
Performance and dependability of structured peer-to-peer overlays

Miguel Castro, Manuel Costa and Antony Rowstron
Microsoft Research, 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK

December 2003

Technical Report
MSR-TR-2003-94

Structured peer-to-peer overlay networks provide a useful substrate for building distributed applications. They
map object keys to overlay nodes and offer a primitive to send a message to the node responsible for a key. They
can implement, for example, distributed hash tables and multicast trees. However, there are concerns about the
performance and dependability of these overlays in realistic environments. Several studies have shown that
current peer-to-peer environments have high churn rates: nodes join and leave the overlay continuously. This
paper presents techniques that continuously detect faults and repair the overlay to achieve high dependability
and good performance in realistic environments. The techniques are evaluated using large-scale network simu-
lation experiments with fault injection guided by real traces of node arrivals and departures. The results show
that previous concerns are unfounded; our techniques can achieve dependable routing in realistic environments
with an average delay stretch below two and a maintenance overhead of less than half a message per second
per node.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Structured peer-to-peer overlays, such as CAN [15], Chord [19], Pastry [16] and Tapestry [22], provide a useful substrate for
building distributed applications. They map object keys to overlay nodes and offer a lookup primitive to send a message to
the node responsible for a key. Overlay nodes maintain some routing state to route messages towards the nodes responsible
for their destination keys. Structured overlays have been used to implement, for example, archival stores [7, 17], file
systems [13], Web caches [10], and application-level multicast systems [23, 6, 5].

However, there are concerns about the performance and dependability of these overlays in realistic environments. Sev-
eral studies [18, 1] have shown that current peer-to-peer environments have high churn rates: nodes join and leave the
overlay continuously and do not stay in the overlay for long. This paper presents MSPastry, which is a new implementation
of Pastry [16] that includes techniques to achieve high dependability and good performance in realistic environments.

MSPastry is dependable because it ensures that lookup messages are delivered to the node responsible for the destination
key with high probability even with high churn and link loss rates. It prevents delivery of lookup messages to the wrong
nodes by using a new algorithm to manage the routing state and it ensures that messages eventually get delivered with a
combination of active failure detection probes and per-hop retransmissions.

MSPastry also performs well and its performance degrades gracefully as the node failure rate and the link loss rate
increase. It achieves low delay by using Proximity-aware routing [4] and the combination of active probing and aggressive
per-hop retransmissions that exploit redundant overlay routes. It achieves low control traffic bandwidth by self-tuning the
active probing period to achieve a target delay with minimum overhead and by exploiting the overlay structure to divide up
the responsibility to detect failures. We present the techniques in the context of MSPastry for concreteness but they could
be applied to other overlays.

The paper presents a detailed experimental evaluation of MSPastry using large scale simulations. We use fault injection
guided by real traces of node arrivals and departures in deployed peer-to-peer systems to evaluate the dependability and
performance of MSPastry in realistic environments. We also explore the performance of MSPastry when varying environ-
mental parameters like network topology, node session times, link loss rates, and amount of application traffic. The paper
also presents simulation experiments to evaluate the impact of individual techniques and of varying important algorithm pa-
rameters. We validate the simulation results with measurements form a deployment of the Squirrel Web cache [10], which
runs on top of MSPastry, in our lab.

The results show that concerns about the performance and dependability of structured overlays are no longer warranted;
our techniques can achieve dependable routing in realistic environments with an average delay that is within a factor of two
of the minimum and a maintenance overhead of less than half a message per second per node.

The rest of the paper is organised as follows. Section 2 provides an overview of structured overlays focusing on Pastry.
Sections 3 and 4 discuss the techniques used to achieve dependability and performance in MSPastry, respectively. The
experiments are described in Section 5 and we conclude in Section 6.

2 Overview of structured overlays

Structured overlays map keys to overlay nodes. Overlay nodes are assigned nodeIds selected from a large identifier space
and application objects are identified by keys selected from the same identifier space. A key is mapped to the node whose
identifier is closest to the key in the identifier space. This node is called the key’s root. For example, Pastry selects nodeIds
and keys uniformly at random from the set of 128-bit unsigned integers and it maps a key k to the active node whose
identifier is numerically closest to k modulo 2128. Nodes are initially inactive and they become active after they join the
overlay. They become inactive when they leave the overlay either voluntarily or because of a failure.

The mapping is exposed through a primitive that allows users to send a lookup message to a destination key. A lookup
message sent to a key is routed through the overlay to the key’s root node. To route lookups efficiently, overlay nodes
maintain some routing state with the identifiers and network addresses of other nodes in the overlay. For example, each
Pastry node maintains a routing table and a leaf set.

Pastry’s routing algorithm interprets nodeIds and keys as unsigned integers in base 2b (where b is a parameter with
typical value 4). The routing table is a matrix with 128/b rows and 2b columns. The entry in row r and column c of the
routing table contains a nodeId that shares the first r digits with the local node’s nodeId, and has the (r + 1)th digit equal to
c. If there is no such nodeId, the entry is null. The uniform random distribution of nodeIds ensures that only log2bN rows
have non-empty entries on average (where N is the number of nodes in the overlay) and one entry in each row points to the
local node. This routing table structure is similar to the one used in [14, 22].

1

323310
323211

322021

313221

203231

lookup(m,323310)

2033*2032*2031*2030*

203*202*201*200*

23*22*21*20*

3*2*1*0*

203231’s routing table
203231’s leaf set

Figure 1: Routing table and leaf set of a node with nodeId 203231, and route taken by a lookup message sent by that node
to key 323310 in a Pastry overlay with b = 2 and l = 4. The * in the routing table represent an arbitrary suffix.

The leaf set of a Pastry node contains the l/2 closest nodeIds to the left of the node’s nodeId and the l/2 closest nodeIds
to the right (where l is a parameter with typical value 32). The leaf sets connect the overlay nodes in a ring. This makes it
easier to ensure dependable routing; it is sufficient to maintain the ring consistent to ensure dependable routing. Figure 1
shows the routing table and leaf set of a sample node with nodeId 203231 in a Pastry overlay with b = 2 and l = 4.

Pastry routes a lookup message by forwarding it to nodes that match progressively longer prefixes with the destination
key. Figure 1 shows the route followed by an example lookup message sent by node 203231 to a key 323310. Node 203231
searches the first level of its routing table for a nodeId starting with digit 3, which is the first digit in the key. It finds node
313221 and forwards the message to this node. Node 313221 shares the first digit with the key so it searches the second
level of its routing table for a nodeId starting with 32. This process is repeated until the root node for the key is reached.

Routing takes approximately 2
b
−1

2b log2bN overlay hops on average [4] because of the random uniform distribution of
nodeIds. But it is important for overlay routing to exploit proximity in the underlying network. Otherwise, each overlay
hop has an expected delay equal to the average delay between a pair of random overlay nodes, which stretches route delay
by a factor equal to the number of overlay hops.

Pastry uses proximity neighbor selection (PNS) [14, 22, 9, 16, 4, 8] to achieve low delay routes. Since any nodeId with
the required prefix can be used to fill a routing table slot, PNS picks the closest node in the underlying network from among
those whose nodeIds have the required prefix. It is expensive to implement perfect PNS in a large dynamic system. Pastry
uses an heuristic that can achieve similar performance with low overhead.

Pastry implements PNS using constrained gossiping as described in [4] and uses round-trip delay as the proximity
metric. A joining node i starts by obtaining a random overlay node j. It uses this random node and the nearest neighbor
algorithm in [4] to locate a nearby overlay node as follows. Node i probes the distance to the nodes in j’s leaf set and picks
the closest one, j ′. Then it obtains the bottom level of j ′’s routing table, probes the distance to the nodes in it, and picks the
closest. This process is repeated bottom up by picking the closest node at each level and getting the next level from it. This
algorithm exploits the properties of the routing state already maintained by Pastry to locate the overlay node closest to i (or
a node whose distance to i is almost as small).

The overlay node returned by the nearest neighbor algorithm is used to seed the join process. Node i sends a join request
to the seed node and this node routes the message to i’s nodeId. The nodes along the overlay route add routing table rows
to the message; node i obtains the rth row of its routing table from the node encountered along the route whose nodeId
matches i’s in the first r − 1 digits.

It is also important to update other node’s routing tables to ensure that they remain near perfect after nodes join the
overlay. After initializing its routing table, i sends the rth row of the table to each node in that row. Each node that receives
a row sends probes to measure the distance to nodes in the row that are not in its table and it replaces old entries by new ones
if they are closer. This serves both to announce i’s presence and to gossip information about nodes that joined previously.

Pastry also has a periodic routing table maintenance protocol to repair failed entries and prevent slow deterioration of
the locality properties over time. This protocol implements a form of constrained gossiping. Each node i asks a node in
each row of the routing table for the corresponding row in its routing table. Then, it sends probes to measure the distance
to nodes in the received row that are not in its table and replaces old entries by new ones if they are closer. This is repeated
periodically, for example, every 20 minutes in the current implementation. Additionally, Pastry has a passive routing table
repair protocol: when a routing table slot is found empty during routing, the next hop node is asked to return any entry it
may have for that slot.

2

3 Routing dependability

Overlay routing is dependable if a lookup message sent to a key is delivered to the key’s root node. To achieve dependability,
it is necessary for routing to provide a consistent mapping from keys to overlay nodes in the presence of node arrivals and
departures. Additionally, messages may be lost when they are routed through the overlay because of link losses or because
of node failures along the route. Therefore, it is also necessary to detect failures and recover from them to achieve reliable
routing. We developed MSPastry, which is a new version of Pastry that achieves consistent and reliable routing. We focus
the presentation on MSPastry for concreteness but the techniques that we describe could be applied to other overlays.

3.1 Consistent routing

We say that routing is consistent if no overlay node ever delivers a lookup message when it is not the current root node
for the message’s destination key. We make the usual distinction between receiving a message and delivering a message.
Messages are received at the level of the overlay protocol and they are delivered to an application running on the last node
in an overlay route.

Consistent routing is important. Inconsistencies can lead to degraded application performance and user experience.
For example, Ivy [13] implements a mutable file system on top of a structured overlay. Inconsistent routing can result in
an inconsistent file system; users may fail to find existing files or they may complete conflicting operations. Ivy provides
conflict detection mechanisms but repairing conflicts requires user input. Other applications have similar problems. CFS [7]
and Past [17] provide archival file storage on top of a structured overlay. Inconsistent routing may prevent users from
finding their archived files or require additional data transfer to move incorrectly stored files to the correct overlay nodes.
Bayeux [23], Scribe [6], and SplitStream [5] are application level multicast systems built on top of structured overlays.
Routing inconsistencies can cause group members to lose multicast messages in these systems. Therefore, it is important to
minimize routing inconsistencies.

MSPastry provides low delay routing with strong consistency guarantees and low overhead in realistic environments
with high churn rates. It ensures consistent routing with crash failures provided that each active node has at least one
non-faulty node on each side of its leaf set and that non-faulty nodes are never considered faulty. This is confirmed by
our experimental results; routing was always consistent in all our experiments without link losses even with extremely high
churn rates. We observed a small probability of inconsistencies with high link loss rates because the second assumption
is violated in these environments. It is possible to choose algorithm parameters to reduce the probability of violations and
MSPastry includes leaf set repair mechanisms that restore consistency quickly after a violation. We do not know of any
other structured overlay implementation that provides strong consistency guarantees for routing.

Figure 2 describes a simplified version of the algorithm that we use to achieve consistent routing in MSPastry. It
is sufficient to maintain consistent leaf sets to ensure consistent routing. The state in the routing table is important for
performance but it is not necessary to ensure consistency. Therefore, we omit details on the maintenance of routing tables.
The figure shows the code executed by a node with identifier i. Actions (in capital letters) are executed in response to events
like a user’s request for the node to join the overlay or receiving a message. The auxiliary functions (in italics) are invoked
from action code. For simplicity, we assume a send function that takes a node identifier instead of a network address.

Each node i has a routing table Ri and a leaf set Li, as described in the previous section. Initially, they contain only
i. The boolean variable activei records whether i is active. The variables probingi and probe-retriesi keep track of nodes
being probed by i and the number of probe retries sent to each node, and failedi is a set with nodes that i believes to be
faulty. Initially, probingi and failedi are empty, and activei is false.

The routei function implements the Pastry routing algorithm described earlier. If the destination key, k, is between the
leftmost and rightmost identifiers in the leaf set, routei picks the leaf set element closest to k as the next hop. Otherwise,
it computes the length r of the prefix match between k and i, and sets the next hop to the entry in row r and column c of
the routing table, where c is the r-th digit of k. In the unlikely case that this entry is null, the next hop is set to a nodeId
in the routing table or leaf set that is closer to k than i and shares a prefix with k of length at least r. The last case allows
MSPastry to route around missing entries in the routing table for fault tolerance. If the next hop chosen by routei is equal
to i or null, the message has reached its destination and the function receive-rooti is invoked.

The routei function is used to route both lookups and join requests as in the original Pastry [16] except that receive-rooti
does not deliver messages if i is not active. This is important to ensure consistent routing. In our implementation, i buffers
messages and invokes routei on them after it becomes active. We discard these messages in Figure 2 for simplicity.

Joins proceed as described in Section 2 but the joining node does not become active when it receives the JOIN-REPLY.
Instead, it first probes all the elements in its leaf set to ensure consistency. An LS-PROBE sent by a node j contains a copy

3

JOINi(seed)
send 〈JOIN-REQUEST, {}, i〉 to seed

RECEIVEi(〈JOIN-REQUEST, R, j〉)
R.add(Ri)
routei(〈JOIN-REQUEST, R, j〉, j)

receive-rooti(〈JOIN-REQUEST, R, j〉, j)
if (activei)

send 〈JOIN-REPLY, R, Li〉 to j

RECEIVEi(〈JOIN-REPLY, R, L〉)
Ri.add(R ∪ L); Li.add(L)
for each j ∈ Li do { probe(j) }

probei(j)
if (j 6∈ probingi ∧ j 6∈ failedi)

send 〈LS-PROBE, i, L, failedi〉 to j
probingi := probingi ∪ {j}; probe-retriesi(j) := 0

RECEIVEi(〈LS-PROBE | LS-PROBE-REPLY, j, L, failed〉)
failedi := failedi − {j}
Li.add({j}); Ri.add({j})
for each n ∈ Li ∩ failed do { probei(n) }
Li.remove(failed)
L′ := Li; L′.add(L − failedi)
for each n ∈ L′ − Li do { probei(n) }
if (message is LS-PROBE)

send 〈LS-PROBE-REPLY, i, Li, failedi〉 to j
else

done-probingi(j)

SUSPECT-FAULTYi(j)
probei(j)

LOOKUPi(m, k) | RECEIVEi(〈LOOKUP,m, k〉)
routei(〈LOOKUP, m, k〉, k)

receive-rooti(〈LOOKUP,m, k〉, k)
if (activei)

deliveri(m, k)

done-probingi(j)
probingi := probingi − {j}
if (probingi = {})

if (Li.complete)
activei := true; failed := {}

else
if (|Li.left| < l/2)

probe(Li.leftmost)
if (|Li.right| < l/2)

probe(Li.rightmost)

PROBE-TIMEOUTi(j)
if (probe-retriesi(j) < max-probe-retries)

send 〈LS-PROBE, i, Li, failedi〉 to j
probe-retriesi(j) := probe-retriesi(j) + 1

else
Li.remove(j); Ri.remove(j)
failedi := failedi ∪ {j}
done-probingi(j)

routei(m, k)
if (k between Li.leftmost and Li.rightmost)

next := pick j ∈ Li such that |k − j| is minimal
else

r := shared-prefix-length(k, i)
next := Ri(r, r-th-digit(k))
if (next = null)

next := pick j ∈ Li ∪ Ri : |k − j| < |k − i|
∧ shared-prefix-length(k, j) ≥ r

if (next 6= i ∧ next 6= null)
send m to next

else
receive-rooti(m, k)

Figure 2: Simplified MSPastry overlay routing and maintenance algorithm.

of j’s L and failed. When i receives a leaf set probe from j, it adds j to its leaf set and routing table (if appropriate), sends
probes for the nodes in its leaf set that are in failed, and removes these nodes from its leaf set. It probes the removed nodes
to confirm that they are faulty. This is important to reduce the probability of false positives. Then, i creates a clone L′ of
its leaf set and adds nodes in L that it does not think are faulty to L′. The nodes in L′ that are not in Li are candidates for
inclusion in i’s leaf set; they are probed before inclusion to ensure consistency. Finally, i sends an LS-PROBE-REPLY back
to j.

LS-PROBE-REPLY messages contain the same information as LS-PROBE messages and they are handled in the same
way but no reply is sent back to the sender. After processing a probe reply from j, a node invokes done-probingi(j). This
function removes j from the set of nodes being probed. If there are no outstanding probes and the leaf set is complete, the
function marks the node active and failedi is cleared.

Nodes are marked faulty in PROBE-TIMEOUTi. If i does not receive a probe reply from j within Tout seconds,
PROBE-TIMEOUTi(j) fires. Probes are retried a few times and we use a large timeout to reduce the probability of false
positives, i.e., marking a live node faulty. But if no reply is received after the maximum number of retries, j is marked
faulty. Currently, MSPastry uses max-probe-retries = 2 and Tout = 3s (same as the TCP SYN timeout). We experimented
with other values but this setting provides a good tradeoff between the probability of false positives and overhead across a
large range of environments.

A node that is marked faulty is removed from the routing state and added to failedi, and done-probingi is invoked. If
there are no outstanding probes and the leaf set is not complete, done-probingi initiates a leaf set repair. This is achieved
simply by probing the leftmost node in the leaf set if the left side of the leaf set has less than l/2 nodes and similarly for the
right side. It is important to prevent repair from propagating dead nodes. Otherwise, it could bounce dead nodes back and
forth between two nodes. We avoid this problem because a node never inserts another node in its leaf set without receiving

4

a message directly from that node.
The intuition behind the algorithm is that probing iterates along the ring towards the correct leaf set while informing

probed nodes about the probing node. A node i becomes active after receiving probe replies that agree on its leaf set value
from all nodes in its leaf set. Since these leaf set members add i to their leaf set before sending the probe reply, nodes that
join later will be informed about i and will probe it before they become active.

We have generalized leaf set repair to handle the case when Li.left or Li.right are empty. The idea is to use the routing
tables to aid repair. For example, if Li.right is empty, i sends a leaf set probe to the closest node j in Ri or Li to the right.
Node j replies with the l + 1 nodes closest to i that are in Rj or Lj . This enables efficient repair because it converges in
O(log N) iterations even when a large fraction of overlay nodes fails simultaneously. We do not deliver messages to i while
Li.left or Li.right is empty.

SUSPECT-FAULTYi abstracts the mechanism by which i comes to suspect that another node is faulty. For example, nodes
can send heartbeats to other nodes in their leaf set and trigger SUSPECT-FAULTY if they miss a heartbeat. We discuss a more
efficient implementation in Section 4.1.

3.2 Reliable routing

Consistency is not sufficient for dependable routing. Messages may be lost when they are routed through the overlay because
of link losses or node failures along the route. It is necessary to detect failures and repair routes to achieve reliable routing.
MSPastry achieves reliable routing with good performance by using a combination of active probing and per-hop acks.

MSPastry uses active probing to detect when nodes in the routing state fail. We already described active probing of leaf
set nodes and eager repair of leaf sets when faults are detected. This is sufficient for consistency but it is also important to
probe nodes in routing tables for reliability. Every node i sends a liveness probe to each node j in its routing table every
Trt seconds. If no response is received from j within Tout seconds, i sends another probe to j. This is repeated a few times
before j is marked faulty and we use a large timeout to reduce the probability of false positives. The number of retries and
timeout are the same for leaf set and routing table probing.

Since routing table repair is not crucial for consistency and MSPastry can route around missing routing table entries,
repair is performed lazily using the periodic routing table maintenance and passive routing table repair (as described earlier).
To prevent repair from propagating dead nodes back and forth, i never inserts a node in its routing table during repair without
first receiving a message directly from that node.

The experimental results show that active probing can achieve an end-to-end loss rate in the order of a few percent with
low overhead even with high churn. However, the probing frequency required to achieve significantly lower loss rates is
very high and is limited by the inverse of the round-trip time to the probed node. Additionally, active probing provides little
help with link losses.

MSPastry uses per-hop acks to achieve lower loss rates with low overhead and to deal with link losses. Every node i
along a message’s overlay route, buffers the message and starts a timer after forwarding the message to the next node j.
If j does not reply with an ack, i reroutes the message to an alternative node by executing routei with j excluded. The
experimental results show that per-hop acks can achieve loss rates in the order of 10−5 with low overhead even with a high
rate of node failures and link losses.

We achieve fast recovery from node and link failures with agressive retransmissions on missed per-hop acks. Each node
uses a technique similar to TCP [11] to estimate the average delays to nodes in its routing state and their variance, but
we set the retransmission timeout more agressively than TCP. This is possible because Pastry provides a node with several
alternative next hops to reach a destination key. Since we set the retransmission timeouts agressively, it is important not to
mark a node faulty when it fails to send back an ack because this is prone to false positives. Instead, the node is probed as
usual to determine if it is faulty. We stop excluding the node from routing if it replies to a probe. Otherwise, it is removed
from the routing state.

Per-hop acks are not sufficient to achieve low delay routing because faults are detected only when there is traffic. The
timeouts to recover from previously undetected node failures can still result in large delays. It is important to use active
probing to keep the probability of finding faulty nodes along the route low and independent of the amount and distribution
of application traffic.

The combination of active probing and per-hop acks ensures very low loss rates with low delay and overhead. Appli-
cations that require guaranteed delivery can use end-to-end acknowledgements and retransmissions. It is hard to estimate
good end-to-end timeouts but the loss rates are low enough that timeouts can be conservative with negligible impact on
routing delay. This is the technique that we use for JOIN-REQUESTS. Applications that do not require reliable routing can
flag lookup messages to switch off per-hop-acks.

5

4 Routing performance

Routing performance is as important as dependability. The overlay should deliver lookup messages with low delay and
overhead. Furthermore, performance should degrade gracefully with both node and link failures. This section describes the
techniques used by MSPastry to achieve good performance in the presence of failures.

4.1 Low overhead failure detection

Failure detection traffic is the main source of overhead in structured overlays. MSPastry uses three techniques to reduce
failure detection traffic.

Exploiting overlay structure MSPastry exploits the structure of the overlay to detect faulty leaf set members efficiently.
Instead of sending heartbeat messages to all the nodes in its leaf set, each node sends a single heartbeat message to its left
neighbour in the id space every Tls seconds. If a node i does not receive a message from its right neighbour j for Tls +Tout

seconds, it triggers SUSPECT-FAULTYi(j) (see Figure 2) to probe j. If it marks j as faulty (in PROBE-TIMEOUTi(j)), it
sends leaf set probes to the other members of its leaf set to announce that j is faulty. The failed set in these probes informs
other leaf set nodes that j has failed but the probes also provide a candidate for each of these nodes to repair its leaf set. The
replies from the nodes on j’s side of the leaf set provide i with a candidate replacement for j.

It is possible for several consecutive nodes in the ring to fail within a small time window. The left neighbor of the
leftmost node in the set will eventually detect the failure but it can take time linear on the number of nodes in the set to
detect this failure. This is not a problem because it is extremely unlikely for a large number of consecutive nodes in the ring
to fail because nodeIds are chosen randomly with uniform probability from the identifier space.

This optimization is important because it makes the maintenance overhead independent of the leaf set size when there
are no node arrivals or departures. This enables MSPastry to use large leaf sets to improve routing consistency and reduce
the number of routing hops without incurring high overhead.

Self tuning probing periods The traces of deployed peer-to-peer systems in Section 5 show that failure rates vary signif-
icantly with both daily and weekly patterns, and that the failure rate in open systems is more than an order of magnitude
higher than in a corporate environment. This argues that we should adapt the probing period to achieve a target delay with
a minimum amount of control traffic.

We can compute the expected probability of finding a faulty node along an overlay route as a function of the parameters
of the algorithm. We call this probability the raw loss rate because it is the loss rate in the absence of acks and retransmis-
sions. The probability of forwarding a message to a faulty node at each hop is Pf (T, µ) = 1 −

1

Tµ
(1 − e−Tµ), where T is

the maximum time it takes to detect the fault and µ is the failure rate. There are approximately 2
b
−1

2b log2bN overlay hops in
a Pastry route on average. Typically, the last hop uses the leaf set and the others use the routing table. So the raw loss rate,
Lr, can be computed as follows:

Lr = 1 − (1 − Pf (Tls + (retries + 1)Tout, µ)).(1 − Pf (Trt + (retries + 1)Tout, µ))
2

b
−1

2b
log

2b N−1

We fix retries = 2 and Tout = 3s as discussed earlier. The current implementation also fixes Tls = 30s which provides
good performance and strong consistency in realistic environments. We tune Trt to achieve the specified target raw loss rate
with minimum overhead by periodically recomputing it using the loss rate equation with the current estimates of N and µ.
We can choose Lr to achieve a target delay because the average increase in delay due to failed nodes is δ ≈ Lr ×Th, where
Th is the average timeout used in per-hop retransmissions.

We use the density of nodeIds in the leaf set to estimate N as discussed in [3]. The value of µ is estimated by using node
failures in the routing table and leaf set. If nodes fail with rate µ, a node with M unique nodes in its routing state should
observe K failures in time K

Mµ
. Every node remembers the time of the last K failures. A node inserts its current time in the

history when it joins the overlay. If there are only k < K failures in the history, we compute the estimate as if there was a
failure at the current time. The estimate of µ is k

M×Tkf

, where Tkf
is the time span between the first and the last failure in

the history. Every node computes T l
rt using the local estimates of µ and N and piggybacks the current estimate in protocol

messages. Nodes set Trt to the median of the values of T l
rt received from other nodes in their routing state. There is a lower

bound of (retries + 1)Tout on Trt.

6

Our experiments indicate that self-tuning is very effective; we can set Lr to a fixed value and achieve nearly constant
delay over a wide range of node failure rates while using the minimum amount of probing traffic for the routing table. This
technique builds on preliminary work that appeared in [12].

Supression of failure detection traffic MSPastry uses any messages exchanged between two nodes to replace failure
detection messages. For example, if i forwards a message to j and receives back an ack, this supresses a routing table
liveness probe from i to j or a leaf set heartbeat in either direction. This probe supression is very effective; it eliminates all
routing table probes when there is enough lookup traffic.

4.2 Low overhead proximity neighbor selection

Proximity neighbour selection (PNS) provides low delay but it increases overhead because it requires distance probes to
measure round-trip delays. MSPastry measures round-trip delays by sending a sequence of distance probes spaced by a
fixed interval and taking the median of the values returned. For example, the default configuration sends 3 probes spaced by
one second. But MSPastry uses a single probe to estimate round-trip delays when running the nearest neighbour algorithm
(see Section 2). This reduces join latency and it does not affect route delays significantly because the remaining probes use
more samples.

It is frequent for nodes to estimate the round-trip delay to each other in the constrained gossiping implementation of
PNS. MSPastry exploits this symmetry: after i measures the round-trip delay to j, it sends a message to j with the measured
value and j considers i for inclusion in its routing table. If i and j start estimating the distance concurrently, this optimization
is not effective. We avoid this by using nodeIds to break the symmetry and by having a joining node initiate distance probing
of the nodes in its routing state while these nodes wait for the measured distances. Symmetric probing almost halves the
number of messages in distance probes.

5 Experimental evaluation

This section presents results of experiments to evaluate the performance and dependability of MSPastry. The first set of
experiments ran on a network simulator to explore the impact of controlled variations in environmental parameters at large
scale. We also measured a real deployment of the Squirrel Web cache [10], which runs on top of MSPastry. The MSPastry
code that runs in the simulator and in the real deployment is the same with the exception of low level messaging.

5.1 Experimental setup for simulations

We used a simple packet-level discrete event simulator that supports trace-based fault-injection and different network topolo-
gies.

Traces of node arrivals and departures The traces specify the time of node arrivals and failures. We used three traces
that were derived from real-world measurements of deployed peer-to-peer systems: the Gnutella, Overnet, and Microsoft
traces.

The Gnutella trace was obtained from a measurement study of node arrivals and departures in the Gnutella file sharing
application [18]. The study monitored 17,000 unique nodes for 60 hours by probing each node every seven minutes. The
average session time in the trace is 2.3 hours and the median is 1 hour. The number of active nodes varies between 1300
and 2700.

The Overnet trace is based on a study of the OverNet file sharing application [1]. The study monitored 1,468 unique
OverNet nodes for 7 days by probing them every 20 minutes. The average session time is 134 minutes and the median is 79
minutes. The number of active nodes varies between 260 and 650.

The Microsoft trace is derived from an availability study of machines on the Microsoft corporate network [2]. The
study monitored 65,000 machines by probing each every hour for 37 days. To reduce simulation times, we picked 20,000
machines randomly from among the 65,000. The average session time is 37.7 hours and the number of active nodes varies
between 14700 and 15600.

Figure 3 shows the node failure rate for the three traces. This is averaged over 10 minute windows for OverNet and
Gnutella and over one hour for Microsoft. All traces show clear daily and weekly patterns and the failure rates vary
significantly across the traces. Gnutella and OverNet are representative of peer-to-peer systems running in an open Internet

7

0.0E
+

00

5.0E
-05

1.0E
-04

1.5E
-04

2.0E
-04

2.5E
-04

3.0E
-04

3.5E
-04

0
10

20
30

40
50

60
T

im
e (H

ours)

Node failures per node per second

(a)
N

ode
failure

rate
for

G
nutella.

0.0E
+

00

5.0E
-05

1.0E
-04

1.5E
-04

2.0E
-04

2.5E
-04

3.0E
-04

3.5E
-04

0
24

48
72

96
120

144
168

T
im

e (H
ours)

Node failures per node per second

(b)
N

ode
failure

rate
for

O
verN

et.

0.0E
+

00

5.0E
-06

1.0E
-05

1.5E
-05

2.0E
-05

0
7

14
21

28
35

T
im

e (D
ays)

Node failures per node per second

(c)
N

ode
failure

rate
for

M
icrosoft.

Figure
3:

N
ode

failure
rates

for
G

nutella,O
verN

etand
M

icrosofttraces.

environm
entand

they
are

sim
ilar.T

he
failure

rate
in

the
M

icrosofttrace
is

an
orderofm

agnitude
low

erand
is

representative
of

a
m

ore
benign

corporate
environm

ent.
W

e
also

generated
artificialtraces

w
ith

Poisson
node

arrivals
and

an
exponentialdistribution

of
node

session
tim

es
w

ith
the

sam
e

rates.
T

he
average

num
berof

nodes
in

these
traces

w
as

10,000.To
investigate

the
perform

ance
and

dependability
of

M
SPastry

w
ith

varying
session

tim
es,w

e
used

traces
w

ith
session

tim
es

of
5,15,30,60,120

and
600

m
inutes.N

ote
that

m
ostof

these
session

tim
es

are
significantly

low
er

than
those

observed
in

realtraces.

N
etw

ork
topologies

W
e

also
evaluated

the
im

pactof
varying

the
netw

ork
topology.W

e
sim

ulated
three

differenttopolo-
gies:

G
A

Tech,
M

ercator,
and

C
orpN

et.
G

A
Tech

is
a

transit-stub
topology

generated
using

the
G

eorgia
Tech

topology
generator

[21].
It

has
5050

routers
arranged

hierarchically,w
ith

10
transit

dom
ains

at
the

top
level

w
ith

an
average

of
5

routers
in

each.
E

ach
transit

router
has

an
average

of
10

stub
dom

ains
attached,w

ith
an

average
of

10
routers

each.
T

he
delay

betw
een

core
routers

is
com

puted
by

the
topology

generatorand
routing

is
perform

ed
using

the
routing

policy
w

eights
of

the
graph

generator.
A

s
in

the
real

Internet,the
triangle

inequality
does

not
hold

for
a

significant
fraction

of
triples

of
nodes

in
this

topology.
T

he
sim

ulator
uses

the
round-trip

delay
(R

T
T

)
betw

een
tw

o
nodes

as
the

proxim
ity

m
etric.

E
nd

nodes
running

M
SPastry

are
attached

to
random

ly
selected

stub
routers

by
a

L
A

N
link

w
ith

a
delay

of
1m

s.
M

ercator
is

a
topology

w
ith

102,639
routers

grouped
into

autonom
ous

system
s

(A
S)

thatis
based

on
m

easurem
ents

of
the

Internetusing
the

M
ercator

system
[20].T

he
A

S
overlay

has
2,662

A
S

and
routing

is
perform

ed
hierarchically

as
in

the
Internet.

A
route

follow
s

the
shortestpath

in
the

A
S

overlay
betw

een
the

A
S

of
the

source
and

the
A

S
of

the
destination.

T
he

routes
w

ithin
each

A
S

follow
the

shortestpath
to

a
routerin

the
nextA

S
ofthe

A
S

overlay
path.Since

there
is

no
delay

inform
ation

in
the

M
ercator

topology,the
sim

ulator
uses

the
num

ber
of

netw
ork-level(IP)

hops
betw

een
tw

o
nodes

as
the

proxim
ity

m
etric.E

ach
end

node
w

as
directly

attached
by

a
1-hop

L
A

N
link

to
a

random
ly

chosen
router.

C
orpN

etis
a

topology
w

ith
298

routers
and

generated
from

m
easurem

ents
of

the
w

orld-w
ide

M
icrosoftcorporate

net-
w

ork.
T

he
sim

ulator
uses

the
m

inim
um

R
T

T
as

the
proxim

ity
m

etric.
E

ach
end

node
w

as
directly

attached
by

a
L

A
N

link
w

ith
a

delay
of

1m
s

to
a

random
ly

chosen
router.

T
he

sim
ulator

can
be

configured
w

ith
a

uniform
probability

of
netw

ork
m

essage
loss.

U
nless

otherw
ise

stated,
the

sim
ulator

w
as

configured
w

ith
a

loss
rate

of
0%

.

B
ase

configuration
T

he
base

M
SPastry

configuration
uses

b
=

4,
l
=

3
2,

T
ls

=
3
0

seconds,per-hop
acks,routing

table
probing

tuned
w

ith
L

r
=

5
%

,probe
suppression,and

sym
m

etricaldistance
probes.E

ach
active

node
generates

0.01
lookup

m
essages

per
second

according
to

a
Poisson

process
w

ith
destination

keys
chosen

uniform
ly

atrandom
from

the
identifier

space.
T

his
configuration

provides
a

good
balance

betw
een

perform
ance

and
overhead

and
it

is
highly

dependable
as

the
results

w
illshow

.

5.2
E

valuation
m

etrics

W
e

m
easure

dependability
using

tw
o

m
etrics:

the
incorrect

delivery
rate

and
the

loss
rate.

T
he

first
m

etric
is

the
fraction

of
lookup

m
essages

that
are

delivered
to

an
incorrect

node,
and

the
second

is
the

fraction
of

lookup
m

essages
w

hich
are

neverdelivered
to

any
node.W

e
observed

an
incorrectdelivery

rate
of

zero
in

allthe
experim

ents
w

ithoutnetw
ork

losses
as

expected.
Perform

ance
is

also
m

easured
using

tw
o

m
etrics:

relative
delay

penalty
(R

D
P)

and
controltraffi

c.
R

D
P

is
the

average
ratio

betw
een

the
delay

achieved
by

M
SPastry

w
hen

routing
betw

een
tw

o
nodes

and
the

netw
ork

delay
betw

een
the

sam
e

8

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
Time (Normalized)

R
D

P

OverNet

Gnutella

Microsoft

(a) RDP for OverNet, Gnutella and Microsoft
traces.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 0.2 0.4 0.6 0.8 1
Time (Normalized)

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

OverNet
Gnutella
Microsoft

(b) Control traffic for OverNet, Gnutella and Mi-
crosoft traces.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60
Time (Hours)

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

Distance Probes
Leafset Heartbeats/Probes
RT Probes
Acks + Retransmits
Join

(c) Control traffic by type for Gnutella trace.

Figure 4: RDP and control traffic for the different traces.

nodes. Control traffic is the average number of control messages sent per second per node. This includes all traffic except
lookup messages. For the Gnutella and OverNet traces, the metrics are averaged over a 10 minute window. In the Microsoft
trace, this window is 1 hour.

5.3 Experimental results

The first set of experiments evaluates the impact of environmental parameters on the performance and dependability of
MSPastry. Unless stated otherwise, the experiments ran using the Gnutella trace with the GATech topology.

Network topology The fraction of lookup messages lost by MSPastry averaged over the whole Gnutella trace was below
1.6× 10−5 for all three topologies and there were no routing inconsistencies. The control traffic was mostly independent of
the underlying network topology as expected: it was 0.239 messages per second per node for CorpNet, 0.245 for GATech,
and 0.256 for Mercator. The RDP varies significantly with the network topology. We obtained an RDP of 1.45 for CorpNet,
1.80 for GATech, and 2.12 for Mercator. These values are very similar to the RDP results obtained in experiments without
failures in the same topologies [4], which shows that MSPastry provides low delay. There is an explanation for the difference
between the topologies in [4].

Failure Traces Figure 4 shows RDP and control traffic for the different traces with normalized time. Figure 4(b) shows a
fluctuation in control traffic that follows the daily and weekly variations in node arrival and failure rates. Figure 4(c), which
breaks down control messages by type, shows that the fluctuations are due predominantly to increased distance probes with
increased arrival rate and to self-tuning of active probing periods with changing failure rate. Self-tuning ensures that the
RDP remains approximately constant despite the changing node arrival and failure rates as shown in Figure 4(a).

OverNet and Gnutella have similar failure and arrival rates and, therefore, they have a similar amount of control traffic.
The control traffic is approximately 3 times lower in the Microsoft trace because the failure and arrival rate is an order of
magnitude lower. The RDP in the Microsoft trace is also lower than in the other traces; the failure detection provided by the
lookup traffic with acks is sufficient to achieve an Lr lower than 5% because of the low failure rate, consequently, the delay
penalty due to faulty nodes along the route also decreases.

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600
Session Time (Minutes)

R
D

P

(a) RDP versus Poisson trace average session
times.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600
Session Time (Minutes)

C
on

tr
ol

 tr
af

fic
 (

m
gs

/s
ec

/n
od

e)

(b) Control traffic versus Poisson trace average
session times.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40
Time (seconds)

C
um

al
at

iv
e

nu
m

be
r

of
 n

od
e

5 minutes

30 minutes

(c) CDF of joins versus join latency for two
Poisson traces.

Figure 5: Results when using the Poisson traces with average session times of 5, 15, 30, 60, 120 and 600 minutes.

9

0

0.5

1

1.5

2

2.5

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%
Network message loss rate

R
D

P

(a) RDP versus time for varying network loss
rates.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%
Network message loss rate

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

Application traffic

Control traffic

(b) Control traffic versus time for varying net-
work loss rates.

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%
Network message loss rate

R
at

e

Lookup loss rate
Incorrect delivery rate

(c) Lookup loss rate and incorrect delivery rate
versus network message loss rate.

Figure 6: Dependability and performance as a function of varying network loss rate.

Figure 5(a) and (b) shows the average control traffic and RDP for the Poisson traces with different session times. The
control traffic increases significantly as the average session time drops. The control traffic is 22 times higher when the
average session time is 15 minutes than when it is 600. The control traffic drops when the session time decreases to 5
minutes because 7% of the nodes die before they become active due to increased failure rate.

Self-tuning maintains the RDP fairly constant when session times are one hour or more. The RDP increases significantly
with 5 minute session times because Tls = 30s and Trt > 9s; achieving the desired Lr of 5% would require smaller periods.
The RDP increases by only 40% when the session time decreases from 600 to 15 minutes, which shows that MSPastry can
achieve low delays even when the failure rate is unrealistically high.

Figure 5(c) shows a cumulative distribution function of the join latency for two traces. The join latency is the time from
the moment a node initiates the join till it becomes active. It shows that nodes join the overlay quickly.

Network loss rate Figure 6 shows the impact of varying the network loss rate between 0 and 5%. A network loss rate of
5% is high. Figure 6(c) shows that MSPastry achieves consistent and reliable routing with high probability even with high
network loss rates. We did not observe routing inconsistencies with rates of 1% or less and even with 5% the fraction of
incorrect deliveries is only 1.6× 10−5. The use of per-hop acks ensures reliable routing; the fraction of lost lookups varies
from 1.5 × 10−5 with no network losses to 3.3 × 10−5 with 5% losses.

Figures 6(a) and (b) show that the RDP and control traffic increase slightly as the network loss rate increases. The RDP
increases because there is an increased number of per-hop timeouts and retransmissions due to network losses. The delay
remains low because of MSPastry’s aggressive retransmission strategy. The increase in control traffic is mostly due to the
probes to check if nodes are alive after missing a per-hop ack.

Parameters: l and b We ran experiments to evaluate the impact of varying the algorithm parameters l and b. Figure 7(a)
shows the effect of varying the leaf set size on control traffic and Figure 7(b) shows the effect on RDP. Increasing l from 16
to 32 increases control traffic by only 7%. The variation is small because MSPastry exploits overlay structure; nodes only
send heartbeats to their left neighbour. So the overhead of sending heartbeats is independent of l and it is the dominant cost
of leaf set maintenance in the Gnutella trace. This enables using large leaf sets with low overhead. Larger leaf sets reduce
the average number of hops and, therefore, the RDP as shown in Figure 7(b). Therefore, we chose l = 32.

Figure 7(c) shows the impact of varying b on the RDP. The RDP increases significantly when b decreases because of the
increased number of hops; the expected number of hops in an overlay route is 2

b
−1

2b log2bN . Decreasing b reduces control
traffic because there is less routing table state to maintain but this is offset by an increase in the number of per-hop acks
because the number of hops increases, and by an increase in the routing table probing traffic to achieve the target Lr = 5%
also because the number of hops increases. As a result, the control traffic only decreases by 0.05 messages per second per
node when b drops from 4 to 1. Therefore, we chose b = 4.

Active probing and per-hop acks We ran experiments to evaluate the impact of active routing table probing and per-hop
acks on reliability, delay, and control traffic. Reliability is poor without active probes and per-hop acks: 32% of the lookup
messages are never delivered. The loss rate drops to 2.8 × 10−5 using only per-hop acks and it drops to 1.6 × 10−5 with
active probing and per-hop acks. Using only active probing, it is not possible to achieve a loss rate on the order of 10−5

because of constraints on the minimum probing period.

10

Using only per-hops acks, results in high delay if the application traffic is low. The RDP achieved using only per-hop
acks is 17% higher than using both techniques when nodes generate 0.01 lookups per second and it is 61% higher if nodes
generate 0.001 lookups per second. Using active probing reduces delay because it reduces the number of per-hop timeouts.
In an application whose traffic is non-uniform or experiences daily/weekly traffic variations, it is important to use both
techniques.

The active probing rate can be tuned to achieve a target raw loss rate Lr (to achieve a target delay). Results for all
traces show that self-tuning can effectively achieve the target raw loss rate. For example without per-hop acks, it achieves a
message loss rate of 5.3% when tuning to 5% and 1.2% when tuning to 1%. A lower raw loss rate results in lower delay but
decreasing the target Lr increases control traffic. For example, changing the target from 5% to 1% increases control traffic
by 2.6 times. We chose tuning to 5% in the base configuration because it provides a good tradeoff between overhead and
delay when combined with per-hop acks.

Active probing generates extra control traffic that provides little benefit when application traffic is high. MSPastry uses
application traffic to suppress probes and heartbeats to reduce the overhead. Figure 8 shows that increasing application
traffic from 0 to 1 lookup messages per second per node suppresses both leaf set heartbeats and routing table probes. With
only 1 lookup message per second per node, over 70% of the active probes are suppressed. Additionally, the higher lookup
message rates improve the RDP because they reduce the average time to failure detection.

5.4 Squirrel: A peer-to-peer web cache

Squirrel [10] coordinates peer machines to create a cooperative web cache and it is built on top of MSPastry. Users run
an instance of the Squirrel proxy on their machine and Web requests from the browser are redirected through the Squirrel
proxy running on the local machine. Squirrel generates keys for Web objects by hashing the object’s URL using SHA-1.
Lookup messages are sent through MSPastry to the key of the requested object. The root node of each key is responsible
for caching the object identified by the key.

We have been running Squirrel for the last few months at Microsoft Research Cambridge; 52 machines have been using
Squirrel as their primary web cache. We used measurements from this deployment to provide some validation for the
simulation results. Figure 9(a) shows the control traffic in Squirrel divided by type from the morning of the 11th December
2003 to the morning of the 17th December 2003. The six day trace contains 4 week days and one weekend, which are
clearly visible. Figure 9(b) shows the control traffic generated using a trace derived from the Squirrel measurements.

The results show that the total control traffic, excluding acknowledgments, is constant at approximately 0.04 messages
per second per node. Approximately, 0.03 messages per second per node are leaf set heartbeat messages. The node failure
and arrival rates are low in this environment as they were in the Microsoft trace. Therefore, self-tuning increases the routing
table probing period and there is very little traffic due to joining nodes. This explains why most traffic is due to leaf set
heartbeats.

When a Web browser generates a request for a Web object, the lookup message is routed using per-hop acks. This
is clear in the figure with bursts of per-hop acks showing that application traffic is bursty. There is a marked increase in
per-hop acks during daytime on week days, when Squirrel users are more likely to be browsing the web. There are almost
no per-hop acks on weekends.

In order to validate the simulator, we generated a trace of node arrivals and failures using the statistics gathered from
the Squirrel deployment. Unfortunately, the statistics gathered do not allow us to model the application traffic, so we used
a Poisson traffic model with 0.01 lookups per second per node.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8 16 24 32 40 48 56 64
l

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

(a) Control traffic versus leaf set size.

0

0.5

1

1.5

2

2.5

8 16 24 32 40 48 56 64

l

R
D

P

(b) RDP versus leaf set size.

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1 2 3 4 5

b

R
D

P

(c) RDP versus b.

Figure 7: The effect of varying b and l.

11

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6 0.8 1
Lookups per second per node

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

Leaf set heartbeat (Suppression)

Active Probe (Suppression)

(a) Leaf set heart beats and active probes versus
lookup messages per second per node.

1.6

1.65

1.7

1.75

1.8

1.85

1.9

0 0.2 0.4 0.6 0.8 1
Lookups per second per node

R
D

P

(b) RDP versus lookup messages per second per
node.

Figure 8: The control traffic suppression.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 24 48 72 96 120
Time (Hours)

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e

Leafset Heartbeats/probes
Acks + Retransmits
Other

(a) Control traffic from deployment.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 24 48 72 96 120
Time (Hours)

M
es

sa
ge

s
pe

r
se

co
nd

 p
er

 n
od

e Leafset Heartbeats/Probes

Other

(b) Control traffic from Simulator.

Figure 9: Control traffic generated in Squirrel deployment and validated in simulator.

Figure 9(b) shows the control traffic obtained by runing the trace in the simulator except per-hop acks and retransmitions
because of the difference in the application traffic. These results are very similar to the results from the deployed Squirrel
in Figure 9(a).

These results demonstrate that real applications can be deployed using structured overlays and are able to operate with
low overheads. Furthermore, the results show that our simulation results are consistent with measurements from a real
deployment.

6 Conclusions

Structured peer-to-peer overlays provide a useful substrate for building distributed applications but there are concerns about
their performance and dependability. This paper has described MSPastry which incorporates techniques to achieve good
performance and high dependability in realistic environments with high churn rates. Previous implementations failed to
provide strong routing consistency or performed poorly in environments with high churn rates. The paper has presented
results of large-scale simulations with fault injection guided by real traces of node arrivals and departures showing that
MSPastry achieves dependable routing with an average delay stretch of two and a maintenance overhead of less than half
a message per second per node. Furthermore, the results show that the performance of MSPastry degrades gracefully
with failures; it continues to provide reasonable performance and dependable routing with high probability in harsher
environments with even higher churn rates and high network loss rates. We hope this work will clear any concerns about
the performance and dependability of structured overlays.

The simulator, web cache, and Pastry implementation used in the experiments presented in this paper are available to
academic institutions upon request.

References
[1] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In IPTPS’03, Feburary 2003.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed file system deployed on an existing set
of desktop pcs. In Proc. ACM SIGMETRICS’2000, pages 34–43, 2000.

12

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security for structured peer-to-peer overlay networks. In 5th
Symposium on Operating Systems Design and Implementaion (OSDI’02), 2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor selection in tree-based structurd peer-to-peer overlays.
Technical Report MSR-TR-2003-52, Microsoft Research, June 2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream: High-bandwidth multicast in a
cooperative environment. In SOSP’03, Oct. 2003.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communication (JSAC), 20(8), October 2002.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In Proc. ACM SOSP’01,
Banff, Canada, Oct. 2001.

[8] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of dht routing geometry on
resilience and proximity. In ACM SIGCOMM 2003, 2003.

[9] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distribted data location in a dynamic network. In SPAA’02, Aug. 2002.
Winnipeg, Manitoba, Canada.

[10] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer web cache. In 12th ACM Symposium on Principles of
Distributed Computing (PODC 2002), July 2002.

[11] P. Karn and C. Partridge. Improving round-trip estimates in reliable transport protocols. Theoretical Computer Science, 4(9):364–
373, 1991.

[12] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in peer-to-peer overlays. In IPTPS’03, Feb. 2003.

[13] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. In Usenix OSDI, Dec. 2002.

[14] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in a distributed environment. In Proc.
9th ACM Symp. on Parallel Algorithms and Architectures, pages 311–320, June 1997. Newport, Rhode Island, USA.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Proc. ACM SIG-
COMM’01, San Diego, CA, Aug. 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov. 2001.

[17] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

[18] S. Saroiu, K. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing systems. In MMCN, Jan. 2002.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

[20] H. Tangmunarunkit, R. Govindan, D. Estrin, and S. Shenker. The impact of routing policy on internet paths. In Proc. 20th IEEE
INFOCOM, Alaska, USA, Apr. 2001.

[21] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In INFOCOM96, 1996.

[22] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-resilient wide-area location and routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In Proc. of the Eleventh International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV 2001), June 2001.

13

