
Optimising Synchronisation Times for
Mobile Devices

Neil D. Lawrence
Department of Computer Science,

Regent Court, 211 Portobello Road,
Sheffield, S1 4DP, U.K.
neil@dcs.shef.ac.uk

Antony I. T. Rowstron Christopher M. Bishop Michael J. Taylor
Microsoft Research

7 J. J. Thomson Avenue
Cambridge, CB3 0FB, U.K.

{antr,cmbishop,mitaylor}@microsoft.com

Abstract

With the increasing number of users of mobile computing devices
(e.g. personal digital assistants) and the advent of third generation
mobile phones, wireless communications are becoming increasingly
important. Many applications rely on the device maintaining a
replica of a data-structure which is stored on a server, for exam-
ple news databases, calendars and e-mail. In this paper we explore
the question of the optimal strategy for synchronising such replicas.
We utilise probabilistic models to represent how the data-structures
evolve and to model user behaviour. We then formulate objective
functions which can be minimised with respect to the synchronisa-
tion timings. We demonstrate, using two real world data-sets, that
a user can obtain more up-to-date information using our approach.

1 Introduction

As the available bandwidth for wireless devices increases, new challenges are pre-
sented in the utilisation of such bandwidth. Given that always up connections are
generally considered infeasible an important area of research in mobile devices is
the development of intelligent strategies for communicating between mobile devices
and servers. In this paper we consider the scenario where we are interested in main-
taining, on a personal digital assistant (PDA) with wireless access, an up-to-date
replica of some, perhaps disparate, data-structures which are evolving in time. The
objective is to make sure our replica is not ‘stale’. We will consider a limited number
of connections or synchronisations. Each synchronisation involves a reconciliation
between the replica on the mobile device and the data-structures of interest on the
server. Later in the paper we shall examine two typical examples of such an applica-
tion, an internet news database and a user’s e-mail messages. Currently the typical
strategy1 for performing such reconciliations is to synchronise every M minutes,

1See, for example, AvantGo http://www.avantgo.com.



where M is a constant, we will call this strategy the uniformly-spaced strategy. We
will make the timings of the synchronisations adaptable by developing a cost func-
tion that can be optimised with respect to the timings, thereby improving system
performance.

2 Cost Function

We wish to minimise the staleness of the replica, where we define staleness as the
time between an update of a portion of the data-structure on the server and the time
of the synchronisation of that update with the PDA. For simplicity we shall assume
that each time the PDA synchronises all the outstanding updates are transferred.
Thus, after synchronisation the replica on the mobile device is consistent with the
master copy on the server. Therefore, if sk is the time of the kth synchronisation
in a day, and updates to the data-structure occur at times uj then the average
staleness of the updates transferred during synchronisation sk will be

Sk =
∑

j for sk−1<uj≤sk

(sk − uj). (1)

As well as staleness, we may be interested in optimising other criteria. For example,
mobile phone companies may seek to equalise demand across the network by intro-
ducing time varying costs for the synchronisations, c(t). Additionally one could
argue that there is little point in keeping the replica fresh during periods when the
user is unlikely to check his PDA, for example when he or she is sleeping. We might
therefore want to minimise the time between the user’s examination of the PDA
and the last synchronisation. If the user looks at the PDA at times ai then we can
express this as

Fk =
∑

j for sk−1<ai≤sk

(ai − sk). (2)

Given the timings uj and ai, the call cost schedule c(t) and K synchronisations, the
total cost function may now be written

C =
K∑

k=1

(−αFk + βSk + c(sk)) , (3)

where α and β are constants with units of money
time which express the relative impor-

tance of the separate parts of the cost function. Unfortunately, of course, whilst
we are likely to have knowledge of the call cost schedule, c(t), we won’t know the
true timings {uj} and {ai} and the cost function will be a priori incomputable. If,
though, we have historic data2 relating to these times, we can seek to make progress
by modelling these timings probabilistically. Then, rather than minimising the ac-
tual cost function, we can look to minimise the expectation of the cost function
under these probabilistic models.

3 Expected Cost

There are several different possibilities for our modelling strategy. A sensible as-
sumption is that there is independence between different parts of the data-structure
(i.e. e-mail and business news can be modelled separately), however, there may
be dependencies between update times which occur within the same part. The

2When modelling user access times, if historic data is not available, models could also
be constructed by querying the user about their likely activities.



periodicity of the data may be something we can take advantage of, but any non-
stationarity in the data may cause problems. There are various model classes we
could consider; for this work however, we restrict ourselves to stationary models,
and ones in which updates arrive independently and in a periodic fashion.

Let us take T to be the largest period of oscillation in the data arrivals, for a
particular portion of a data-structure. We model this portion with a probability
distribution, pu(t). Naturally more than one update may occur in that interval,
therefore our probability distribution really specifies a distribution over time given
one that one update (or user access) has occurred. To fully specify the model we
also are required to store the expected number of updates, Ju, (or accesses, Ja) that
occur in that interval.

The expected value of Sk may now be written,

〈Sk〉pu(t) =
∫ sk

sk−1

λu(t)(sk − t)dt, (4)

where 〈·〉p(x) is an expectation under the distribution p(x), λu(t) = Jupu(t) can be
viewed as the rate at which updates are occurring and s0 = sK − T .

We can model the user access times, ai, in a similar manner, which leads us to the
expected value of the freshness, 〈Fk〉pa(t) =

∫ sk+1

sk
λa(t)(t − sk)dt, where λa(t) =

Japa(t) The overall expected cost, which we will utilise as our objective function,
may therefore be written

〈C〉 =
K∑

k=1

(
〈Sk〉pu

− 〈Fk〉pa
+ c(sk)

)
. (5)

3.1 Probabilistic Models.

We now have an objective function which is a function of the variables we wish to
optimise, the synchronisation times, but whilst we have mentioned some character-
istics of the models pu(t) and pa(t) we have not yet fully specified their form.

We have decreed that the models should be periodic and that they may consider
each datum to occur independently. In effect we are modelling data which is mapped
to a circle. Various options are available for handling such models; for this work,
we constrain our investigations to kernel density estimates (KDE).

In order to maintain periodicity, we must select a basis function for our KDE which
represents a distribution on a circle, one simple way of achieving this aim is to wrap
a distribution that is defined along a line to the circle (Mardia, 1972). A traditional
density which represents a distribution on the line, p(t), may be wrapped around
a circle of circumference T to give us a distribution defined on the circle, p(θ),
where θ = t mod T . This means a basis function with its centre at T − δ, that will
typically have probability mass when u > T , wraps around to maintain a continuous
density at T . The wrapped Gaussian distribution3 that we make use of takes the
form

WN (θ|µ, σ2) =
1√

2πσ2

∞∑

k=−∞
exp

[−(θ − µ + Tk)2

2σ2

]
. (6)

The final kernel density estimate thus consists of mapping the data points tn → θn

3In practice we must approximate the wrapped distribution by restricting the number
of terms in the sum.



Thu Fri Sat Sun Thu Fri Sat Sun %
de

cr
ea

se
in

st
al

en
es

s

-20

20

40

60

12 24

Figure 1: Left: part of the KDE developed for the business category together with a
piecewise constant approximation. Middle: the same portion of the KDE for the FA Car-
ling Premiership data. Right: percent decrease in staleness vs number of synchronisations
per day for e-mail data.

and obtaining a distribution

p(θ) =
1
N

N∑
n=1

WN (θ|θn, σ2), (7)

where N is the number of data-points and the width parameters, σ, can be set
through cross validation. Models of this type may be made use of for both pu(t)
and pa(t).

3.2 Incorporating Prior Knowledge.

The underlying component frequencies of the data will clearly be more complex than
simply a weekly or daily basis. Ideally we should be looking to incorporate as much
of our prior knowledge about these component frequencies as possible. If we were
modelling financial market’s news, for example, we would expect weekdays to have
similar characteristics to each other, but differing characteristics from the weekend.
For this work, we considered four different scenarios of this type. For the first
scenario, we took T = 1 day and placed no other constraints on the model. For the
second we considered the longest period to be one week, T = 1 week, and placed no
further constraints on the model. For the remaining two though we also considered
T to be one week, but we implemented further assumptions about the nature of the
data. Firstly we split the data into weekdays and weekends. We then modelled these
two categories separately, making sure that we maintained a continuous function
for the whole week by wrapping basis functions between weekdays and weekends.
Secondly we split the data into weekdays, Saturdays and Sundays, modelling each
category separately and again wrapping basis functions across the days.

3.3 Model Selection.

To select the basis function widths, and to determine which periodicity assumption
best matched the data, we utilised ten fold cross validation. For each different
periodicity we used cross validation to first select the basis function width. We
then compared the average likelihood across the ten validation sets, selecting the
periodicity with the highest associated value.

4 Optimising the Synchronisation Times

Given that our user model, pa(t), and our data model, pu(t) will be a KDE based
on wrapped Gaussians, we should be in a position to compute the required integrals



%
de

cr
ea

se
in

st
al

en
es

s

-20

20

40

60

12 24

%
de

cr
ea

se
in

st
al

en
es

s

-20

20

40

60

12 24

%
de

cr
ea

se
in

st
al

en
es

s

-60

-40

-20

20

40

60

12 24

Figure 2: Results from the news database tests. Left:
February/March based models tested on April. Middle:
March/April testing on May. Right: April/May testing on
June. The results are in the form of box plots. The lower
line of the box represents the 25th percentile of the data, the
upper line the 75th percentile and the central line the me-
dian. The ‘whiskers’ represent the maximum extent of the
data up to 1.5 × (75th percentile - 25th percentile). Data
which lies outside the whiskers is marked with crosses.

in (5) and evaluate our objective function and derivatives thereof.

First though, we must give some attention to the target application for the algo-
rithm. A known disadvantage of the standard kernel density estimate is the high
storage requirements of the end model. The model requires that N floating point
numbers must be stored, where N is the quantity of training data. Secondly, inte-
grating across the cost function results in an objective function which is dependent
on a large number of evaluations of the cumulative Gaussian distribution. Given
that we envisage that such optimisations could be occurring within a PDA or mobile
phone, it would seem prudent to seek a simpler approach to the required minimi-
sation.

An alternative approach that we explored is to approximate the given distributions
with a functional form which is more amenable to the integration. For example, a
piecewise constant approximation to the KDE simplifies the integral considerably.
It leads to a piecewise constant approximation for λa(t) and λu(t). Integration
over which simply leads to a piecewise linear function which may be computed in a
straightforward manner. Gradients may also be computed. We chose to reduce the
optimisation to a series of one-dimensional line minimisations. This can be achieved
in the following manner. First, note that the objective function, as a function of a
particular synchronisation time sk, may be written:

〈C(sk)〉 =
∫ sk

sk−1

λu(t)(sk − t) dt +
∫ sk+1

sk

λu(sk+1 − t) dt

+
∫ sk+1

sk

λa(t)(t− sk) dt +
∫ sk

sk−1

λa(t− sk−1) dt + c(sk) (8)

In other words, each synchronisation is only dependent on that of its neighbours. We
may therefore perform the optimisation by visiting each synchronisation time, sk, in
a random order and optimising its position between its neighbours, which involves a
one dimensional line minimisation of (8). This process, which is guaranteed to find
a (local) minimum in our objective function, may be repeated until convergence.



5 Results

In this section we mainly explore the effectiveness of modelling the data-structures
of interest. We will briefly touch upon the utility of modelling the cost evolution
and user accesses in Section 5.2 but we leave a more detailed exploration of this
area to later works.

5.1 Modelling Data Structures

To determine the effectiveness of our approach, we utilised two different sources of
data: a news web-site and e-mail on a mail server.

%
de

cr
ea

se
in

st
al

en
es

s

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

20

40

60

12 24

Figure 3: May/June
based models tested on
July. + signifies the
FA Carling Premiership
Stream.

The news database data-set was collected from the BBC
News web site4. This site maintains a database of arti-
cles which are categorised according to subject, for ex-
ample, UK News, Business News, Motorsport etc.. We
had six months of data from February to July 2000 for
24 categories of the database.

We modelled the data by decomposing it into the dif-
ferent categories and modelling each separately. This
allowed us to explore the periodicity of each category in-
dependently. This is a sensible approach given that the
nature of the data varies considerably across the cate-
gories. Two extreme examples are Business news and
FA Carling Premiership news5, Figure 1. Business news
predominantly arrives during the week whereas FA Car-
ling Premiership news arrives typically just after soccer
games finish on a Saturday. Business news was best
modelled on a Weekday/Weekend basis, and FA Car-
ling Premiership news was best modelled on a Week-
day/Saturday/Sunday basis. To evaluate the feasibility
of our approach, we selected three consecutive months
of data. The inference step consisted of constructing our
models on data from the first two months. To restrict
our investigations to the nature of the data evolution
only, user access frequency was taken to be uniform and
cost of connection was considered to be constant. For
the decision step we considered 1 to 24 synchronisations
a day. The synchronisation times were optimised for
each category separately, they were initialised with a
uniformly-spaced strategy, optimisation of the timings
then proceeded as described in Section 4. The stale-
ness associated with these timings was then computed
for the third month. This value was compared with the
staleness resulting from the uniformly-spaced strategy
containing the same number of synchronisations6. The
percentage decrease in staleness is shown in figures 2
and 3 in the form of box-plots.

Generally an improvement in performance is observed,
however, we note that in Figure 3 the performance for several categories is extremely

4http://news.bbc.co.uk.
5The FA Carling Premiership is England’s premier division soccer.
6The uniformly-spaced strategy’s staleness varies with the timing of the first of the K

synchronisations. This figure was therefore an average of the staleness from all possible
starting points taken at five minute intervals.



poor. In particular the FA Carling Premiership stream in Figure 3. The poor
performance is caused by the soccer season ending in May. As a result relatively
few articles are written in July, most of them concerning player transfer speculation,
and the timing of those articles is very different from those in May. In other words
the data evolves in a non-stationary manner which we have not modelled. The other
poor performers are also sports related categories exhibiting non-stationarities.

The e-mail data-set was collected by examining the logs of e-mail arrival times for
9 researchers from Microsoft’s Cambridge research lab. This data was collected for
January and February 2001. We utilised the January data to build the probabilis-
tic models and the February data to evaluate the average reduction in staleness.
Figure 1 shows the results obtained.

In practice, a user is more likely to be interested in a combination of different cate-
gories of data. Perhaps several different streams of news and his e-mail. Therefore,
to recreate a more realistic situation where a user has a combination of interests,
we also collected e-mail arrivals for three users from February, March and April
2000. We randomly generated user profiles by sampling, without replacement, five
categories from the available twenty-seven, rejecting samples where more than one
e-mail stream was selected. We then modelled the users’ interests by constructing
an unweighted mixture of the five categories and proceeded to optimise the synchro-
nisation times based on this model. This was performed one hundred times. The
average staleness for the different numbers of synchronisations per day is shown in
Figure 4.

Note that the performance for the combined categories is worse than it is for each
individually. This is to be expected as the entropy of the combined model will always
be greater than that of its constituents, we therefore have less information about
arrival times, and as a result there are less gains to be made over the uniformly-
spaced strategy7.

5.2 Affect of Cost and User Model

In the previous sections we focussed on modelling the evolution of the databases.
Here we now briefly turn our attention to the other portions of the system, user
behaviour and connection cost. For this preliminary study, it proved difficult to
obtain high quality data representing user access times. We therefore artificially
generated a model which represents a user who accesses there device frequently
at breakfast, lunchtime and during the evening, and rarely at night. Figure 4
simply shows the user model, pa(t), along with the result of optimising the cost
function for uniform data arrivals and fixed cost under this user model. Note how
synchronisation times are suggested just before high periods of user activity are
about to occur. Also in Figure 4 is the effect of a varying cost, c(t), under uniform
pa(t) and pa(t).

Currently most mobile internet access providers appear to be charging a flat fee for
call costs (typically in the U.K. about 15 cents per minute). However, when demand
on their systems rise they may wish to incorporate a varying cost to flatten peak
demands. This cost could be an actual cost for the user, or alternatively a ‘shadow
price’ specified by service provider for controlling demand (Kelly, 2000). We give a
simple example of such a call cost in Figure 4. For this we considered user access
and data update rates to be constant. Note how the times move away from periods
of high cost.

7The uniformly-spaced strategy can be shown to be optimal when the entropy of the
underlying distribution is maximised (a uniform distribution across the interval).



0

0.05

0.1

0.15

0.2

0.25

0.3

00:00 08:00 16:00 00:00

ca
ll

co
st

0

300

600

900

1200

00:00 08:00 16:00 00:00

%
de

cr
ea

se
in

st
al

en
es

s

-20

20

40

60

12 24

Figure 4: Left: change in synchronisation times for variable user access rates. × shows
the initialisation points, + the end points. Middle: change in synchronisation times for a
variable cost. Right: performance improvements for the combination of news and e-mail.

6 Discussion

The optimisation strategy we suggest could be sensitive to local minima, we did
not try a range of different initialisations to explore this phenomena. However, by
initialising with the uniformly-spaced strategy we ensured that we increased the
objective function relative to the standard strategy. The month of July showed how
a non-stationarity in the data structure can dramatically affect our performance.
We are currently exploring on-line Bayesian models which we hope will track such
non-stationarities.

The system we have explored in this work assumed that the data replicated on the
mobile device was only modified on the server. A more general problem is that of
mutable replicas where the data may be modified on the server or the client. Typical
applications of such technology include mobile databases, where sales personnel
modify portions of the database whilst on the road, and a calendar application on
a PDA, where the user adds appointments on the PDA.

Finally there are many other applications of this type of technology beyond mobile
devices. Web crawlers need to estimate when pages are modified to maintain a
representative cache (Cho and Garcia-Molina, 2000) . Proxy servers could also
be made to intelligent maintain their caches of web-pages up-to-date (Willis and
Mikhailov, 1999; Wolman et al., 1999) .

References

Cho, J. and H. Garcia-Molina (2000). Synchronizing a database to improve freshness.
In Proceedings 2000 ACM International Conference on Management of Data (SIG-
MOD).

Kelly, F. P. (2000). Models for a self-managed internet. Philosophical Transactions of
the Royal Society A358, 2335–2348.

Mardia, K. V. (1972). Statistics of Directional Data. London: Academic Press.

Rowstron, A. I. T., N. D. Lawrence, and C. M. Bishop (2001). Probabilistic modelling of
replica divergence. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems HOTOS (VIII).

Willis, C. E. and M. Mikhailov (1999). Towards a better understanding of web resources
and server responses for improved caching. In Proceedings of the 8th International
World Wide Web Conference, pp. 153–165.

Wolman, A., G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy
(1999). On the scale and performance of co-operative web proxy caching. In 17th
ACM Symposium Operating System Principles (SOSP’99), pp. 16–31.

Yu, H. and A. Vahdat (2000). Design and evaluation of a continuous consistency model
for replicated services. In 4th Symposium on Operating System Design and Imple-
mentation (OSDI).


