
Network Exception Handlers:
Host-network Control in Enterprise Networks

Thomas Karagiannis, Richard Mortier and Antony Rowstron
{thomkar, antr}@microsoft.com, mort@vipadia.com

Microsoft Research
Cambridge, UK

ABSTRACT
Enterprise network architecture and management have followed the
Internet’s design principles despite different requirements and char-
acteristics: enterprise hosts are administered by a single authority,
which intrinsically assigns different values to traffic from different
business applications.

We advocate a new approach where hosts are no longer relegated
to the network’s periphery, but actively participate in network-related
decisions. To enable host participation, network information, such
as dynamic network topology and per-link characteristics and costs,
is exposed to the hosts, and network administrators specify condi-
tions on the propagated network information that trigger actions to
be performed while a condition holds. The combination of a condi-
tion and its actions embodies the concept of the network exception
handler, defined analogous to a program exception handler. Con-
ceptually, network exception handlers execute on hosts with actions
parameterized by network and host state.

Network exception handlers allow hosts to participate in network
management, traffic engineering and other operational decisions by
explicitly controlling host traffic under predefined conditions. This
flexibility improves overall performance by allowing efficient use
of network resources. We outline several sample network excep-
tion handlers, present an architecture to support them, and evaluate
them using data collected from our own enterprise network.

Categories and Subject Descriptors: C.2.3 [Computer- Commu-
nication Networks]: Network Operations
General Terms: Management
Keywords: Enterprise networks, management, network exception
handlers

1. INTRODUCTION
Enterprise networks have largely inherited management and de-

sign principles from the Internet. The Internet can be characterized
as best-effort and application-agnostic, with hosts viewing the In-
ternet as a black-box, and network-related decisions all being made
independently from hosts. These characteristics have enabled the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

Internet to scale rapidly and have facilitated the deployment of di-
verse technologies and applications. However, hosts have been
relegated to the periphery, playing almost no part in ensuring the
smooth operation of the network.

As with an Internet Service Provider (ISP) network, managing an
enterprise network is currently an expensive and time-consuming
task, requiring highly skilled individuals on call 24/7. Large en-
terprise networks are at least as complex as tier-one ISP networks,
providing numerous services with strict security and operational re-
quirements to a large user base spanning several countries or even
continents. However, enterprises differ from ISPs in two key as-
pects: all hosts are operated by a single administrative authority,
and enterprises can estimate and express the intrinsic business value
of the traffic generated by each application.

Enterprise network operators are forced to indirectly exert con-
trol over network decisions by deploying complicated mechanisms
on top of pre-existing network services. For example, control is
currently applied by using flow-level Equal Cost Multi-Path in or-
der to achieve load-balancing in the network, or in extreme cases by
running BGP with each router acting as a separate AS to achieve
routing flexibility. Traffic management is often done crudely, for
example, using port-based filters at routers to shape traffic. Arti-
facts like random port mappings at proxies and the use of arbitrary
port numbers by applications such as Skype make port-based poli-
cies inefficient and inaccurate.

This leads to a tension between enterprise network management
requirements and available functionality. We believe it is time to
rethink the management and principles of modern enterprise net-
works to include hosts in the overall “network equation”. The aim
is to provide administrators with a level of control over the net-
work that they currently simply cannot have, by allowing hosts to
participate in network-related decisions.

To achieve this we propose the concept of network exception
handlers which are deployed at hosts, and are analogous to pro-
gram exception handlers. A network exception handler describes
an action, specified by the network operator in advance, to be ex-
ecuted on hosts when a network exception condition occurs. For
example, a simple network exception handler could be: if back-
bone link X fails, then throttle, on all hosts, any traffic generated
by application Y that would have been routed across the failed
link. In order to implement network exception handlers, the net-
work needs to expose to the hosts dynamic information about the
network topology, potentially augmented with other information,
such as link capacities and costs. This can be achieved without
modifying the core networking functionality, such as the current
generation of routers and networking infrastructure.

Network exception handlers allow hosts to play an active role
in network operations, beyond the simple application of traditional

transport-layer congestion control techniques. Modern hosts are
typically powerful with substantial under-utilized processing and
storage resources, and they are responsible for the traffic crossing
the network and knowledgeable about the users and types of appli-
cations running on them. Hosts are ideally placed to help manage
the complexity of the network, and to enable services and function-
ality that today’s enterprise networks cannot support.

Network exception handlers can be used to improve the perfor-
mance of the network and to broaden the range of functionality it
provides. They enable per-user, per-host and per-application traffic
management, features currently absent from enterprise networks.
They can simplify network management, thereby reducing network
operational costs and close the gap between network traffic engi-
neering, application requirements, and management policies. Their
benefits come from the extra context and control available at the
hosts: traffic can be shaped in the network, but only hosts can cor-
rectly identify the applications, users and users’ business roles gen-
erating the traffic, and thus implement policies that allow priority
to be given to selected applications, users or roles. These policies
are pre-defined and embody the application prioritization that en-
terprises already understand, based on their business requirements.

We propose an architecture to support the concept of network
exception handlers. Our architecture can be incrementally deploy-
able and supports the collection, synthesis and distribution to hosts
of topology data together with other performance data from the net-
work. Using trace data collected from our enterprise network, we
justify this architecture and evaluate its overheads. We also use the
collected data to motivate and evaluate examples of network excep-
tion handlers.

Our contributions can be summarized as follows:

• We challenge existing enterprise network architectures by
describing network exception handlers and outlining poten-
tial uses (Sections 3 and 4).

• We propose an architecture that exposes network-related in-
formation to hosts and allows for informed, application-specific
policy decisions to be taken at the edge of the network (Sec-
tions 5 and 6).

• We evaluate the feasibility, requirements and performance
of the proposed architecture using topology and traffic data
gathered from a large operational enterprise network (Sec-
tion 7).

2. ENTERPRISE NETWORKS
To motivate the design of network exception handlers, it is first

important to understand the characteristics and requirements of en-
terprise networks that drive specific design choices. In this section,
we give a general characterization of modern enterprise networks,
highlighting specific features that motivate and facilitate the con-
cept of network exception handlers.

Enterprise networks support upwards of several hundred hosts,
with the largest supporting many hundreds of thousands. Current
host hardware consists of powerful desktop and laptop computers,
the majority of which are under-utilized, running modern commod-
ity operating systems supporting complex traffic management fea-
tures. Hosts are distributed between multiple buildings with larger
enterprises containing many hundreds of buildings spread through
many countries and even across multiple continents. Larger enter-
prises operate one or more datacenters which may serve the entire
enterprise or be designated to serve a particular continent, country,
campus or building. Local connectivity within buildings is pro-
vided by the enterprise itself but backbone links providing wide-

area connectivity between campuses and countries are typically
leased from, or completely outsourced to, a network provider.

The purpose of the enterprise network is to support the many dif-
ferent networked applications that in turn support the business ob-
jectives of the company. Provisioning wide-area bandwidth to sup-
port all these application requirements forces enterprises to provi-
sion for peak loads, causing significant cost overheads. In contrast
to an ISP, a business can explicitly make a judgment as to the value
of each application’s traffic under normal and abnormal operating
conditions. For example, a business might value email and real-
time video conferencing more than access to an archive of train-
ing videos. Therefore, under abnormal conditions due to, e.g., link
failures, traffic on particular links may fall outside expected norms,
making explicit prioritization of email access and real-time video
conferencing over streaming training video data desirable. How-
ever, modern enterprise networks currently provide limited visibil-
ity and means of control; mechanisms such as MRTG1, offer only
aggregate information to IT departments, but provide no hints about
how network resources are utilized by the various applications.

The enterprise network and all hosts attached to it operate as
a single co-operative administrative domain. Host configuration
is managed using a directory service, such as Active Directory.2

This enables the IT organization to control the software installed
and permitted to run on hosts, to control which network resources
hosts and users are permitted to access, and generally to manage
most aspects of host configuration and network access. By speci-
fying global policies, IT operators manage the network’s hosts as
aggregates rather than needing to control the detailed configuration
of each host. For example, in our network, all domain joined ma-
chines are required to present suitable authentication tokens when
accessing domain controlled resources (file servers, printers, etc.).
These tokens can only be gained after the domain has ensured that
the host is compliant with global policy in terms of required patches
applied, suitable local user and group settings, etc.

This sort of global policy system permits IT operators to make as-
sumptions about the behavior of hosts within their network. Specif-
ically, IT operators can assume that hosts will follow specified global
policies because they expect that hosts cannot access network re-
sources without having applied global policies.

A consequence of being a single administrative domain is that
enterprises can more freely share network information. In general,
enterprises run link-state routing protocols such as OSPF [13] as
it is acceptable for all routers owned by the organization to under-
stand the topology. Enterprises may also use protocols such as BGP
often due to scalability issues, especially when the network is large
enough that it cannot easily be handled by current link-state pro-
tocol implementations alone. Alternatively, use of BGP could be
employed to express complex traffic management policies which
require the extra control over route propagation that BGP provides.

Finally, many enterprises actively try to reduce their network-
ing costs. Some outsource the wide-area connectivity to a net-
work provider offering, for example, BGP-based MPLS VPN tun-
nels [17]. The outsourcing will include a service level agreement
specifying the acceptable downtime and other performance param-
eters. From each of the enterprise’s sites, the underlying network
topology appears as a simple full-mesh topology between the en-
terprise’s sites. Additionally, many enterprises with branch offices
use WAN optimizers, for example from Riverbed3, which optimize

1Multiple Router Traffic Grapher, http://www.mrtg.com/.
2http://www.microsoft.com/windowsserver2003/
technologies/directory/activedirectory/
default.mspx
3http://www.riverbed.com/

Network Exception Handler: Backbone link failed
links = { [10.39.11.40, 10.39.12.30, “SVC to SF”]

[10.39.19.17, 10.39.22.12, “LA to SVC”] }
boolean Exception(NetworkState)
begin

foreach link in links do
if link not in NetworkState then return true

return false
end
void Fire (NetworkState, HostState)
begin

print “Link failure”
foreach link in links do

if link not in NetworkState then
print “Link failed: ” + link.description

Register(Handler)
end
void Handler (NetworkState, HostState)
begin

if not Exception(NetworkState) then
RemoveAllRestrictions(); DeRegister(Handler);
print “Link restored: ” + link.description
return

foreach process in HostState.processes do
if HostState.MachineRole is developer then

if process.name is not “SourceRepositoryClient” then
SetRestriction(process, maxBandwidth=0)

else if “The Boss” in HostState.LoggedOnUsers then
if process.name is “VideoStreamingClient” then

SetRestriction(process, maxBandwidth=0)

else if process.name is “EmailClient” then
SetRestriction(process, maxBandwidth=300kbps)

else if process.name is not “CallCenterApp” then
SetRestriction(process, maxBandwidth=0)

end

Figure 1: Network exception handler for a backbone link failure.

traffic transmitted over WAN links with the aim of reducing link
capacity requirements. This does not impact the network topology.
Later in the paper we show how network exception handlers can be
used to smooth bandwidth usage over time, potentially achieving
the same benefits as a WAN optimizer without requiring additional
dedicated networking infrastructure.

3. EXCEPTION HANDLERS
Network exception handlers allow network administrators to en-

capsulate network management policy that is to be enforced when
a particular condition holds. Before discussing usage scenarios and
the system architecture, we first describe the concept of network
exception handlers.

For network exception handlers to be an efficient management
mechanism, we require that they be simple yet flexible enough to
capture a wide range of useful policies. Analogous to program
exception handlers, a network exception handler comprises two
parts: (i) the exception condition which triggers the handler, and
(ii) an action which defines behavior to impose when the condition
is met. Fig. 1 shows a simplified example of a network exception
handler. In particular, the network exception handler is composed
of three basic functions: Exception(), which embodies the condi-
tion that must hold for the exception to occur, Fire() which is called
when the exception is first detected, and Handler() which is called

during the period that the exception holds. The latter two func-
tions together comprise the action. Information about the network
is exposed in a single data structure, called NetworkState, which
includes information about the network topology, link loads, and
other information against which the network administrator writes
exception conditions. Host information is exposed in a separate
data structure called HostState, containing details such as the con-
nections opened by each application, their network usage and the
user running each application. In later sections, we describe how
the information in these two data structures is maintained.

Conceptually, an exception handler is in one of two states: pas-
sive or active. While passive, Exception() is evaluated each time
the NetworkState is modified. If true, the state becomes active and
Fire() is called. When active, Handler() is invoked each time the
NetworkState or HostState is modified. Handler() is required to
explicitly deregister itself when the exception ceases to hold, plac-
ing the exception handler back in the passive state.

Exception() uses simple predicates involving measurable quan-
tities of the network, e.g., link loads, router interface counts, etc.
Fig. 1 is a simplified example demonstrating the general function-
ality network exception handlers expose. The exception becomes
true when either of two backbone links are not present. When this
occurs, Fire() displays a warning alerting the user and registers the
Handler() function. Note that it is possible to register multiple,
possibly different, Handler() functions. The registered Handler()
function is then invoked each time the NetworkState or HostState
is modified. In this example, Handler() checks if the exception still
holds, and if the exception does hold, then Handler() enforces a set
of policies at each host based on the role of the host, its users and
its running applications. If the exception does not hold, Handler()
removes all restrictions created by this specific exception handler,
notifies the user that the link is restored and deregisters itself. This
operation offers an effective mechanism for communicating to the
user that network problems have been resolved, an operation which
currently requires either explicit notification from a network admin-
istrator, or potentially user initiated actions (e.g., probing).

Locality and cascading events. We impose two important con-
straints on the potential actions of a network exception handler:
they should not impose non-local behavior and they should not re-
quire explicit coordination between hosts. In many circumstances,
it may be attractive to alter traffic patterns globally, for example
by having hosts use loose source routing to reroute traffic when
certain exceptions occur, such as a congested link. However, shift-
ing traffic around the network by rerouting can lead to unexpected
and highly undesirable persistent load oscillations, causing the trig-
gering of further, potentially cascading, exceptions. Mitigating
such effects would require complex real-time coordination between
Handler() functions running on different hosts. Such policies would
effectively increase the burden of management by introducing fur-
ther complexity in both expressing and implementing such excep-
tion handlers.

Therefore, we want to ensure that exception handlers can only
perform local operations: a handler should only be able to perform
actions that shape locally generated traffic4, or provide feedback to
the user. We will show in the next section that this practice still
enables significant benefit and control over the network.

Time-scales of operation. Network exception handlers are not
suitable for tracking very short-lived or bursty phenomena, such as
instantaneous peaks on the load of a link. The time-scale of opera-
tion depends on the network exception handler under consideration,

4Note that shaping traffic locally can still have remote benefits,
e.g., by mitigating congestion in the core of the network or at other
remote sites, without leading to cascading events.

but in general handlers target exceptions that would significantly al-
ter the network state and affect the user-perceived application per-
formance.

It seems that it could be possible to build tools to perform static
analysis of exception handlers, which might allow them to perform
some, perhaps limited, non-local operations, but we leave this as an
open question.

4. USES OF EXCEPTION HANDLERS
In this section, we present three sample usage scenarios for net-

work exception handlers: (i) efficient response to link failures; (ii)
application-aware traffic engineering; and (iii) non-transient con-
gestion response. A combination of existing tools might offer po-
tential solutions for some of these examples. However, network
exception handlers provide a flexible framework that facilitates effi-
cient and straightforward management for many scenarios through
the same mechanism. For example, while an ICMP link failure
may inform of an unreachable host or link (scenario (i)), such a
mechanism cannot provide information for a link overload (sce-
nario (iii)). Compared to existing tools, network exception handlers
also largely automate the process of notifying the user of potential
problems in the network and determining whether these problems
persist, as information on the various exceptions is readily available
at the host.

Efficient response to link failures. Network exception handlers
allow detailed control of the network’s response to failures. For ex-
ample, consider an exception handler such as the following: when
links in the set {Li} fail, only applications in the set {Aj} may
transmit packets that will be routed across links in the set {Lk},
i.e., when critical links fail, only a subset of applications may send
traffic over the specified backup links. This ensures that critical
traffic traversing these backup links does not experience conges-
tion during what is already a troubled time for the network. This
policy could be extended by restricting the set of hosts allowed to
transmit. In contrast, current enterprise networks can only enforce
inaccurate or coarse-grained control in response to link failures,
such as applying filters to drop traffic using certain port numbers
being transmitted or received by certain hosts, leaving hosts essen-
tially unaware of the failures and thus unable to adapt their traffic
demands appropriately. Effectively, pushing topology information
to hosts enables accurate control of application traffic dependent
on the failure, at timescales that routing protocols cannot achieve.

A key question underlying the utility of such a policy is how
frequent are link failures in enterprise networks? Fig. 2 presents
an initial analysis of the frequency of OSPF link failures, i.e., loss
of OSPF adjacency, using a dataset collected from our global enter-
prise network. The dataset is described in detail in Section 7.1. The
figure presents two dimensions of such failures (from left to right):
Cumulative Distribution Functions (CDFs) of link downtime, and
failure inter-arrivals per link, from the two different perspectives of
our local stub area, and the regional backbone.

We observe that failures occur quite frequently in both cases
(e.g., one failure per link every hour for 30% of the links in the stub
area or for 60% of the links in the backbone area) but downtimes
can also be significant: 20% of all failures last over 10 minutes.
Link failures are triggered by the absence of OSPF traffic on the
adjacency for 40 seconds [13]. In the figures, we consider failures
that last over 30 seconds (i.e., the failed link was not advertised as
active within 30 seconds after its withdrawal).

In the previous section, we presented an example of an excep-
tion handler that could be triggered in such failure cases (Fig. 1).
Performing similar actions in the network to those in Fig. 1 is cur-
rently not possible, as not only is per-application packet shaping

Figure 2: OSPF failure rates. From left to right: CDF of link
downtimes, and the CDF of failure inter-arrivals per link. The
median for failure inter-arrival per link is roughly a day for the
stub area, while link downtimes lasting more than 10 minutes
account for more than 20% of all failures.

not effective, but it also requires further information about the role
of the host and the user of the application. Fig. 3 shows an ex-
ception handler triggered in the case of a failure of a building link.
The exception handler proactively reports a message on each host
within the building when the link fails, and each such host drops
all traffic that would have traversed the link, effectively not gener-
ating traffic that would be dropped later in the network. When the
link is restored, the exception handler reports this to the user. Sim-
ilarly, all traffic to the disconnected subnets is dropped for hosts
not in the building, and the users attempting to access resources in
those subnets are informed. Only hosts that communicate over the
specified link will be informed about the outage. Network excep-
tion handlers provide two advantages here: (i) traffic that would
be dropped later in the network is not generated at the hosts, and
(ii) users are informed during periods of disconnection, which is
currently a nontrivial task. For example, in our enterprise, the stan-
dard practice would be to send an email to the affected users to in-
form them about the building link failure. However, since the email
servers reside in our European Data Center which becomes inacces-
sible during such failures, the users are actually only informed once
the link is again active!

Application-aware traffic engineering. Network exception han-
dlers allow for efficient, detailed policies with regards to traffic en-
gineering. For example, a policy for such a case might be as fol-
lows: when traffic on link L reaches a predetermined threshold, T ,
non-critical applications in the set {Ai} running on hosts in the set
{Hj} should be rate limited. T here might be defined using the real
economic cost of the link, e.g., the 95th percentile should always be
less than T Mbps. In Section 7, we study the feasibility and effec-
tiveness of a network exception handler that applies such a policy.
As previously noted, even highly controlled networks such as en-
terprise networks currently have no means of explicitly engineering
their traffic with respect to applications. Several factors, from use
of arbitrary port mappings at proxies to arbitrary application port
usage and layer-3 or layer-4 encryption, prohibit fine-grained ap-
plication control in practice. The net effect is that traffic can only
be shaped accurately on a per-application basis at the host. Enter-
prise networks explicitly do not want net neutrality, and this desire
can be satisfied through network exception handlers.

Fig. 4 shows an example of a simple policy that, during office
hours, limits the bandwidth used by a particular application, in this

Network Exception Handler: Building link failed
links = { [10.39.11.40, 10.39.12.30, “Edinburgh to London”] }
Edinburgh_subnets = [10.39.18.0/24, 10.39.19.0/24]
boolean Exception(NetworkState)
begin

foreach link in links do
if link not in NetworkState then return true

return false
end
void Fire (NetworkState, HostState)
begin

if HostState.MachineLocation is “Edinburgh” then
print “Building disconnected: do not panic”

Register(Handler)
end
void Handler (NetworkState, HostState)
begin

if not Exception(NetworkState) then
RemoveAllRestrictions(); DeRegister(Handler);
if HostState.MachineLocation is “Edinburgh” then

print “Network connectivity restored”

return

SetRestriction(TrafficSrc() not in Edinburgh_subnets
and TrafficDest() in Edinburgh_subnets,
DropAndReport(TrafficDest()+“ disconnected”))

SetRestriction(TrafficSrc() in Edinburgh_subnets
and TrafficDest() not in Edinburgh_subnets,
Drop());

end

Figure 3: Network exception handler for a building disconnec-
tion.

case the UpdateAndPatch client. The handler would thus be active
during the specified hours. Applying such a policy in the network
would be feasible only if the application used a predetermined port
number. Since many update applications run over HTTP on port 80,
simple packet shaping would be insufficient as information about
the source application is required.

Congestion response. In a related scenario, network exception
handlers may allow hosts to directly alleviate congestion in the net-
work. Currently, congestion avoidance is left to transport protocols
such as TCP which operate over short timescales, e.g., loss of indi-
vidual packets. Hosts operating such protocols must react in certain
ways when congestion is observed: simplistically put, a host should
linearly increase its network usage until it observes loss, when it
should multiplicatively back-off so that all hosts sharing a path can
obtain an approximately equal share of that path’s resources.

While certainly necessary in the context of IP networks for main-
taining the performance of the network under times of high load,
this behavior is quite limiting and may not even be desirable in an
enterprise network. It is based on a very limited signal from the net-
work (observed packet loss) and permits only one, quite simplistic,
response (decrease of the window of outstanding data on the flow
observing congestion). By specifying policies with respect to link
utilization, network exception handlers allow hosts to manage the
usage of network resources more smoothly, over longer time peri-
ods, and even pro-actively, i.e., before congestion is directly expe-
rienced as with ECN [15].

For example, a policy may specify that a certain host’s flows
should be rate-limited when specific links are loaded to a prede-
fined threshold, e.g., 80% utilization. In this scenario, a notification
of impending congestion is provided before an actual loss event.

Network Exception Handler: Time-based traffic cap
links = { [10.39.15.60, 10.39.15.61, “Paris to Amsterdam”] }
boolean Exception(NetworkState)
begin

return NetworkState.LocalTimeNow in range 8AM to 5PM
end
void Fire (NetworkState, HostState)
begin

Register(Handler)
end
void Handler (NetworkState, HostState)
begin

if not Exception(NetworkState) then
RemoveAllRestrictions(); DeRegister(Handler); return

SetRestriction(“UpdateAndPatch”, maxBandwidth=50kbps)
end

Figure 4: Network exception handler to shape update traffic dur-
ing local working hours.

Similarly, network exception handlers can prevent new flows from
a host entering an overloaded link, a level of control unavailable
to TCP-like mechanisms. This scenario does not require coordi-
nation of hosts, and network exception handlers can work together
with ECN-type mechanisms, as they are orthogonal, operating on
different time-scales. Network exception handlers provide an early
and efficient congestion avoidance mechanism unavailable through
current transport-layer protocols.

Summary. All these scenarios are examples of policies that rely
on per-application knowledge that cannot be easily, if at all, sup-
ported in today’s enterprise networks. Network exception handlers
exploit the fact that hosts have both the knowledge of application
requirements and the ability to apply per-application policies, en-
abling the handling of these exceptions. Network exception han-
dlers are a generic mechanism enabling fine-grained control of the
traffic generated by hosts.

5. DESIGN SPACE
The previous section described scenarios where network excep-

tion handlers could be employed to better manage the network ex-
perience. The underlying principle is that network and hosts should
collaborate to better control the performance of the enterprise net-
work. Network exception handlers require information about the
network and hosts, denoted by NetworkState and HostState respec-
tively in the examples. In order to create and maintain this state,
information from the hosts needs to be distributed to the network
devices controlling the network, or vice versa, information from the
network needs to be available at the host. Both approaches have ad-
vantages and disadvantages which we now discuss.

In the network core, information about the current observed state
of the network is available with low latency. However, making the
host state information available in the network, either through in-
ference techniques or through explicit signaling, even at the first
hop router appears expensive, if not practically infeasible. Infer-
ring applications in the network is hindered by (i) the increasing
use of encryption, (payload and even TCP-headers might not be
available with IPSEC, thus making deep packet inspection tech-
niques impractical), and (ii) other obfuscation techniques, such as
the widespread overloading of ports [12], a practice which is typ-
ical in enterprise networks. Additionally, network devices cannot
infer other host-specific context information, like the user that gen-
erated the traffic, the user’s business role, or the application’s busi-
ness value. For example, network devices may be able to detect

Figure 5: Information flow between the different entities of the
architecture.

that media is being streamed to a host, but devices are agnostic as
to whether the application is destined for a training video applica-
tion or a video conferencing application. An alternative would be
to implement such functionality at the edge routers but as multi-
homing becomes increasingly popular, such solutions appear quite
complicated. For example with laptops connected to both wireless
and wired infrastructure, there is no longer a single edge network
device which mediates access to the network for each host.

In contrast to implementing network exception handlers in the
network, enterprise hosts have plentiful resources available and ac-
cess to context of the network usage, including application names,
process IDs, user IDs, etc. Hosts can further implement complex
policies on local traffic easily, and policies can easily be func-
tions of multiple applications generating traffic to different hosts
over different network interfaces. This enables richer policies to
be specified through exception handlers. Implementing the action
at the host also implies that “unwanted” traffic potentially never
enters the network. This is advantageous; for example, an admin-
istrator has the ability to deploy network exception handlers that
are fired when users connect over VPN links to the enterprise, and
block a set of non-essential business applications from transmit-
ting. The enterprise would still incur the cost of the traffic should
such a policy be implemented in the network, whereas a host im-
plementation would block the traffic at its source. The challenge of
realizing such policies on hosts however, comes from the fact that
the network is virtually a black box to the host, and distributing all
topology and other network information to each host in a robust
way is expensive.

5.1 A Two-tier Architecture
This motivates us to advocate the implementation of network ex-

ception handlers in a two-tier architecture, similar to how existing
enterprise services, such as directory services, are implemented. A
set of servers are deployed across the network, referred to as cam-
pus controllers (CC). In many enterprise deployments these would
be collocated with servers operating other network-wide services,
such as directory services, e.g., domain controllers supporting Ac-
tive Directory. As an extreme, the CC functionality could be inte-
grated with the functionality of the edge router. Each host authen-
ticates with a CC nearby in the network, in the same way that the
host authenticates and connects to an Active Directory domain con-
troller. Each CC maintains an instance of the NetworkState object,
representing the annotated network topology. In the next section,
we describe in more detail how this NetworkState information is
maintained. Each CC is responsible for interacting with a set of
routers using for example SNMP, and aggregating the locally gath-
ered information. It then disseminates this information to all other

CCs using either IP multicast or an overlay. All information is asso-
ciated with a lease, and if the set of CCs should become partitioned,
the information contributed by unreachable CCs will timeout and
be removed from the disconnected CCs.

Network exception handlers are distributed to the hosts, either
exploiting the existing infrastructure available for host management
in the enterprise or utilizing the CCs. The distribution and update
of network exception handlers is thus expected to occur with low
latency. Each host determines the set of network exception handlers
that it is required to use, and then registers the exception condition
of each with the CC. The way in which network exception handlers
are defined means the exception condition is captured within the
Exception() function, and this is parameterized only by Network-
State. This means that a host can easily delegate the evaluation of
the set of Exception() functions it must use to the CC. When the CC
detects that an Exception() has triggered, it informs the host which
then executes Fire() and the registered Handler() locally. This re-
quires that the CC exposes the NetworkState to any host that cur-
rently has active exceptions. This can be optimized in many ways,
including having the hosts register filters on NetworkState to en-
sure that only relevant state-changes are propagated to the hosts.
De-activating the exceptions occurs locally at the end hosts as part
of the evaluation of the handler.

Each CC should be able to support a large-number of hosts so
that it would be feasible for a single CC, for example, to support
an average building with 500+ hosts. The overhead of checking the
exception conditions is bounded on the total number of unique net-
work exception handlers, rather than on the sum of the number of
exception handlers per host. This implies that if the same exception
handler is installed on all hosts associated with a CC, then the CC
needs only to evaluate the associated Exception() handler once, and
then trigger all connected hosts. Similarly, if any processing or fil-
tering of the NetworkState is necessary, such a process will only be
performed once, irrespective of the number of clients that have reg-
istered the exception; updates will then be distributed to all hosts
with the corresponding exception handler active. As CCs are topo-
logically close in the network to hosts, communication problems
between the corresponding hosts and the CC are expected to be
rare. Similarly, failure of the CC or loss of connectivity to the CC
is easily detectable by hosts, which then would trigger an exception
handler for such a situation, that would, for example, redirect hosts
to an alternative CC.

Fig. 5 depicts the flow of various types of information towards
the CC, and how the CC triggers and forwards information to its
hosts. The network information collection and aggregation is per-
formed at the CCs and the policies enforced at each host.

The two-tier architecture outlined here does not require the net-
work administrator to explicitly understand where exceptions are
being evaluated or enforced. Administrators describe the excep-
tions against a simple model of an object embodying the network
state and an object embodying the per-host state. The network ex-
ception handlers are decomposed into exception detection and a set
of actions to be enacted. We exploit this flexibility to enable a sim-
ple architecture that is similar to many network-wide services that
are already deployed in enterprise networks today. A server, the
CC, performs exception detection, reducing the amount of infor-
mation that needs to flow to each host, and the hosts implement
the actions. This clean separation allows for a scalable and effi-
cient infrastructure that supports network exception handlers. The
following section describes in more detail how the network topol-
ogy information is extracted and aggregated, and how policy can
be implemented at the hosts.

6. ENABLING EXCEPTION HANDLERS
In the previous section, we outlined a two-tier architecture for

supporting network exception handlers in enterprise networks. In
order for this architecture to be feasible, we need to be able to col-
lect and synthesize the dynamic network topology information. We
also need to be able to support traffic shaping and similar function-
ality on hosts.

6.1 Monitoring the network topology
Network exception handlers require dynamic network informa-

tion. Enabling a diverse set of exception conditions requires a cor-
respondingly rich dataset. We believe that a complete, dynamic
link-level network topology, annotated with link capacities, costs
and loads is both feasible and also necessary to support the full
functionality that network exception handlers can offer.

Data concerning link capacities and costs is already maintained
by an enterprise, and used by the network operators for billing,
auditing and capacity planning purposes. This information is typi-
cally stored in a database and accessed via, e.g., web interfaces in
our enterprise. The information changes slowly over time, when
contracts are renegotiated or new links are provisioned. Therefore,
distributing a copy of this information to the CCs is feasible and
allows the network topology to be augmented with link capacities
and costs.

Link load data is obviously far more dynamic than link capacity
and cost information. However, this data is also available using ex-
isting mechanisms such as SNMP. Indeed, in most enterprises this
information is already required by existing network management
systems to enable capacity planning. It is thus feasible for CCs that
are topologically close to such monitoring devices to extract this
information, and then distribute it to all other CCs.

In contrast, the complete, dynamic link-level network topology
is typically not currently available. We thus discuss here how to
extract this topology information efficiently in the context of using
OSPF [13]. We believe that OSPF is the most common routing pro-
tocol used in enterprise networks, including our own. In general,
the techniques that we describe in the following sections should be
easy to use with other link-state protocols, such as IS-IS [14, 5].

Collection
There are several methodologies for collecting OSPF data, includ-
ing commercial solutions, such as those provided by Iptivia.5 Shaikh
and Greenberg [18] propose four basic methodologies to extract
OSPF data in order to infer the network topology for a large ISP
network. The first two involve forming a partial or full adjacency
with a router, the third describes the host-mode where the IP mul-
ticast group used to distribute OSPF data in a broadcast network
is monitored, and the fourth is the wire-tap method where a link
between two routers is monitored.

In our two-tier architecture we assume that the CCs will collect
the OSPF data. In a large enterprise network, the network will be
configured into several OSPF areas, and it is necessary to extract
the OSPF data for each area. To increase resilience, it is best to
have multiple CCs per area. The wire-tap approach requires that
CCs have physically proximity to the link being monitored, which
may not always be feasible. The adjacency approach allows the
CCs to act as ‘dummy’ routers that do not advertise any subnets but
do participate in OSPF routing. This approach also has the advan-
tage, that using GRE [9] tunnels, an adjacency between a CC and
an arbitrary router in the network can be established, which per-
mits OSPF data collection from routers when physical proximity is

5http://www.iptivia.com/

LSDB MERGING:
1. Insert each non-summary LSA from the per-area LSDBs into the
merged LSDB, tracking all prefixes for which such non-summary LSAs
exist.
2. For each summary LSA, extract the single prefix it contains and retain
it if there is no non-summary LSA for this prefix in the merged LSDB.
If a summary LSA has already been retained for this prefix, then prefer
according to the preference relationship on LSA types 1 < 2 < 5 < 3 < 4.
3. Insert all retained summary LSAs into the network LSDB.
4. For all type-1 LSAs that are generated by each router that exists in
multiple areas, construct and insert a new type-1 LSA, and remove type-
1 LSAs with the same lsid.

Figure 6: OSPF topology synthesis process

not possible. We have successfully used the wiretap method on a
GRE tunnel configured to make an adjacency between two routers
in the network visible to us. Host-mode would also be feasible in
a network where IP multicast is supported, if the CCs support the
necessary protocols allowing them to join IP multicast groups, and
routers are suitably configured to allow them to join the relevant
multicast group.

Note that there are security implications to consider when not
using either wire-tap or host-mode since standard router OSPF im-
plementations do not permit a router to protect itself against bad
routes inserted by hosts with which it is configured to form an ad-
jacency. One of the advantages of the two-tier architecture is that
the CCs are managed dedicated servers. Allowing these servers to
act as dummy routers creates a smaller attack plane compared to
allowing arbitrary hosts to act as dummy routers.

Collecting a live feed of OSPF data from each area and shad-
owing the current link-state database (LSDB) being maintained by
routers in the area is therefore quite feasible.

Synthesis
Having collected the per-area LSDBs, they must be combined to
synthesize a global topology. While this may be conceptually straight-
forward, practical implementation details can be complicated. To
our knowledge, synthesis of global OSPF topology through merg-
ing of area LSDBs has not been described before and thus we pro-
vide here a detailed description of the procedure we followed.

The goal is to merge the LSDBs, each of which is simply a
collection of link-state advertisements (LSAs) describing the links
connected to a given link in the network. The complication arises
from the fact that a “link” in OSPF can be a point-to-point link be-
tween two interfaces, a subnet being advertised by a router, a shared
segment connecting many routers, or a subnet from a different area
being summarized into this one. To account for this complication,
we give preference to specific non-summary LSA types compared
to the less specific summarization LSAs. Further, we must also dis-
ambiguate the LSAs describing an individual router in cases where
that router exists in multiple areas. For completeness, given a set
of per-area LSDBs to merge, Fig. 6 gives a detailed OSPF-specific
description of the process.

After merging all LSDBs, the result is a single LSDB represent-
ing the entire network visible from OSPF. To gain a truly complete
picture of the network’s topology also requires the use of out-of-
band data such as the router configuration files. Parsing configu-
ration files reveals information not available through any particu-
lar routing protocol such as static routes and MPLS tunnels. This
process can be automated by incorporating it into the configura-
tion management system that any large network runs to manage
its device configurations: when a device configuration is changed,

the topology inference host for that part of the network should be
automatically notified so that it can re-parse the relevant configu-
rations. Other sources of routing data should also be considered
although we note that, as discussed in Section 2, enterprise net-
works typically mandate use of proxies for external Internet access
and use default routes to handle traffic destined outside the enter-
prise. Thus, we are not required either to infer topology from BGP
data or to handle the high rate of updates usually observed in such
data.

6.2 Control mechanisms at the host
Policy enforcement takes place at the hosts, with the exception

handlers specifying actions to take when an exception is triggered.
In order to implement network exception handlers at the host, ac-
cess to local host state, e.g., the set of running processes, the ap-
plication names, and the ability to shape the generated traffic are
both required. Modern operating systems provide extensive support
that enables this functionality. Event tracing frameworks, such as
the Event Tracing for Windows6 and other monitoring APIs, allow
easy monitoring and access to the host state, e.g., application ids,
user ids, TCP/UDP flows per process, without requiring any sup-
port from or modifications to existing applications. It is therefore
easy to translate access to the host state by the network exception
handlers into queries using these APIs.

Packet shaping functionality is also well supported in modern
operating systems. For example, the TC/GQOS API7 is provided
with Windows XP and Windows Vista provides the QOS2 API8

which both support traffic shaping on a per-process or application
granularity. Indeed, blocking all traffic from a process, for exam-
ple, is possible by configuring the host firewall, again at process or
application granularity.

7. FEASIBILITY
In this section, we evaluate the feasibility of network exception

handlers across two different dimensions. We first examine the
overhead of distributing the annotated topology information across
the enterprise network. We then present a concrete example of how
network exception handlers might be employed to tackle one of the
most important issues for IT departments of enterprise networks,
namely traffic engineering to reduce bandwidth costs.

7.1 Datasets
The results presented in this paper are principally based on two

datasets collected from the global enterprise network of a large
multinational corporation. The first is a corpus of packet data col-
lected from a single building connected to that enterprise network.
The second is a corpus of routing data collected from two different
areas of that enterprise network. Our local network within the mon-
itored building comprises several subnets and a small datacenter
(DC). The global enterprise network (CORPNET) contains approx-
imately 400,000 hosts connected by approximately 1,300 routers
spread across 100 countries and 6 continents. The particular build-
ing in question contains roughly 400 hosts used by a mixture of
researchers, administrative staff, and developers. For scalability
reasons, CORPNET contains 4 domains interconnected by BGP,
each of which runs OSPF internally. Connectivity to the Internet

6http://msdn2.microsoft.com/en-us/library/
aa468736.aspx
7http://msdn2.microsoft.com/en-us/library/
aa374472.aspx.
8http://msdn2.microsoft.com/en-us/library/
aa374110.aspx.

Figure 7: Aggregate traffic over time. The spikes correspond to regu-
lar backups, while traffic shows the expected diurnal patterns.

is provided through proxies in a small number of large datacen-
ters, roughly one per continent; these datacenters also host servers
providing company-wide services such as email.

In terms of size, CORPNET is at the upper end of the scale of en-
terprise networks as it supports a large, multinational, technology-
based corporation which makes extensive use of a variety of net-
worked applications. As such, we use data from this network as an
approximation to an upper bound on the complexity and scalability
of network exception handlers. In smaller networks the overheads
associated with network exception handlers should be lower. Small
networks, such as small office/home networks, pose a quite differ-
ent set of network management problems and would probably not
significantly benefit from network exception handlers.

Data Traffic Dataset
The data traffic corpus was collected over a period of 7.7 weeks
beginning on Tuesday February 13, 2007. Packets were captured
using custom tools written against the WinPCap9 packet capture
library. Over the 7.7 weeks, 32.3 billion packets were captured,
containing 32.8 TB of data. To analyze the collected trace we
constructed flow tables corresponding to 5 minute time intervals
with one record per uni-directional 5-tuple (source IP, destination
IP, protocol, source port, destination port) flow observed in each
5 minute period. Each record contains the 5-tuple, the time of the
first and last packets in the period, the number of bytes and packets
observed, and the application inferred to have generated the traffic.
We inferred applications by custom-made deep packet inspection
tools, with less than 3.5% of packets not assigned to an application.

Fig. 7 shows a timeseries of the aggregate observed traffic band-
width. The traffic pattern follows the usual diurnal patterns, with
the exception of large spikes during the early morning hours of each
day which correspond to backups taking place in the Data Cen-
ter. We observed 66,697 unique IP addresses in the trace, 679 of
which were local to the capture site. Of the observed addresses,
65,086 were sources (663 of which were local to the monitored
building) and 49,031 were destinations (669 of which were local).
The local addresses that received but never transmitted appear to be
the result of automated security tools probing for active addresses,
i.e., they appear as destination addresses only and never as source
addresses.

9http://www.winpcap.org/

Table 1: Topology data. Core links represent physical connectiv-
ity. Leaf links represent advertised prefixes, including summaries. An
event is a link that fails, recovers or has its weight reconfigured.

Area Backbone Stub
Date 2004-11-05 2004-06-16

Duration (weeks) 111 128
Gaps (days) 3 56
#Core links 175 42
#Leaf links 1123 1241

#Events (core) 183 720
#Events (leaf) 414090 270428

Topology Datasets
The network topology traces are extracted from OSPF data col-
lected from two areas within CORPNET, one a backbone area and
one a stub area. An autonomous system (AS) running OSPF in-
ternally contains a single unique backbone area which connects all
the other stub areas in that AS; stub areas do not generally inter-
connect directly. CORPNET is split into four such ASs, with the
AS numbers designated for private use and are not visible to the
Internet at large. Each AS covers a large geographical region of the
world and each runs a single OSPF backbone area. Both the back-
bone and the stub areas monitored are within the same AS. Data
was collected until December 2006, beginning from the backbone
area in November 2004, and from the stub area in June 2004. Data
collection was almost continuous with about six short (roughly one
day each) gaps per year in the stub area trace, and approximately
one such gap per year in the backbone area trace. The stub area
trace also experienced about four larger gaps (roughly one week
each) over its entirety.

OSPF advertises links, which may represent either a prefix di-
rectly advertised by a router, a physical connection between two
routers (point-to-point or shared media), or prefixes being summa-
rized into this area from a neighboring area. Table 1 summarizes
the characteristics of the topologies extracted from the OSPF data.

7.2 Overhead
We examine two types of overhead incurred by network excep-

tion handlers. First, the total traffic required to distribute the topol-
ogy across the network. Second, the amount of traffic incurred by
distributing the metrics the topology is annotated with, e.g., link
load or link cost.

Live topology distribution. There are three components to the
overhead of distributing the live network topology: (i) the receive
bandwidth at each CC designated to gather the topology of its area;
(ii) the transmit bandwidth at each such CC to transmit its area
topology to other CCs; and (iii) the receive bandwidth at each CC
required to receive the topologies of all areas.

The first component is very small, with median values of 71 Bps
and 70 Bps for our core and stub areas respectively. Even the 99th

percentiles for each are only 1.5 kBps (backbone) and 1.6 kBps
(stub). This is a negligible overhead for a server-class machine
to collect.

The second component is similarly negligible since most of the
OSPF traffic does not actually report any changes to the area topol-
ogy, being simply HELLO packets and refreshes of existing state.
Only topology-changing events, i.e., addition of new links, failure
or recovery of existing links, or link weight modifications, need to
be redistributed. Examining events at the granularity of seconds,
we see that only 0.002% of the total second-intervals for the stub
area, and only 0.000007% of second-intervals for the core area,
contain even a single event. The burstiness is similarly low, with

SiteNames = [“Cambridge”];
Threshold = 100MB;
boolean Exception(NetworkState)
begin

foreach site in Sitenames do
siteLoad := NetworkState.Sites[site].UpStream.Load
if siteLoad > Threshold return true

return false
end
void Fire (NetworkState, HostState)
begin

Register(Handler)
end
void Handler (NetworkState, Hoststate)
begin

if not Exception(NetworkState) then
RemoveAllRestrictions(); DeRegister(Handler); return

foreach site in Sitenames do
upStreamLoad := NetworkState.Sites[site].UpStream.Load
ratio := Threshold / upStreamLoad
foreach app in Hoststate.Apps do

if app.isLowPriority then
bwCap := app.UpStream.Load * ratio
SetRestriction(app, maxBandwidth = bwCap)

end

Figure 8: Network exception handler to smooth upstream traffic by
rate-limiting low priority applications at busy periods. The threshold
may be specified by historical data.

the 99.99th percentiles at just 10 events for both areas, and the max-
imum number of events observed in any single second standing at
just 91. Assuming events can be described in 25 bytes with 40 bytes
overhead for TCP/IP headers, this corresponds to a worst case of
around 2.5 kBps, and only 700 seconds over the three year period
would require more than 1.5 kBps, i.e., more than a single packet
per second.

The third component is less negligible but is still very small.
In our large enterprise network, there are approximately 62 dis-
tinct OSPF areas and 92 separate Active Directory domain con-
trollers. Assuming that topology distribution was carried out using
some efficient mechanism such as native IP multicast or a suitably
configured application overlay, this corresponds to a worst case of
155 kBps being delivered to 92 receivers, and a 99.9th percentile
of 4 kBps.

Per-link annotations. Distributing link-related information such
as cost and load requires a higher overhead compared to the over-
head of distributing the topology, but overall is still not significant.
For example, assume that up to fifteen 4-byte counters per link are
distributed to each CC every 5 minutes, using a similar IP multicast
or application overlay mechanism. This corresponds to approxi-
mately 100 bytes per link every 5 minutes. Even in a large network
with 10,000 links this is a total overhead of just 3 kBps, and could
be reduced with more efficient encoding of the per-link values.

Thus, the total overhead of distributing the control information
required to employ network exception handlers would be negligible
even in a large enterprise network.

7.3 Managing bandwidth with exception han-
dlers

We now evaluate a concrete example of network exception han-
dlers using our enterprise network traffic dataset described in Sec-
tion 7.1. In particular, we describe a hypothetical scenario where
an exception handler is employed for bandwidth savings through

Figure 9: Bandwidth savings by applying the network exception handler in Fig. 8. LEFT: Upstream non-local traffic time-series
before and after applying the exception handler, where most spikes are smoothed-out. RIGHT: Traffic CDF over 5-min intervals.
The exception handler reduces the 95th percentile by 10%.

shaping of traffic caused by “low priority” user applications. Band-
width requirements currently reflect one of the major sources of
cost for enterprise networks as discussed in Section 2, and network
exception handlers can provide a flexible and effective mechanism
to mitigate this cost by letting hosts decide how to best utilize net-
work resources, and specifically here bandwidth.

One of the possible charging schemes for bandwidth usage in
enterprise networks is the 95th percentile of the upstream traffic.
Bandwidth usage is calculated in 5 minute intervals, and at the end
of the charging period which is usually a month, the cost is cal-
culated by the provider at the 95th percentile of the corresponding
cumulative distribution function (CDF).

Let’s now assume that the operator of our monitored network
aims at reducing this bandwidth cost by scaling down the 95th per-
centile of upstream traffic, but at the same time wishes to affect ap-
plication performance and user experience as little as possible. A
way to achieve this through network exception handlers would be
to rate limit low-priority applications at time instances where traffic
is over a threshold approaching the 95th percentile. This threshold
could for example reflect the 90th percentile of last month’s up-
stream traffic, as the overall traffic demands should be more or less
stable over such periods. Low priority applications may correspond
here to long file transfers and non-interactive applications such as
backups, where users’ behavior is not significantly affected, as it
would be when rate-limiting HTTP traffic. An exception handler to
implement such a policy is presented in Fig. 8.

To evaluate the effect of this exception handler in our enterprise
network, we replayed our captured traffic employing the specified
exception handler. We first extracted the traffic targeted out of
the local building from the trace using the topology information,
and then applied the exception handler in all 5 minute intervals
for which traffic crosses over the specified threshold. Fig. 9(left)
presents the upstream traffic timeseries before and after the use of
the exception handler, where the handler is applied when traffic
crosses over the 90th percentile of the total trace. The exception
handler succeeds in eliminating most of the large spikes present in
the traffic timeseries, by being able to smooth heavy periods caused
by “low-priority” applications. Fig. 9(right) further highlights how
the traffic distribution is affected by the exception handler by shift-
ing traffic from heavier periods to periods where traffic is below the
95th percentile. Overall, by applying this simple exception han-
dler, traffic never rises above the 96th percentile of the original

distribution before activating the exception handler. Interestingly,
WAN optimizers, which are increasingly being used in enterprise
networks, attempt to reduce WAN link demands by compressing
the traffic passing over the link of interest. This example shows
the potential for network exception handlers to allow enterprises to
reduce WAN demands by shaping traffic at the source, rather than
compressing traffic in the network.

This example emphasizes the flexibility of traffic shaping at the
sources through network exception handlers. Hosts are both al-
lowed to decide how to prioritize applications subject to the spec-
ified policy, but also have the ability to rate-limit their own traffic
as the application-context exists at the edge of the network. In a
stricter scenario, certain applications could be instructed to com-
pletely back off. In such a scenario, exception handlers will pre-
vent traffic from even entering the network (in contrast to drop-
ping packets in the network, where network resources would still
be used). Applying such policies of per-application throttling in
the middle of the network appears practically infeasible in existing
enterprise networks.

8. NETWORK EXCEPTION HANDLERS—
A UTOPIA?

Network exception handlers demonstrate the potential of push-
ing part of the network decision-making process to hosts. Having
highlighted the benefits and flexibility of network exception han-
dlers throughout the paper, we believe that this mechanism should
be a fundamental building block of modern enterprise networks.

Does this flexibility however imply that network exception han-
dlers could be applied to every network operation, or that hosts
could, or should, participate in all network-related decisions? Net-
work exception handlers, while certainly powerful and flexible, are
not the panacea of all enterprise management problems. They have
limitations that make them unsuitable to express certain policies.
Our proposed architecture also leaves a number of issues open for
future research and we discuss the most important of these here.

Cooperation. The set of actions performed in a network excep-
tion handler use only the global network topology information and
the local host state. There is no explicit cooperation or synchro-
nization between hosts. This limits the kinds of policy that can be
implemented. For example, using network exception handlers, it
is difficult to implement the following policy: allow application
X running for users in Europe to consume no more than 50% of
a specific link. This would require all hosts concurrently running

Network Exception Handler: Server under SYN attack
boolean Exception(NetworkState)
begin

return NetworkState.SYNAttackedMachines is not empty set
end
void Handler (NetworkState, Hoststate)
begin

if not Exception(NetworkState) then
DeRegister(Handler); return

foreach host in NetworkState.SYNAttackedMachines do
PID := SYNPktRateToDest(host, threshold)
if PID != NULL then TerminateProcess(PID)

end

Figure 10: Network exception handler to terminate a process if
the rate of SYN packets it generates to a particular destination is
larger than a threshold.

application X to cooperate in order to potentially divide up that
capacity. While attractive, the complexity of implementing this dy-
namic control over hundreds of thousands of geographically spread
hosts is high.

Routing. Since the network topology is distributed across the
network, hosts could potentially make routing decisions, and re-
alize mechanisms such as multipath and loose source-routing [19],
or load balancing techniques such as ECMP (equal-cost multipath).
However, we chose explicitly not to allow hosts to make such rout-
ing decisions, because attempting to perform such operations at the
host may lead to traffic oscillations across links. For example, if
load-balancing is implemented at the host, it is hard to guarantee
that all hosts will not shift their traffic from a congested link to a
second link simultaneously, thus leading eventually to traffic oscil-
lations due to congestion frequently shifting to new links. This is
another instance where cooperation between hosts would be use-
ful, so that a set of hosts would be able to coordinate to reduce the
likelihood of oscillations. In general, hosts are better placed to per-
form per-application traffic management, and the network is better
placed to perform routing or load-balancing across links.

Closing the loop. In our current design, information flows from
the network to the hosts, but no information flows from the hosts
to the network. If the loop were closed, then this would also pro-
vide a mechanism to facilitate better network management. For
example, this could be a good mechanism to express and expose
information to network administrators from hosts. At the moment,
most host monitoring is simplistic, with a small set of attributes
proactively monitored on each host, and aggregated into a single
database. In our architecture, as described, when a network excep-
tion occurs, the user(s) on the host can be explicitly informed. This
could be extended, so that the network administrator could also
be informed. Therefore, the network administrator could gather
the context of certain exceptions, i.e., both the HostState and Net-
workState, when the exception triggers, in order to facilitate trou-
bleshooting and management. Of course, there are a number of
challenges with such an approach, such as handling the potential
implosions of reports.

Security. Network exception handlers can expose powerful op-
erations. An extreme scenario would even be to terminate a lo-
cal process! Further, such a policy could be used in conjunction
with network Intrusion Detection Systems (IDSs). For example,
consider a SYN attack scenario. When the IDS detects an attack,
all the IP addresses of the machines under attack are inserted in
the NetworkState by the IDS. Each host then could run a network
exception handler that triggers when this set is not empty. When

triggered, the process producing the SYN packets would be termi-
nated, if the rate of SYN packets to a particular destination were
over a threshold. Fig. 10 shows an example of such an exception
handler. Of course, this is a simplified case, since we assume for
instance that the misbehaving process can actually be terminated,
it will not restart once terminated, etc. Yet, this example clearly
highlights the power and possibilities of providing the hosts with
network state information. This is also another example where al-
lowing feedback to the network administrators would be valuable.

However, exposing information to the hosts might be a mixed-
blessing, should a host become compromised. Having all topology
and traffic information pushed to the host, may enable informed
attacks concentrated at specific “weak” points in the network. Hav-
ing the CC filter the NetworkState information exposed to the hosts
is therefore advantageous, and ensuring that the network operator
signs all network exception handlers, and that CCs only execute
signed network exception handlers is also important. In general,
we expect certain levels of trust to already exist within an enter-
prise network, and that hosts will authenticate at least with the CC.
Services such as Network Access Protection10 may further ensure
that systems are fully patched and are updated with the latest virus
definitions before gaining access to the corporate network. How-
ever, protection from zero-day exploits, or detection and handling
of compromised CCs are issues for future research.

Deployment. Network exception handlers may be partially de-
ployed without affecting the performance of the enterprise network
provided that CCs have access to annotated topology information.
Some of the scenarios described throughout the paper may require
that network exception handlers are deployed on all hosts in a do-
main for efficient handling of the specific scenario. In general how-
ever, even partial deployment is feasible and allows for localized
management. This is possible as all local host decisions do not
affect the performance of other remote hosts, and CCs may oper-
ate in isolation. In very small partial deployments some policies
may have only limited impact. Network exception handlers do not
rely on the deployment of new network capabilities that add to the
complexity of network management (e.g., loose source routing) or
modification of host applications.

9. RELATED WORK
Network exception handlers allow hosts to participate directly

in the management of the network; they allow some traditional
in-network functionality to be migrated to the host. Bellovin [3]
proposed migrating firewall functionality to the hosts, to create a
distributed firewall where firewall policy is pushed to the hosts
to implement. This has now been widely adopted in enterprises.
The mechanisms used to implement network exception handlers
could potentially be used to implement a distributed firewall. How-
ever, enabling network management requires exposing of further
dynamic information about the network.

Several host-based congestion control schemes have been pro-
posed, e.g., PCP [1] and endpoint-based admission control [4]. These
rely on probe packet sequences to determine the rate at which they
should transmit. Bandwidth brokers use selected hosts in the net-
work to maintain QoS management state so as to provide guaran-
teed services, essentially providing admission control on a path-
basis by conditioning at selected points on the network’s edge. Us-
ing network exception handlers potentially allows every host to be
able to condition the traffic they introduce, but with much finer
grained control.

10http://technet.microsoft.com/en-us/network/
bb545879.aspx

There are many proposals to monitor/measure the network’s per-
formance, e.g., loss rate, throughput, or round-trip-time, for man-
agement purposes [7, 8, 21]. Network exception handlers allow
policies to specify the desired reactions when particular behavior
or performance is detected. Network exception handlers are al-
most the inverse of distributed network triggers [11, 10] which col-
lect host measurements at a coordinator that raises an alarm when
policy violation is detected. Network exception handlers push the
policy towards the hosts and, by exposing information about the
network’s behavior, allow the hosts to implement the policy as re-
quired.

Several proposed network architectures improve network man-
agement by simplifying the network’s configuration by providing
more control over the network. Ethane [6] uses three high-level
principles: policies are declared over high-level names, policies
should determine the path packets follow, and packets are strongly
bound to their origin. Network exception handlers effectively im-
plement the first and third of these, but do so for performance rather
than configuration. Tesseract [20] implements the 4D [16] control
plane enabling direct network control under a single administrative
domain. Tesseract configures all network switch nodes to impose
defined policies on the network, so it is host independent. Net-
work exception handlers enable policies to be imposed on the net-
work without directly impacting network devices. Therefore, they
can support richer policy, using information not exposed to the net-
work.

CONMan [2] is an architecture for simplifying network device
configuration and management. Each device is associated with a
network manager, which can map high-level policy goals down to
the capabilities of the devices. Network exception handlers allow
the specification of a policy associated with a trigger, rather than
a way to reconfigure the network to match overall policy require-
ments.

10. CONCLUSION
In this paper, we argued that within a single administrative do-

main such as an enterprise network, hosts should be more directly
involved in the management of the network. To this end we intro-
duced the concept of network exception handlers, where informa-
tion is shared between the network and hosts so that when excep-
tional conditions are detected, hosts can be made to react subject to
policies imposed by the operator. We described a simple program-
ming model against which operators can specify such policies, giv-
ing several examples of its potential use. Finally, we described a
concrete design and demonstrated its feasibility and effectiveness
using data gathered from our own global enterprise network. Net-
work exception handlers are a simple, yet powerful abstraction en-
abling enterprise network operators to gain significant control of
their network’s behavior. Our analysis suggests that changing our
mindset about the architecture of enterprise networks is attractive,
and demonstrates the feasibility of one possible such change.

11. REFERENCES
[1] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan.

PCP: Efficient Endpoint Congestion Control. In
Proc. ACM/USENIX NSDI 2006, pages 197–210, San Jose,
CA, May 2006.

[2] H. Ballani and P. Francis. CONMan: A Step Towards
Network Manageability. In Proc. ACM SIGCOMM, pages
205–216, New York, NY, 2007.

[3] S. M. Bellovin. Distributed firewalls. ;login:, pages 37–39,
Nov. 1999.

[4] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and
H. Zhang. Endpoint Admission Control: Architectural Issues
and Performance. In Proc. ACM SIGCOMM 2000, pages
57–69, New York, NY, 2000.

[5] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual
environments. RFC 1195, IETF, Dec. 1990.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise. In
Proc. ACM SIGCOMM, pages 1–12, New York, NY, 2007.

[7] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An Algebraic
Approach to Practical and Scalable Overlay Network
Monitoring. In Proc. ACM SIGCOMM 2004, pages 55–66,
New York, NY, 2004.

[8] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs.
Reclaiming Network-wide Visibility Using Ubiquitous End
System Monitors. In Proc. USENIX 2006 Annual Technical
Conference, June 2006.

[9] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing
Encapsulation (GRE). RFC 1701, IETF, Oct. 1994.

[10] L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, and
N. Taft. Toward Sophisticated Detection with Distributed
Triggers. In MineNet’06, pages 311–316, New York, NY,
2006.

[11] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall. A
Wakeup Call for Internet Monitoring Systems: The Case for
Distributed Triggers. In Proc. HotNets-III, San Diego, CA,
November 2004.

[12] A. W. Moore and K. Papagiannaki. Toward the Accurate
Identification of Network Applications. In Sixth Passive and
Active Measurement Workshop (PAM), Boston, MA, 2005.

[13] J. Moy. OSPF Version 2. RFC 2328, IETF, Apr. 1998.
[14] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC

1142, IETF, Feb. 1990.
[15] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of

Explicit Congestion Notification (ECN) to IP. RFC 3168,
IETF, Sept. 2001.

[16] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, G. Xie, J. Zhan, and H. Zhang. Network-wide
Decision Making: Toward a Wafer-thin Control Plane. In
Proc. HotNets-III, San Diego, CA, Nov. 2004.

[17] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private
Networks (VPNs). RFC 4364, IETF, Feb. 2006.

[18] A. Shaikh and A. Greenberg. OSPF Monitoring:
Architecture, Design and Deployment Experience. In
Proc. ACM/USENIX NSDI 2004, pages 57–70, San
Francisco, CA, Mar. 2004.

[19] A. Snoeren and B. Raghavan. Decoupling Policy from
Mechanism in Internet Routing. In Proc. HotNets-II, pages
81–86, Cambridge, MA, Nov. 2003.

[20] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang, and
Z. Cai. Tesseract: A 4D Network Control Plane. In
Proc. ACM/USENIX NSDI 2007, pages 369–382,
Cambridge, MA, May 2007.

[21] Y. Zhao, Y. Chen, and D. Bindel. Towards Unbiased
End-to-End Network Diagnosis. In Proc. ACM SIGCOMM,
pages 219–230, New York, NY, 2006.

