
Scale-up vs Scale-out for Hadoop: Time to rethink?

Raja Appuswamy∗, Christos Gkantsidis, Dushyanth Narayanan,
Orion Hodson, and Antony Rowstron

Microsoft Research, Cambridge, UK

Abstract
In the last decade we have seen a huge deployment of
cheap clusters to run data analytics workloads. The con-
ventional wisdom in industry and academia is that scal-
ing out using a cluster of commodity machines is better
for these workloads than scaling up by adding more re-
sources to a single server. Popular analytics infrastruc-
tures such as Hadoop are aimed at such a cluster scale-
out environment.

Is this the right approach? Our measurements as well
as other recent work shows that the majority of real-
world analytic jobs process less than 100 GB of input,
but popular infrastructures such as Hadoop/MapReduce
were originally designed for petascale processing. We
claim that a single “scale-up” server can process each of
these jobs and do as well or better than a cluster in terms
of performance, cost, power, and server density. We
present an evaluation across 11 representative Hadoop
jobs that shows scale-up to be competitive in all cases
and significantly better in some cases, than scale-out. To
achieve that performance, we describe several modifica-
tions to the Hadoop runtime that target scale-up config-
uration. These changes are transparent, do not require
any changes to application code, and do not compro-
mise scale-out performance; at the same time our evalu-
ation shows that they do significantly improve Hadoop’s
scale-up performance.

∗ Work done while on internship from Vrije Universiteit Amster-
dam

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of portions of this
work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first
page in print or the first screen in digital media. Copyrights for com-
ponents of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2523629

1 Introduction
Data analytics, and in particular, MapReduce [14] and
Hadoop [4] have become synonymous with the use of
cheap commodity clusters using a distributed file sys-
tem that utilizes cheap unreliable local disks. This is the
standard scale-out thinking that has underpinned the in-
frastructure of many companies. Clearly large clusters
of commodity servers are the most cost-effective way to
process exabytes, petabytes, or multi-terabytes of data.
Nevertheless, we ask: is it time to reconsider the scale-
out versus scale-up question?

First, evidence suggests that the majority of analytics
jobs do not process huge data sets. For example, at least
two analytics production clusters (at Microsoft and Ya-
hoo) have median job input sizes under 14 GB [16, 28],
and 90% of jobs on a Facebook cluster have input sizes
under 100 GB [2].

Second, hardware price trends are beginning to
change performance points. Today’s servers can afford-
ably hold 100s of GB of DRAM and 32 cores on a quad
socket motherboard with multiple high-bandwidth mem-
ory channels per socket. DRAM is now very cheap, with
16 GB DIMMs costing around $130, meaning 192 GB
costs less than half the price of a dual-socket server and
512 GB costs 20% the price of a high-end quad-socket
server. Storage bottlenecks can be removed by using
SSDs or with a scalable storage back-end such as Ama-
zon S3 [1] or Azure Storage [9, 31]. The commoditiza-
tion of SSDs means that $2,000 can build a storage array
with multiple GB/s of throughput. Thus a scale-up server
can now have substantial CPU, memory, and storage I/O
resources and at the same time avoid the communication
overheads of a scale-out solution. Moore’s law contin-
ues to improve many of these technologies, at least for
the immediate future.

In this paper, we ask whether it is better to scale up
using a well-provisioned single server or to scale out
using a commodity cluster. For the world of analytics
in general and Hadoop MapReduce in particular, this is
an important question. Today the default assumption for
Hadoop jobs is that scale-out is the only configuration

that matters. Scale-up performance is ignored and in fact
Hadoop performs poorly in a scale-up scenario. In this
paper we re-examine this question across a range of an-
alytic workloads and using four metrics: performance,
cost, energy, and server density.

This leads to a second question: how to achieve good
scale-up performance, without compromising scaling-
out for workloads that need it. Given the popularity of
Hadoop and the rich ecosystem of technologies that have
been built around it, we took the approach of transpar-
ently optimizing the Hadoop runtime for the scale-up
case, without losing the ability to scale out.

We start by examining real-world analytics jobs, and
argue that many jobs are sub tera-scale, and hence or-
ders of magnitude smaller than the the peta-scale jobs
that motivated the scale-out design of MapReduce and
Hadoop. These are candidate jobs to run in a scale-up
server. By default Hadoop performs poorly in a scale-
up configurations. We describe simple, transparent op-
timizations that remove bottlenecks and improve both
scale-out and scale-up performance. We present an eval-
uation that shows that, with these optimizations, scale-
up is an extremely competitive option for sub tera-scale
jobs. A scale-up server with 32 cores outperforms an 8-
node scale-out configuration, also with 32 cores, on 9 out
of 11 jobs and is within 11% for the other two. Larger
scale-out clusters obviously improve performance but
increase cost, power, and space usage. Compared to a
16-node scale-out cluster, a scale-up server provides bet-
ter performance per dollar for all jobs. Moreover, scale-
up performance per watt and per rack unit are signifi-
cantly better for all jobs compared to either cluster.

Our results have implications both for data center
provisioning and for software infrastructures. Broadly,
we believe it is cost-effective for providers supporting
“big data” analytic workloads to provision “big mem-
ory” servers (or a mix of big and small servers) with a
view to running jobs entirely within a single server. Sec-
ond, it is then important that the Hadoop infrastructure
support both scale-up and scale-out efficiently and trans-
parently to provide good performance for both scenarios.

The rest of this paper is organized as follows. Sec-
tion 2 shows an analysis of job sizes from real-world
MapReduce deployments that demonstrates that most
jobs are under 100 GB in size. It then describes 11 ex-
ample Hadoop jobs across a range of application do-
mains that we use as concrete examples in this paper.
Section 3 briefly describes the optimizations and tun-
ing required to deliver good scale-up performance on
Hadoop. Section 4 compares scale-up and scale-out for
Hadoop for the 11 jobs on several metrics: performance,
cost, power, and server density. Section 5 discusses some
implications for analytics in the cloud as well as the
crossover point between scale-up and scale-out. Sec-

Figure 1: Distribution of input job sizes for a large analytics cluster

tion 6 describes related work, and Section 7 concludes
the paper.

2 Job sizes and example jobs
To better understand the size and resource requirements
of typical analytics jobs, we analyzed 174,000 jobs sub-
mitted to a production analytics cluster in Microsoft in a
single month in 2011. Figure 1 shows the CDF of input
data sizes across these jobs. The median job input data
set size was less than 14 GB, and 80% of the jobs had
an input size under 1 TB. Thus although there are multi-
terabyte and petabyte-scale jobs which would require a
scale-out cluster, these are the minority.

The CPU requirements of sub tera-scale jobs are also
correspondingly modest. Figure 2(a) shows the distribu-
tion of total CPU time across jobs. The median job re-
quires 3.83 hr of CPU time, i.e. 7.2 min per core on 32
cores assuming perfect parallelism. Figure 2(b) shows
the same data as a log-log scatter plot of CPU size and
input data size. The solid blue line shows a spline fit to
the data and the dashed vertical line is the median input
size. Thus broadly, whether judged on input data size or
CPU time, a large number of jobs would seem to fit com-
fortably within a “big memory” scale-up server with 32
cores and 512 GB of memory. Especially given the ever-
decreasing price per gigabyte of DRAM, it seems worth-
while to consider whether such jobs are better fitted to a
scale-up server rather than a scale-out cluster.

Of course, these job sizes are from a single clus-
ter running a MapReduce like framework. However we
believe our broad conclusions on job sizes are valid
for MapReduce installations in general and Hadoop in-
stallations in particular. For example, Elmeleegy [16]
analyzes Hadoop jobs from Yahoo’s production clus-
ters. Unfortunately, the median input data set size is
not given but, from the paper we can estimate that the

(a) CDF of CPU time (b) CPU time vs. input data size

Figure 2: Statistics of total CPU time for jobs from a large analytics cluster.

median job input size is less than 12.5 GB.1 Anantha-
narayanan et al. [2] show that Facebook jobs follow a
power-law distribution with small jobs dominating; their
graphs suggest that at least 90% of the jobs have input
sizes under 100 GB. Chen et al. [12] present a detailed
study of Hadoop workloads for Facebook as well as 5
Cloudera customers. Their graphs also show that a very
small minority of jobs achieves terabyte scale or larger
and the paper claims explicitly that “most jobs have in-
put, shuffle, and output sizes in the MB to GB range.”

2.1 Experimental Workloads

The statistics presented so far are extracted from jobs
running in production clusters: we are not able to com-
pare their performance directly on scale-up versus scale-
out infrastructures. In order to do so, we have collected
a smaller set of jobs from a variety of sources. We fo-
cused on jobs for which both code and representative in-
put datasets were available, and which are typical across
a range of applications. We describe these jobs in the
rest of the section, and use them as benchmarks in our
evaluation in Section 4. Broadly the jobs we examine
can be classified by application domain into log anal-
ysis, query-based data analytics, machine learning, and
searching/indexing. Table 1 shows the amount of input,
shuffle, and output data for each job.

1The paper states that input block sizes are usually 64 or 128 MB
with one map task per block, that over 80% of the jobs finish in 10
minutes or less, and that 70% of these jobs very clearly use 100 or
fewer mappers (Figure 2 in [16]). Therefore conservatively assuming
128 MB per block, 56% of the jobs have an input data set size of under
12.5 GB.

Log processing A very common use of Hadoop and
MapReduce is to process text logs. We use two such jobs
from a real-world compute platform consisting of tens
of thousands of servers.2 Users issue tasks to the system
that spawn processes on multiple servers which consume
resources on each server. The system writes logs that
capture statistics such as CPU, I/O and other resource
utilization on these servers. Administrators can process
these logs to extract both fine- and coarse-grained in-
formation about resource usage. In this paper we use
two such jobs. The FindUserUsage job processes one
such log to aggregate resource. The ComputeIOVolumes
job processes two log files to combine process-level and
task-level information, and hence find the amount of in-
put and intermediate data I/O done by each task.

Analytic queries We use three analytical queries from
a benchmark that was created for comparing the perfor-
mance of Hadoop against a parallel DBMS [24]. These
tasks mimic query processing on a cluster of HTML doc-
uments gathered by a web crawl. The input data to these
tasks consists of two tables, each sharded across a large
number of files. Both data sets consist of random records
generated by a custom data generator.

Records in the PageRank table associate each unique
URL with a page rank. The UserVisits table contains one
record per user visit, which contains the source IP, the
date of visit, ad revenue generated, user agent, search
word used, URL visited, country code, and language
code. We use three queries (converted into Hadoop jobs)
based on these two tables in our benchmark suite.

2The two jobs originally run in an internal Cosmos cluster. We re-
written them (from Scope [10]) to Hadoop and run them (on the same
inputs) in our local clusters.

Job Input Shuffle Output
Log processing
FindUserUsage 41 GB 4 MB 36 KB
ComputeIOVolumes 94 GB 157 MB 30 MB
Analytic queries
Select Task1 41 GB 0 KB 0 KB
Aggregate Task 70 GB 5 GB 51 MB
Join Task2 113 GB 10 GB 4.3 GB
TeraSort
10 GB TeraSort 11 GB 11 GB 11 GB
50 GB TeraSort 54 GB 54 GB 54 GB
Pig Cogroup 5 GB 7 GB 131 GB
Mahout3

k-Means 72 MB N/A N/A
Wikipedia 432 MB N/A N/A
Indexing 8.9 GB 34 GB 26 GB
1 Select produces negligible intermediate and output data.
2 Sum of input, output, and shuffle bytes across three stages.
3 Mahout jobs iterate over many map-reduce stages and hence we

only measure input data size.

Table 1: Summary of jobs used with input, shuffle, and output data
sizes.

The Select task finds the top 1% of URLs by page
rank from the PageRank table. The Aggregate task cal-
culates the total ad revenue per source IP address, from
the UserVisits table. The Join takes both data sets as in-
put. It finds the source IP addresses that generates the
most revenue within a particular date range and then
computes the average page rank of all the pages visited
by those IP addresses in that interval. It is computed in
three phases, each of which is a MapReduce computa-
tion. We converted each phase into a separate Hadoop
job in our benchmark suite.

TeraSort TeraSort is a standard benchmark for data
processing platforms. We use the Hadoop version of
TeraSort. Despite its name, TeraSort can be used to sort
different sizes of input data. In this paper we consider
input sizes of 10 GB, 50 GB, and 100 GB.

Mahout machine learning tasks In recent years, Ma-
hout has emerged as a popular framework to simplify
the task of implementing scalable machine learning al-
gorithms by building on the Hadoop ecosystem [5]. We
used two standard machine learning algorithms imple-
mented in Mahout in our benchmark suite.

The Clustering benchmark is based on k-means clus-
tering, provided as part of the Mahout machine learn-
ing library [22]. This is an iterative machine-learning al-
gorithm implemented as a series of map-reduce rounds.
The input to the algorithm is a set of points represented

as d-dimensional vectors, and an initial set of cluster
centroids (usually chosen randomly). In each round, the
mappers map each vector to the nearest centroid, and the
reducers recompute the cluster centroid as the average of
the vectors currently in the cluster. We use Mahout’s k-
means algorithm to implement a tag suggestion feature
for Last.fm, a popular Internet radio site. The basic idea
is to group related tags together so that the website can
assist users in tagging items by suggesting relevant tags.
We use the raw tag counts for the 100 most frequently
occurring tags generated by Last.fm users as our input
data set. The data set contains 950,000 records account-
ing for a total of 7 million tags assigned to over 20,000
artists.

The Recommendation benchmark is based on the rec-
ommendation algorithm also provided with Mahout. It
is also iterative with multiple map-reduce rounds. We
use this algorithm on the publicly available Wikipedia
data set to compute articles that are similar to a given
one. The output of the recommendation algorithm is a
list of related articles that have similar outlinks as the
given article and hence are related to it and should pos-
sibly be linked with it. The Wikipedia data set contains
130 million links, with 5 million sources and 3 million
sinks. Due to the limited SSD space of our 8-machine
cluster configuration (Section 4.1), we had to limit the
maximum number of outlinks from any given page to
10, and, hence, our data set had 26 million links.

Pig Apache Pig is another platform that has gained
widespread popularity in recent years as a platform that
fosters the use of a high level language to perform large
scale data analytics. We use a “co-group” query from
a standard list of queries used as performance tests for
Pig [6].3 This takes two tables as input and computes
the cross-product of the two tables. It differs to the other
jobs in that the final output is much larger than either the
input or shuffle data, since the cross-product is computed
at the reducers.

Indexing Building an inverted index from text data
was part of the original motivation for MapReduce [14],
and inverted indices are commonly used by many search
engines. We implemented a simple indexer as a Hadoop
MapReduce job that takes a set of text files as input and
outputs a full index that maps each unique word to a list
of all occurrences of that word (specified as file name +
byte offset).

3Other queries on this list essentially replicate the selection, aggre-
gation, and projection tasks already included in our benchmark suite.

Optimization Scale-up Scale-out
SSD storage Yes Yes
Local FS for input Yes No
Optimize concurrency Yes Yes
Enable OOB heartbeat Yes Yes
Optimize heap size Yes Yes
Local FS for intermediate data Yes No
Unrestricted shuffle Yes No
RAMdisk for intermediate data Yes No

Table 2: Summary of Hadoop optimizations grouped as storage, con-
currency, network, memory, and reduce-phase optimizations. All the
optimizations apply to scale-up but only some to scale-out.

3 Optimizing for scale-up
In order to evaluate the relative merits of scale-up and
scale-out for the jobs described in Section 2, we needed
a software platform to run these jobs. The obvious candi-
date for scale-out is Hadoop; we decided to use Hadoop
as our platform on a single scale-up server for three
reasons. First, there are a large number of applications
and infrastructures built on Hadoop, and thus there is a
big incentive to stay within this ecosystem. Second, any
scale-up platform will have to scale out as well, for ap-
plications that need to scale beyond a single big-memory
machine. Finally, using the same base platform allows
us an apples-to-apples performance comparison between
the two configurations.

We first tuned and optimized Hadoop for good per-
formance in the baseline, i.e., cluster scale-out, sce-
nario. We then further optimized it to take advantage
of features of the scale-up configuration, such as lo-
cal file system storage and local RAMdisks. Table 2
lists the optimizations applied to Hadoop divided into
five categories: storage, concurrency, network, memory,
and reduce-phase optimizations. The use of the local file
system and the reduce-phase optimizations are only ap-
plied to the scale-up configuration, because they are not
applicable or detrimental to performance in the scale-
out configuration. The concurrency and memory opti-
mizations require tuning Hadoop parameters for the spe-
cific workload; all the other optimizations are workload-
independent.

Here we describe each optimization. Section 4.4 has
an experimental evaluation of the performance benefit of
each optimization for the scale-up case.

Storage Our first step was to remove the storage bot-
tleneck for both scale-up and scale-out configurations. In
a default configuration with disks, Hadoop is I/O-bound
and has low CPU utilization. We do not believe that this
is a realistic configuration in a modern data center for
either a scale-up or a scale-out system. Storage bottle-

necks can easily be removed either by using SSDs or by
using one of many scalable back-end solutions (SAN or
NAS in the enterprise scenario, e.g. [23], or Amazon S3
/ Windows Azure in the cloud scenario). In our experi-
mental setup which is a small cluster we use SSDs for
both the scale-up and the scale-out machines.

Even with SSDs, there is still substantial I/O over-
head when using HDFS. While HDFS provides scalable
and reliable data storage in a distributed Hadoop instal-
lation, we doubt its utility in scale-up installations for
several reasons. A scalable storage back end can easily
saturate the data ingest capacity of a scale-up compute
node. Thus using the compute node itself to serve files
via HDFS is unnecessary overhead. Alternatively, if data
is stored locally on SSDs, modern file systems like ZFS
and BTRFS already provide equivalent functionality to
HDFS (e.g. check-summing) [8, 7], but without the as-
sociated throughput overheads, and can be retrofitted to
work with a single-node Hadoop setup.

Hence for our scale-up configuration we store the in-
puts on SSDs and access them via the local file system.
For the scale-out configuration, we also store the inputs
on SSDs but we access them via HDFS. To improve per-
formance of HDFS, we do not use replication.

Concurrency The next optimization adjusts the num-
ber of map and reduce tasks to be optimal for each job.
The default way to run a Hadoop job on a single ma-
chine is to use the “pseudo-distributed” mode, which as-
signs a separate JVM to each task. We implemented a
multi-threaded extension to Hadoop which allows us to
run multiple map and reduce tasks as multiple threads
within a single JVM. However, we found that when the
number of tasks as well as the heap size for each tasks
are well-tuned, there is no performance difference be-
tween the multi-threaded and pseudo-distributed mode.

Since our goal is to avoid unnecessary changes to
Hadoop, we use the pseudo-distributed mode for the
scale-up configuration and the normal distributed mode
for the scale-out configuration. For the scale-out case,
we tune the number of map and reducer slots per job (i.e.
we experimented with various configurations per job and
picked the best). For the scale-up case, we pick the opti-
mal number of map and reduce slots and use it across all
jobs. Per job, we also optimize the number of reducers
used, in the same way that every expert user would have
done.

Heartbeats Hadoop typically tracks task liveness
through periodic heartbeats. When a task finishes much
shorter than the heartbeat interval, the task tracker node
will idle waiting for the next submission. “Out-of-band”
heartbeats eliminate this waiting period and improve

performance [13]. We enable them for both scale-up and
scale-out configurations.

Heap size By default each Hadoop map and reduce
task is run in a JVM with a 200 MB heap within which
they allocate buffers for in-memory data. When the
buffers are full, data is spilled to storage, adding over-
heads. We note that 200 MB per task leaves substan-
tial amounts of memory unused on modern servers. By
increasing the heap size for each JVM (and hence the
working memory for each task), we improve perfor-
mance. However too large a heap size causes garbage
collection overheads, and wastes memory that could be
used for other purposes (such as a RAMdisk). For the
scale-out configurations, we found the optimal heap size
for each job through trial and error. For the scale-up con-
figuration we set a heap size of 4 GB per mapper/reducer
task (where the maximum number of tasks is set to the
number of processors) for all jobs.

Shuffle optimizations The next three optimizations
speed up the shuffle (transferring data from mappers
to reducers) on the scale-up configuration: they do not
apply to scale-out configurations. First, we modified
Hadoop so that shuffle data is transferred by writing and
reading the local file system; the default is for reducers
to copy the data from the mappers via http. However, we
found that this still leads to underutilized storage band-
width during the shuffle phase for our scale-up config-
uration, due to a restriction on the number of concur-
rent connections that is allowed. In a cluster, this is a
reasonable throttling scheme to avoid a single node get-
ting overloaded by copy requests. However it is unneces-
sary in a scale-up configuration with a fast local file sys-
tem. Removing this limit substantially improves shuffle
performance. Finally, we observed that the scale-up ma-
chine has substantial excess memory after configuring
for optimal concurrency level and heap size. We use this
excess memory as a RAMdisk to store intermediate data
rather than using an SSD or disk based file system.

4 Evaluation
In this section, we will use the benchmarks and MapRe-
duce jobs we described in Section 2 to perform an in-
depth analysis of the performance of scale-up and scale-
out Hadoop.

To understand the pros and cons of scaling up as op-
posed to scaling out, one needs to compare optimized
implementations of both architectures side by side using
several metrics (such as performance, performance/unit
cost, and performance/unit energy) under a wide range
of benchmarks. In this section we first describe our ex-
perimental setup. We then compare scale-up and scale-

Workstation1 Server1

Base spec E5520 4x E7-4820
- CPU 4 cores, HT, 2.3 GHz 32 cores, HT, 2.0 GHz
- Memory 12 GB 0 GB
- Disk 1 HDD (160 GB) 2 HDD (600 GB)
Base cost $2130 $17380
SSD cost $2702 $21602

DRAM cost none $54402,3

(512GB)
Total cost $2400 $24980
Power 154 W 877 W4

1 Prices from Dell’s website, http://www.dell.com/.
2 Prices from http://www.newegg.com.
3 16 GB 240-Pin DDR3 1333 SDRAM.
4 Measured with 512GB of RAM and all (HDD and SSD) drives connected.
∗

All processors are Intel Xeon

Table 3: Comparison of workstation (used for scale-out) and server
(scale-up) configurations. All prices converted to US$ as of 8 August
2012.

out across all our entire benchmark suite on several met-
rics. These results are based on applying all optimiza-
tions described in Section 3 to all the configurations.

We then look more closely at two of the jobs, Find-
UserUsage and TeraSort. For these two jobs we mea-
sure the individual phases — map, shuffle, and reduce
— to understand better the scale-up/scale-out tradeoffs.
We also measure the individual contributions of each of
our optimization techniques on scale-up performance.

4.1 Hardware
The commodity scale-out cluster we used in this work
consists of 16 data nodes and one name node. Each
node is a Dell Precision T3500 Essential workstation
with a 2.3 GHz E5520 Xeon quad-core processor (8 hy-
perthreads), 12 GB of memory, a 160 GB Western Dig-
ital Caviar Blue HDD, and a 32 GB Intel X25-E SSD.
The HDD is used by the operating system; we use the
SSD for our experiments (including HDFS and all input
and output files). Each machine is also equipped with a
1Gbps NIC connected to a single switch, which can eas-
ily handle 1Gbps all-to-all communication. We used this
cluster in two configurations: with 8 data nodes and with
all 16 data nodes.

The scale-up machine is a 4-socket Dell PowerEdge
910 server with 4 8-core 2 GHz Intel Xeon E7-4820 pro-
cessors for a total of 32 cores (64 hyperthreads). The
server is also equipped with two RAID controllers. To
this base configuration we added 512 GB of DRAM, two
Hitachi UltraStar C10K600 HDDs (600 GB) in a RAID-
1 configuration, and 8 240 GB Intel 520 Series SSDs in
a RAID-0 configuration. The HDDs are used primarily
for the OS image and the SSDs for Hadoop job data.

http://www.dell.com/
http://www.newegg.com

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Scale-out (16) Scale-out (8)

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

 p
e

r
$

HDD SSD

Figure 3: Performance/$ for scale-out running TeraSort with HDDs
and SSDs, normalized to performance/$ of 16-node cluster with
HDDs.

Table 3 summarizes the hardware configurations and
their prices. The scale-up configuration costs around
$25k,whereas the 8-machine and 16-machine scale-out
configurations cost $19k and $38k respectively (at the
time of acquisition), without counting the cost of the net-
work switch that would be required in the scale-out case.

We use SSDs for both the scale-up and the scale-
out server. This is based on our observation that with-
out SSDs, many Hadoop jobs become disk-bound.
Thus although SSDs add 13% to the base cost of the
workstation-class machine in Table 3, they improve the
overall performance/price ratio of the cluster. We ver-
ified this by running the 10 GB TeraSort benchmark
on the 8- and 16-node configurations with and without
SSDs. Figure 3 shows the performance/price ratio for
the four configurations, normalized so that the 16-node
cluster using HDDs has a value of 1. We see that SSDs
do improve performance/$ for the scale-out configura-
tion, and we use SSDs consistently for both scale-up and
scale-out in our experiments.

Table 3 also shows the power draw under load of the
two hardware platforms. We measured the power con-
sumption offline using a stress test to ensure consistent
results. We used the 10 GB TeraSort benchmark to gen-
erate load, since it uniformly stresses the resources of
all the servers. We used a Watts up? Pro power meter
which logs power usage statistics at a one second gran-
ularity in its internal memory during the job run, and
derive the average power from this log. We ran this test
both on the scale-up and the scale-out configuration. In
the scale-out case, TeraSort loads all servers equally and
thus we only measure power on a single server. We mea-
sured the power in both the 8-node and 16-node config-
urations and found no significant difference.

All configurations have all relevant optimizations en-
abled (Section 3 and Table 2).

4.2 Scale-up vs. scale-out

We ran all 11 jobs in all three configurations and mea-
sured their throughput, i.e. the inverse of job execution
time. All results are the means of at least 4 runs of each
job on each configuration.Figure 4(a) shows the results
normalized so that the scale-up performance is always
1. We see that scale-up performs surprisingly well: bet-
ter than the 8-machine cluster for all but two jobs and
within 5% for those two.

When we double the cluster size from 8 to 16, scale-
out performs better than scale-up for 6 jobs but scale-up
is still significantly better for the other 5 jobs. In general,
we find that scale-out works better for CPU-intensive
tasks since there are more cores and more aggregate
memory bandwidth. Scale-up works better for shuffle-
intensive tasks since it has fast intermediate storage and
no network bottleneck. Note that the Pig Cogroup job is
CPU-intensive: a small amount of data is shuffled but a
large cross-product is generated by the reducers.

Clearly adding more machines does improve perfor-
mance; but at what cost? It is important to also con-
sider performance per dollar. We derive performance
per dollar by dividing raw performance by the capi-
tal/acquisition cost of the hardware (Table 3). In order to
keep the analysis simple, here we do not consider other
expenses like administration or cooling costs. In general
we would expect these to be lower for a single machine.

Figure 4(b) shows the performance per dollar for the
three configurations across all jobs, again normalized
to set the scale-up platform at 1. Interestingly now the
8-node cluster does uniformly better than the 16-node
cluster, showing that there are diminishing performance
returns for scaling out even for these small clusters. Sur-
prisingly, this is also true for the k-means and Wikipedia
jobs whose core-computation is CPU-bound. The speed-
up from 8 nodes to 16 is sublinear due to the overheads
of frequent task management: every iteration of the al-
gorithm involves setting up a new MapReduce round,
which impacts the performance substantially. Scale-up
is again competitive (though slightly worse) for map-
intensive tasks and significantly better for the shuffle-
intensive tasks, than either scale-out configuration.

Figure 4(c) shows normalized performance per watt,
based on the power measurements reported in Table 3.
This is an important metric as data centers are often
power-limited; hence more performance per Watt means
more computation for the same power budget. On this
metric we see that scale-up is significantly better than
either scale-out configuration across all jobs. We believe
the results are pessimistic: they underestimate scale-out
power by omitting the power consumed by a top-of-rack
switch, and overestimate scale-up power by including a
redundant power supply.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

Scale-out (16) Scale-out (8) Scale-up

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

 p
e

r
$

Scale-out (16) Scale-out (8) Scale-up

(b) Throughput per $

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

 p
e

r
W

Scale-out (16) Scale-out (8) Scale-up

(c) Throughput per watt

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 p

e
rf

 p
e

r
R

U

Scale-out (16) Scale-out (8) Scale-up

(d) Throughput per rack unit

Figure 4: Scale-out performance on different metrics, normalized to scale-up performance for each of 11 jobs.

Finally, we look at server density. Like power, this
is also an important consideration, as a higher server
density means more computation for a given space bud-
get. The scale-up machine is a “3U” form factor, i.e. it
uses three rack units. Although our scale-out machines
are in a workstation form factor, for this analysis we
consider them to have a best-case 1U form factor. Fig-
ure 4(d) shows the performance per rack unit (RU). As
with power, we see clearly that the scale-up machine out-
performs scale-out across all jobs.

4.3 Phase-by-phase analysis

Broadly speaking, we expect map-intensive jobs to do
relatively well for scale-out, and shuffle-intensive jobs
to do well on scale-up. To validate this assumption,
we choose two jobs: FindUserUsage, which is map-
intensive, and the 10 GB TeraSort, which is shuffle-
intensive. We then separated out the job execution times
into map, shuffle, and reduce times. Since these can
overlap we approximate them as follows: the map time
is the time from the job start to the completion of the last
map task; the shuffle time is the time interval from then
to the completion of the last shuffle task; and the reduce
time is the remaining time until the job is completed.

Figure 5(a) shows the results for FindUserUsage and
Figure 5(b) the results for TeraSort. We see that as

expected, runtime FindUserUsage is completely domi-
nated by map time. Thus scale-up and 8-node scale-out
have similar performance, since they both have 32 cores.
The 16-node scale-out on the other hand benefits from
twice as many cores. The scaling is not linear as Hadoop
jobs also have task startup costs: “map time” is over-
lapped both with startup and with shuffle and reduce.

TeraSort is clearly shuffle-dominated on the 8-node
cluster. For the 16-node cluster shuffle and map time ap-
pear approximately equal; however this is an artifact of
our methodology where the overlap between the two is
counted as “map time”. In reality both shuffle and map
time are reduced as the larger cluster has more cores as
well as more bisection bandwidth, but the overall run-
time remains shuffle-dominated. In the scale-up case we
see that the runtime is clearly map-dominated, and the
shuffle phase is extremely efficient.

4.4 Effect of optimizations

The results in the previous section used Hadoop setups
that were fully optimized, i.e. all the relevant optimiza-
tions described in Section 3 were applied. In this section
we look at the effect of each optimization individually.
The aim is to understand the effect of the optimizations
on scale-up performance, compared to a vanilla Hadoop
running in pseudo-distributed mode.

50
57

38

4

3

4

2

2

4

0

10

20

30

40

50

60

70

Scale-up Scale-out (8) Scale-out (16)

Jo
b

 r
u

n
ti

m
e

 (
Se

co
n

d
s)

Reduce Time

Shuffle Time

Map time

(a) FindUserUsage

42 40
33

4

67

27
10

18

8

0

20

40

60

80

100

120

140

Scale-up Scale-out (8) Scale-out (16)

Jo
b

 r
u

n
tm

e
 (

Se
co

n
d

s)

Reduce Time

Shuffle Time

Map Time

(b) 10 GB TeraSort

Figure 5: Runtime for different phases with FindUserUsage and
10 GB TeraSort

We examine two jobs from our benchmark suite. Find-
UserUsage is map-intensive with little intermediate data
and a small reduce phase. We use it to measure all op-
timizations except those that improve the shuffle phase,
since the shuffle phase in FindUserUsage is very small.
TeraSort is memory- and shuffle- intensive. Thus we use
it to measure the effect of the memory and shuffle-phase
optimizations. In all cases we use the scale-up server de-
scribed previously.

Figure 6(a) shows the effect on FindUserUsage’s ex-
ecution time of successively moving from disk-based
HDFS to an SSD-based local file system; of optimiz-
ing the number of mappers and reducers; of removing
out-of-band heartbeats; and of optimizing the heap size.
Each has a significant impact, with a total performance
improvement of 4x.

Figure 6(b) shows the effect on execution time of
10 GB TeraSort starting from a baseline where the stor-
age, concurrency, and heartbeat optimizations have al-
ready been applied. The heap size optimization has a sig-
nificant effect, as input and intermediate data buffers are
spilled less frequently to the file system. Moving to the
file system based rather than http based shuffle and un-
throttling the shuffle has an even bigger effect. Finally,
using a RAMdisk for that intermediate data improves

255

157

121

82
64

0

50

100

150

200

250

300

Baseline SSD storage Concurrency Heartbeat Heap size

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

(a) Effect of input storage, concurrency, heartbeat, and heap optimiza-
tions on FindUserUsage

414

221

100

63

0

50

100

150

200

250

300

350

400

450

SSD storage +
concurrency +

heartbeat

Heap size Local FS + unrestricted
shuffle

RAMDisk

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

(b) Effect of memory and shuffle optimizations on 10 GB TeraSort

Figure 6: Effect of different optimizations on FindUserUsage and
10 GB TeraSort

performance even further. For TeraSort, heap size opti-
mization improves performance by 2x and shuffle-phase
optimizations by almost 3.5x, for a total performance
improvement of 7x.

5 Discussion
In Section 4 we evaluated 11 read-world jobs to show
that scale-up is competitive on performance and perfor-
mance/$, and superior on performance per watt and per
rack unit. Here we consider implications for cloud com-
puting, and discuss the limits of scale-up.

5.1 Scale up vs. scale-out in the cloud
Our analysis so far was based on a private cluster
and scale-up machine. As many analytic jobs includ-
ing Hadoop jobs are now moving to the cloud, it is
worth asking, how will our results apply in the cloud
scenario? The key difference from a private cluster is
that in the cloud, a scalable storage back end, such as S3
or Azure Storage, is likely to be used for input data (in-
stead of HDFS), and the compute nodes, at least today,
are unlikely to use SSD storage. Intermediate data will
be stored in memory or local disk.

0.43

0.72

0.60

0.50

0.00

0.20

0.40

0.60

0.80

1.00

Normalized Performance Normalized Performance / $

Scale-Out (8) Scale-Out (16)

Figure 7: Relative throughput and throughput/$ of cloud and single-
node scale-up with a scalable storage back-end. Results are normalized
with respect to the scale-up throughput and throughput/$.

We re-ran the FindUserUsage job using Azure com-
pute nodes to scale out and the Azure Storage back
end to hold input data. We used extra-large instances
(8 cores, 16 GB of RAM) as being the closest to our
scale-out workstation machines. At the time we ran these
experiments, cloud VM instances corresponding to our
scale-up machine were not available. Hence we used
our scale-up machine but with data being read over the
(10 Gbps) network rather than from SSD. (We assume
here that a cloud scale-up VM is connected by a 10 Gbps
network link to scalable storage.) Figure 7 shows that
the scale-out performance in the cloud is worse than
scale-up for both 8 and 16 nodes. We also observe that
the scale-out cloud performance is 62% and 64% of the
scale-out performance in our private cluster for 8 and
16 nodes respectively, due to contention for shared net-
work bandwidth with other cloud users. On the other
hand scale-up performance is almost unchanged (92%
of the original).

Thus the relative performance of scale-up to scale-
out is likely to improve for cloud scenarios; however we
need to consider the relative pricing of the correspond-
ing instances either. We note that Amazon has recently
announced its High-Memory Cluster Instance for EC24

with 16 cores, 244 GiB of memory, and 10 Gbps net-
working for $3.50/hr. We estimate that a VM instance
corresponding to our scale-up configuration (32 cores,
512 GB, and 10 Gbps) would cost at most twice as much
as such this, and the same performance as our scale-up
server reading data over a 10 Gbps link. Similarly, our
scale-out machines can be mapped to M1 extra-large in-
stances, which currently cost $0.52/hr.

At current EC2 prices, this would give us a scale-
up pricing of $7/hr, compared to a scale-out pricing
of $4.16/hr for 8 nodes and $8.32/hr for 16 nodes.
This gives us the scale-up configuration 38% better per-

4http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using_cluster_computing.html

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

P
e

rf
o

rm
an

ce
/$

 r
e

la
ti

ve
 t

o

sc
al

e
-u

p

TeraSort input size (GB)

Scale-out (8)

Scale-out (16)

Figure 8: TeraSort performance/$ normalized to that of scale-up as a
function of input size

formance/$ than the 8-node scale-out, and 50% better
performance/$ than the 16-node scale-out (Figure 7).
Compared with the corresponding measurements for
FindUserUsage on our private cluster (Figure 4(b))
these are a relative improvement for scale-up. Thus, al-
though we have not evaluated the cloud performance
across all benchmarks, we believe this indicates that the
price/performance tradeoffs in the cloud will be similar
or better to those for a private cluster.

There are three factors that we believe will drive down
the price of scale-up cloud instances compared to scale-
out. The first two are the savings in power and rack
space. The last one is the trend towards commoditization
of high-bandwidth networking hardware (40 Gbps is al-
ready available and 100 Gbps on the horizon), which will
make it more cost-effective to add bandwidth to a sin-
gle scale-up node than to each of many scale-out nodes.
We thus expect that cloud “scale-up” instances (which
are already being offered for high-end applications such
as HPC and large in-memory databases) will become
an increasingly cost-effective way to run sub tera-scale
Hadoop jobs with our optimizations to Hadoop.

5.2 Limitations to scale-up

Our results show that scale-up is more cost-effective for
many real-world jobs which today use scale-out. How-
ever, clearly there is a job size beyond which scale-
out becomes a better option. This “cross-over” point is
job-specific. In order to get some understanding of this
crossover point, we use TeraSort as an example since its
job size is easily parametrized.

Figure 8 shows the results, again normalized to set
the values for scale-up at 1. All three of our test con-
figurations are able to sort up to 50 GB of data, with
the scale-up configuration providing by far the best per-
formance per dollar. However the 8-node cluster can-
not sort 100 GB of data without running out of storage,
and the scale-up machine cannot sort significantly more

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html

than 100 GB without running out of memory. At 100 GB,
scale-up still provides the best performance/$, but the
16-node cluster is close at 88% of scale-up.

These results tell us two things. First, even with
“big memory”, the scale-up configuration can become
memory-bound for large jobs. However we expect this
point to shift upwards as DRAM prices continue to fall
and multiple terabytes of DRAM per machine become
feasible. Second, for TeraSort, scale-out is competitive
at around the 100 GB mark with current hardware.

More generally, while it is feasible to have a mix of
large and small machines (and cloud providers already
provide a mix of instance sizes), it is not desirable to
maintain two versions of each application. By making all
our changes transparently “under the hood” of Hadoop,
we allow the decision of scale-up versus scale-out to be
made transparently to the application.

6 Related Work
One of the motivations for this work was the observation
that most analytic job sizes are well within the 512 GB
that is feasible on a standard “scale-up” server today. We
collected information about job sizes internally, where
we found median job sizes to be less than 14 GB, but
our conclusions are also supported by studies on a range
of real-world Hadoop installations including Yahoo [16],
Facebook [2, 12], and Cloudera [12].

Piccolo [25] is an in-memory distributed key-value
store, aimed at applications that need low-latency fine-
grained random access to state. Resilient Distributed
Datasets (RDDs) [33] similarly offer a distributed mem-
ory like abstraction in the Spark system, but are aimed
at task-parallel jobs, especially iterative machine learn-
ing jobs such as the Mahout jobs considered in this pa-
per. Both of these are “in-memory scale-out” solutions:
they remove the disk I/O bottleneck by keeping data in
memory. However they still suffer from the network bot-
tleneck of fetching remote data or shuffling data in a
MapReduce computation. Our contribution is to show
that scale-up rather than scale-out is a competitive op-
tion even for task-parallel jobs (both iterative and non-
iterative) and can be done with transparent optimizations
that maintain app-compatibility with Hadoop.

Phoenix [26, 32, 30], Metis [20], and Tiled-
MapReduce [11] are in-memory multi-core (i.e. scale-
up) optimized MapReduce libraries. They demonstrate
that a carefully engineered MapReduce library can be
competitive with a shared-memory multi-threaded im-
plementation. In this paper we make a similar observa-
tion about multi-threaded vs. MapReduce in the Hadoop
context. However our distinct contribution is that we
provide good scale-up performance transparently for
Hadoop jobs; and we evaluate the tradeoffs of scale-up

vs. scale-out by looking at job sizes as well as perfor-
mance, dollar cost, power, and server density.

GraphChi [18] also advocates processing big data in
a single machine. They focus on graph computations,
and argue that, by carefully scheduling disk operations
and computations, even commodity machines can pro-
cess very large graphs.

Michael et al. [21] studied the problem of scale-up vs
scale-out for an interactive application (query process-
ing in web search). They find scale-out to have a bet-
ter performance per price ratio than scale-up. Observe,
however, the differences in the context compared to our
work (answering user queries versus data analytics re-
spectively), and in the underlying hardware (IBM Blade-
Center vs commodity PCs). They also find that running
scale-out in a box gives better performance than using
multi-threading.

In previous work [28] we showed that certain machine
learning algorithms do not fit well within a MapReduce
framework and hence both accuracy and performance
were improved by running them as shared-memory pro-
grams on a single scale-up server. However this ap-
proach means that each algorithm be implemented once
for a multi-threaded shared-memory model and again for
MapReduce if scale-out is also desired. Hence in this
paper we demonstrate how scale-up can be done trans-
parently for Hadoop applications without sacrificing the
potential for scale-out and without a custom shared-
memory implementation. We believe that while custom
multi-threaded implementations might be necessary for
certain algorithms, they are expensive in terms of hu-
man effort and notoriously hard to implement correctly.
Transparent scale-up using Hadoop is applicable for a
much broader range of applications which are already
written to use Hadoop MapReduce.

The tradeoff between low-power cores and a smaller
number of server-grade cores was extensively studied
by Reddi et al. [27] in the context of web search, and
by Andersen et al. [3] in the context of a key-value
storage system. Those works study the problem in dif-
ferent context and reach opposite conclusions. Ander-
sen et al. [3] argues that scale-out is more cost and
power effective than scale-up (for key-value storage sys-
tems). Reddi et al. [27] reach similar conclusions to
us (although for a different context). Similarly, recent
work [19] shows that for TPC-H queries, a cluster of
low-power Atom processors is not cost-effective com-
pared to a traditional Xeon processor. In general, the
scale-up versus scale-out tradeoff is well-known in the
parallel database community [15]. A key observation
is that the correct choice of scale-up versus scale-out
is workload-specific. However in the MapReduce world
the conventional wisdom is that scale-out is the only in-
teresting option. We challenge this conventional wisdom

by showing that scale-up is in fact competitive on perfor-
mance and cost, and superior on power and density, for
a range of MapReduce applications.

7 Conclusions and Future Work
In this paper, we showed that, contrary to conventional
wisdom, analytic jobs — in particular Hadoop MapRe-
duce jobs — are often better served by a scale-up server
than a scale-out cluster. We presented a series of trans-
parent optimizations that allow Hadoop to deliver good
scale-up performance, and evaluated our claims against
a diverse set of Hadoop jobs.

Our results have implications for the way Hadoop and
analytics clusters in general are provisioned, with scale-
up servers being a better option for many jobs whether
in a private cluster or in the cloud. Broadly the results
suggest that a scale-up machine (or instance) running a
scale-up optimized Hadoop should be considered as an
option, rather than always using a cluster of small ma-
chines (or instances).

This observation raises two questions: when should a
job run with scale-up rather than scale-out; and for jobs
larger than even the largest scale-up machine, should we
scale them out with a few large machines or with many
small ones? The correct decision depends on job size,
job characteristics, and pricing and we need an auto-
mated way to predict the best architecture and config-
uration for a given job. We are currently working on
such a predictive mechanism based on input job sizes
and static analysis of the application code. Moreover,
the co-existence of scale-up and scale-out machines in
a cluster also complicates the management of the clus-
ter, e.g. the design of the scheduler [17, 29].

Our results also imply that software infrastructures
such as Hadoop must in future be designed for good
scale-up as well as scale-out performance. The optimiza-
tions presented in this paper provide a good initial start-
ing point for improving scale-up performance.

Acknowledgments
We thank the reviewers, and our shepherd Anthony
Joseph, who provided valuable feedback and advice.

References
[1] Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/. Accessed:
08/09/2011.

[2] G. Ananthanarayanan, A. Ghodsi, A. Wang, D.
Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. “PACMan: Coordinated Memory Caching for
Parallel Jobs”. NSDI. 2012.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A.
Phanishayee, L. Tan, and V. Vasudevan. “FAWN:
A Fast Array of Wimpy Nodes”. Proceedings of
SOSP. 2009.

[4] Apache Hadoop. http://hadoop.apache.
org/. Accessed: 08/09/2011.

[5] Apache Mahout. http://mahout.apache.
org/. Accessed: 02/07/2013.

[6] Apache Pig Wiki. http://wiki.apache.
org / pig / PigPerformance. Accessed:
02/07/2013.

[7] M. Bierman and L. Grimmer. How I Use the
Advanced Capabilities of Btrfs. http : / /
www . oracle . com / technetwork /
articles/servers- storage- admin/
advanced - btrfs - 1734952 . html. Ac-
cessed: 02/07/2013. 2012.

[8] J. Bonwick. ZFS End-to-End Data Integrity.
https : / / blogs . oracle . com /
bonwick / entry / zfs _ end _ to _ end _
data. Accessed: 02/07/2013. 2005.

[9] B. Calder et al. “Windows Azure Storage: a
highly available cloud storage service with strong
consistency”. Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Princi-
ples. SOSP ’11. ACM, 2011, pp. 143–157.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. “SCOPE: easy
and efficient parallel processing of massive data
sets”. Proceedings of the VLDB Endowment 1.2
(2008), pp. 1265–1276.

[11] R. Chen, H. Chen, and B. Zang. “Tiled-
MapReduce: optimizing resource usages of data-
parallel applications on multicore with tiling”.
Proceedings of the 19th international conference
on Parallel architectures and compilation tech-
niques. PACT ’10. ACM, 2010.

[12] Y. Chen, S. Alspaugh, and R. H. Katz. “Interac-
tive Analytical Processing in Big Data Systems: A
Cross-Industry Study of MapReduce Workloads”.
PVLDB 5.12 (2012), pp. 1802–1813.

[13] Cloudera. Tips and Guidelines: Improving Per-
formance. http : / / www . cloudera .
com / content / cloudera - content /
cloudera-docs/CDH4/4.2.0/CDH4-
Installation-Guide/cdh4ig_topic_
11_6.html. Accessed: 02/07/2013.

[14] J. Dean and S. Ghemawat. “MapReduce: Simpli-
fied Data Processing on Large Clusters”. OSDI.
2004.

http://aws.amazon.com/s3/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://wiki.apache.org/pig/PigPerformance
http://wiki.apache.org/pig/PigPerformance
http://www.oracle.com/technetwork/articles/servers-storage-admin/advanced-btrfs-1734952.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/advanced-btrfs-1734952.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/advanced-btrfs-1734952.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/advanced-btrfs-1734952.html
https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data
https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data
https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig_topic_11_6.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig_topic_11_6.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig_topic_11_6.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig_topic_11_6.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig_topic_11_6.html

[15] D. DeWitt and J. Gray. “Parallel Database Sys-
tems: The Future of High Performance Database
Systems”. Communications of the ACM 35.6
(1992), pp. 85–98.

[16] K. Elmeleegy. “Piranha: Optimizing Short Jobs
In Hadoop”. VLDB. 2013.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and
I. Stoica. “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center”. Proceed-
ings of the 8th USENIX Symposium on Networked
Systems Design and Implementation. NSDI’11.
USENIX, 2011.

[18] A. Kyrola, G. Blelloch, and C. Guestrin.
“GraphChi: large-scale graph computation on just
a PC”. Proceedings of the 10th USENIX con-
ference on Operating Systems Design and Im-
plementation. OSDI’12. USENIX Association,
2012, pp. 31–46.

[19] W. Lang, J. M. Patel, and S. Shankar. “Wimpy
Node Clusters: What About Non-Wimpy Work-
loads?” Workshop on Data Management on New
Hardware (DaMon). 2010.

[20] Y. Mao, R. Morris, and F. Kaashoek. Optimizing
MapReduce for Multicore Architectures. Tech.
rep. MIT-CSAIL-TR-2010-020. MIT CSAIL,
2010.

[21] M. Michael, J. E. Moreira, D. Shiloach, and R.
W. Wisniewski. “Scale-up x Scale-out: A Case
Study using Nutch/Lucene”. Proceedings of the
IEEE International Symposium on Parallel and
Distributed Processing. IPDPS’07. IEEE, 2007,
pp. 1–8.

[22] S. Owen, R. Anil, T. Dunning, and E. Fried-
man. Mahout in Action. Manning Publications
Co., 2011.

[23] Panasas. Accelerating and Simplifying Apache
Hadoop with Panasas ActiveStor. http : / /
www . panasas . com / sites / default /
files/uploads/docs/hadoop_wp_lr_
1096.pdf. Accessed: 02/07/2013.

[24] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. “A com-
parison of approaches to large-scale data analy-
sis”. SIGMOD ’09: Proceedings of the 35th SIG-

MOD international conference on Management
of data. ACM, 2009, pp. 165–178.

[25] R. Power and J. Li. “Piccolo: Building Fast,
Distributed Programs with Partitioned Tables”.
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI). 2010.

[26] C. Ranger, R. Raghuraman, A. Penmetsa, G. R.
Bradski, and C. Kozyrakis. “Evaluating MapRe-
duce for Multi-core and Multiprocessor Sys-
tems”. HPCA. 2007.

[27] V. J. Reddi, B. C. Lee, T. M. Chilimbi, and K.
Vaid. “Web search using mobile cores: Quantify-
ing and mitigating the price of efficiency”. Proc.
37th International Symposium on Computer Ar-
chitecture (37th ISCA’10). 2010, pp. 314–325.

[28] A. Rowstron, D. Narayanan, A. Donnelly, G.
O’Shea, and A. Douglas. “Nobody ever got fired
for using Hadoop”. Workshop on Hot Topics in
Cloud Data Processing (HotCDP). 2012.

[29] M. Schwarzkopf, A. Konwinski, M. Abd-El-
Malek, and J. Wilkes. “Omega: flexible, scal-
able schedulers for large compute clusters”. Pro-
ceedings of the 8th ACM European Conference
on Computer Systems. EuroSys’13. ACM, 2013,
pp. 351–364.

[30] J. Talbot, R. M. Yoo, and C. Kozyrakis.
“Phoenix++: Modular MapReduce for Shared-
Memory Systems”. Second International
Workshop on MapReduce and its Applications
(MAPREDUCE). 2011.

[31] Windows Azure Storage. http : / / www .
microsoft . com / windowsazure /
features/storage/. Accessed: 08/09/2011.

[32] R. M. Yoo, A. Romano, and C. Kozyrakis.
“Phoenix Rebirth: Scalable MapReduce on a
Large-Scale Shared-Memory System”. IEEE In-
ternational Symposium on Workload Characteri-
zation (IISWC). 2009.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.
Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory
Cluster Computing”. USENIX Symposium on
Networked Systems Design and Implementation
(NSDI). 2012.

http://www.panasas.com/sites/default/files/uploads/docs/hadoop_wp_lr_1096.pdf
http://www.panasas.com/sites/default/files/uploads/docs/hadoop_wp_lr_1096.pdf
http://www.panasas.com/sites/default/files/uploads/docs/hadoop_wp_lr_1096.pdf
http://www.panasas.com/sites/default/files/uploads/docs/hadoop_wp_lr_1096.pdf
http://www.microsoft.com/windowsazure/features/storage/
http://www.microsoft.com/windowsazure/features/storage/
http://www.microsoft.com/windowsazure/features/storage/

	Introduction
	Job sizes and example jobs
	Experimental Workloads

	Optimizing for scale-up
	Evaluation
	Hardware
	Scale-up vs. scale-out
	Phase-by-phase analysis
	Effect of optimizations

	Discussion
	Scale up vs. scale-out in the cloud
	Limitations to scale-up

	Related Work
	Conclusions and Future Work

