is a two layer hierarchical kernel,

which does move tuples under certain circumstances. The intelligent movement

of tuples around a distributed kernel can lead to large speed increases over

\traditional" implementations. The York Kernel II uses implicit information

to enable it to classify every tuple space as either a local tuple space or a

remote tuple space on the 
y and without extra communication or programmer

guidance. A local tuple space is one which can only be accessed by one process

and a remote tuple space is one that many processes can access. By making

this distinction it enables the York Kernel II to transparently move packets of

tuples around the system to gain optimum performance by placing the tuples

as close to the processes which can consume them as possible. It should be

noted that making the distinction between local tuple spaces and remote tuple

spaces does not alter the semantics of the Linda model or of the copy-collect

primitive, a user sees no distinction between a local and a remote tuple space.

When a copy-collect primitive is performed, under certain circumstances,

it leads to the bulk movement of tuples between local and remote tuple spaces

and vice versa.

13 Conclusion

In this paper the multiple rd problem has been characterised, and two pos-

sible solutions using the facilities of the standard Linda model | the stream

method and the binary semaphore method | have been shown through ex-

perimentation to be ine�cient. The stream method requires every tuple in a

tuple space to be read whilst the binary semaphore method yields a sequential

solution. It is concluded that the standard Linda model is unable to provide

a satisfactory concurrent solution to performing the multiple rd operation.

Consequently, a new primitive has been proposed, called copy-collect, which

has been shown to overcome the de�ciencies in the standard model solutions.

Experimental results have been presented which demonstrate the improved

performance of the copy-collect based method compared to streams and

binary semaphores.

The results suggest that when the number of matching tuples is high, the

stream method may be faster than using the copy-collect method. This is

because the kernel being used to gain the experimental results is saturating.

However, this is an implementation matter, and given an improved implemen-
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tation, such as York Kernel II, the copy-collect method will always perform

better than the either the stream or semaphore approach[18].

Finally, although a deliberately simple example program is used in this paper

in order to clarify the presentation, the multiple rd problem occurs in a wide

range of more complex algorithms and situations | it is possible for the

problem to occur in any algorithm where information is stored that is required

by several processes. A more substantial example can be found in [18] which

describes the parallel implementation of image processing algorithms in which

the processing of an image is to be shared by multiple processes.
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