
An e�cient distributed tuple space

implementation for networks of heterogenous

workstations

Antony Rowstron and Alan Wood

Department of Computer Science, University of York,

York, YO1 5DD, UK

Abstract

The distributed tuple space concept, on which the Linda process co-

ordination model is founded, has given rise to several implementations on

parallel machines and networks of heterogenous workstations. However,

the fundamental techniques used in there systems have remained largely

unchanged from the original Linda implementations.

This paper describes a novel implementation which, using extensions

to the original Linda model and recently developed bulk access primitives

for tuple spaces, is able to demonstrate 10 to 70 times speed improvements

over the best available commercial system. This is achieved dynamically

without any compile time optimisations.

1 Introduction

Since the Linda model was invented there has been a constant stream of imple-

mentations, for many di�erent platforms. However, these earlier implementa-

tions appear to be founded on the same principles used in the original imple-

mentations. Here we describe a new technique, for networks of heterogenous

workstations, which has been designed di�erently from traditional implementa-

tions and has subsequently demonstrated major speedups over those approaches.

Section 1.1 describes the basic Linda tuple space model, how multiple tuple

spaces are added to the model, and the new primitives this can introduce. Sec-

tion 2 provides a brief guide to other implementations. Section 3 describes the

new implementation technique, section 4 describes why this achieves a speedup

over other earlier implementations and section 5 demonstrates experimental res-

ults to justify our claims.

1.1 The Linda model

The Linda model is now well known and a detailed description can be found in

[CG90]. The main primitives are:

1

out(tuple) This places the tuple into a tuple space.

in(template) This removes a tuple from a tuple space. The tuple removed is

associatively matched using the template

1

and the tuple is returned to the

calling process. If no tuple that matches exists then the calling process is

blocked until one becomes available.

rd(template) This primitive is identical to in except the matched tuple is not

removed from the tuple space, and a copy is returned to the calling process.

eval(active-tuple) The active-tuple contains one or more functions, which are

then evaluated in parallel with each other and the calling process. When

all the functions have terminated a tuple is placed into the tuple space

with the results of the functions as its elements.

Some Linda systems support two other primitives, inp and rdp. These are

non-blocking versions of in and rd. Instead of blocking they return a value to

indicate no tuple was found. Linda is only concerned with communication, and

therefore the computation elements of a parallel language are provided by a host

languages, such as C, C++, ISETL[DRW95], Fortran etc.

The Linda model is intended to be an abstraction, and as such is inde-

pendent of any speci�c machine architecture. This has meant that alternatives

and extensions to the Linda model have been proposed and investigated. One

important suggestion has been the addition of multiple tuple spaces.

1.1.1 Multiple tuple spaces

The incorporation of multiple tuple spaces has been discussed for some time.

Schemes based on hierarchies of tuple spaces have been suggested[Gel89, Hup90]

as well as one with a mixture of
at and hierarchical tuple spaces[Jen93].

However, for the purpose of the work described here, how multiple tuples spaces

are added to the model is not important { only the fact they are available.

1.1.2 Additional primitives

When multiple tuple spaces are added to the model, there is a need to consider

if new primitives are required to manipulate tuple spaces rather then tuples. For

example, it has been proposed[NS93] that a copy and a move primitive should

be added. The copy primitive would copy all tuples from one tuple space to

another, whilst the move primitive would move all tuples from one tuple space

to another. Such primitives although appearing simple additions to the model

(particularly from a kernel implementors point of view), may not necessarily

provide the kind of information that a Linda programmer may require and,

indeed, have serious semantic problems.

1

Sometimes referred to as an anti-tuple.

2

At the University of York we have added the following two primitives, which

although super�cially similar to move and copy have important semantic di�er-

ences. They provide information which is useful to a programmer and overcome

fundamental problems in the model.

collect Syntactically

2

the collect[BWA94] primitive can be represented as:

collect(ts1, ts2, template) where ts1 and ts2 are two tuple space

handles

3

and template is a template. The collect primitivemoves tuples

in ts1 that match template into ts2, returning a count of the number of

tuples moved.

copy-collect This new primitive is syntactically and semantically similar to

collect. copy-collect(ts1, ts2, template)[RW96] copies all avail-

able tuples that match the given template in the source tuple space (ts1)

to the destination tuple space (ts2). As with collect it returns a count

of the number of tuples copied.

One justi�cation for collect is that it provides information about the num-

ber of tuples of a particular format { more information can be found in [BWA94].

The justi�cation for copy-collect is that it solves the multiple rd problem.

Both a description of copy-collect and the multiple rd problem can be found

in [RW96].

2 Overview of other implementations

In order to implement a Linda system there needs to be some sort of underlying

control system, which we shall call a kernel. Kernel implementations fall into

one of two categories which we describe as open and closed implementations. A

closed implementation is one where all processes that are to interact must be

known about at compile time. An open implementation is one where processes

can join and leave the kernel at will, and therefore can be compiled separately

(and indeed can be written in di�erent languages). The usual di�erence between

open and closed kernels is that the closed kernels can use information derived

at compile time for optimisations. Open implementations are often considered

advantageous because it would be possible to use persistence of tuple spaces to

a programmer advantage. A persistent tuple space can e�ectively be used as a

long term store for information that will be required in the future.

The �rst implementations of Linda were produced by Yale University and

were all closed systems[Car87, Lei89, Bjo92] using precompilers to gain informa-

tion about the use of tuples which could be used to distribute tuples intelligently

and retrieve them quickly. Since then there have been numerous other imple-

mentations largely based on the work of [Bjo92]. Distributed servers provide

a mechanism for the kernel to store tuples. Processes then communicate with

these servers to retrieve tuples. The exact way in which tuples are stored on

2

Using a C-Style syntax.

3

A tuple space handle is a unique handle associated with each tuple space.

3

to the servers is normally dependent on tuple contents, size and other such

information.

To incorporate multiple tuple spaces the kernels normally tag tuples with

the name of their containing tuple space. Depending on the implementation

requirements this extra �eld is then either used or not used in the hashing pro-

cess. We will refer to all implementations that fall in this category as traditional

implementations.

The implementation described in [NS94] is based on the work of [Jen93] on

multiple tuple spaces. It is particularly interesting because they introduce the

concept of special tuple spaces which allow the programmer to tag a tuple space

with a special descriptor, such as: local tuple space, compiled tuple space,

replicated tuple space, and so on. This allows a kernel to use this explicit

information to improve performance. However, the explicit declaration of tuple

space \types" seems to complicate the model. It also raises the interesting

question of how do you alter the type of a tuple space? If a tuple space is

declared as local - can it subsequently change its type to compiled?

3 The novel implementation technique

Our new implementation builds on the concepts of [NS94] except that tuple

spaces provide implicit information about which processes are likely to consume

tuples. The implementation is therefore focused on tuple spaces rather than

tuples. The kernel is able to classify every tuple space as either a local tuple

space or a remote tuple space on the
y. A local tuple space is one which can only

be accessed by one process. A remote tuple space is one that many processes

can access. Our prototype implementation

4

uses a slightly more restrictive

de�nition, where if a tuple space handle is contained in a tuple which is placed

in a remote tuple space then the tuple space referred to has to become a remote

tuple space, and once a tuple space is a remote tuple space it can not become

a local tuple space. An earlier University of York implementation[DWR95,

RDW95] used a \traditional" approach. However, experimental work showed

that with the addition of multiple tuple spaces programming styles began to

alter in many circumstances. However, the general use of tuple spaces followed

a similar pattern. Therefore, not allowing tuple spaces to be local once they

have been remote is not currently a problem as it rarely happens.

Figure 1 shows several processes and tuple spaces, and indicates the di�er-

ence between remote and local tuple spaces.

Once a tuple space is classi�ed, this controls where its tuples are stored.

If the classi�cation for a tuple space changes then its tuples are moved to the

correct storage place for that tuple space and that format of tuple.

It should be noted that making this distinction between local and remote

tuple spaces does not alter the semantics of the Linda model. Therefore, from

a user's point of view there is no distinction between a local and remote tuple

4

Our current prototype implementation is built on top of PVM version 3. For more in-

formation on PVM see [SDGM94].

4

Process One

Process Two Process Three

Key:

Local tuple space

Remote tuple space

Figure 1: Diagram showing the relationship between local and remote tuple

spaces.

space. To this end all local tuple spaces could be treated as remote tuple spaces

and the implementation would degenerate into a \traditional" kernel.

Figure 2 shows the general structure of the kernel. The kernel has two

distinct sections, a set of Tuple Space Servers and a number of Local Tuple

Space Managers. These are now described in more detail.

Tuple Space Server The Tuple Space Server (TSS) is a stand alone process

which acts as a tuple server. It receives tuples and requests for tuples and

services them. All remote tuple spaces are stored on a TSS or on a set of

TSSs. The precise method of distributing the tuples is not important, and

a number of schemes could be used. In this implementation a method sim-

ilar to that used in the original York kernel is used[DWR95, RDW95]. It

should be noted that tuple spaces never migrate from one TSS to another,

but tuples from the same tuple space may be distributed over several TSSs.

Local Tuple Space Manager The Local Tuple Space Manager (LTSM) is the

part of the kernel which is able to dynamically (with no inter-process com-

munication) information about which tuples spaces are local and which are

remote. The LTSMs therefore control all movement of tuple spaces. A

tuple space will only ever migrate from a TSS (or set of TSSs) to a LTSM

or vice-versa. The LTSM stores all local tuple spaces which are local to

its process. The LTSM is not a stand alone process, it merely exists as

a set of procedures linked unto each user process { this does not require

any form of inter-process communication between the LTSM ad its user

process, not even interrupts or signals.

When tuple space operations occur the LTSM checks internally to see if

the tuple space is a local tuple space. If it is, then the operation is performed

on the tuple space (stored in a data structure within the LTSM). There is

no communication with any TSS. If the operation is on a remote tuple space

then the LTSM contacts the relevant TSS (or TSSs), and awaits a reply if the

operation requires it. Whenever a tuple leaves a LTSM to go to a TSS the tuple

is checked to see if it contains a tuple space handle. If any tuple space handles

exist then the kernel checks to see if the handle is for a local tuple space. If it

is, the tuple space is moved to a TSS or a set of TSSs.

However, the crucial point is that both the operations of collect and

copy-collect are slightly di�erent. Where they are performed depends on

5

Tuple Space
Server

Tuple Space
Server

Tuple Space
Server

Tuple Space
Server

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

User Process

User Process

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

User Process

Local Tuple
Space Manager

The Kernel

Figure 2: Diagram showing the layout of the kernel.

the status of the two tuple spaces used as shown in Table 1. If the operation

requires a tuple space to be moved to a LTSM, the LTSM will send a request

for the tuple space to the relevant TSS(s). If the result requires a tuple space

to be moved from a LTSM to a TSS then the tuple space is automatically sent

by the LTSM (as it is if a tuple leaves the LTSM containing a handle of a local

tuple space).

Source tuple space

Local Remote

Local LTSM TSS(s)

Destination (Result to LTSM)

tuple space Remote LTSM TSS(s)

(Result to TSS)

Table 1: Table showing where collect and copy-collect operations should

be performed.

When no tuple space movement is needed there is no movement of tuples

between one LTSM and another, or indeed between one TSS and another. In

other words when a copy-collect is performed by the TSSs, no tuples will ever

be moved from one TSS to another.

The only other occasion when the bulk movement of tuples occurs is when a

tuple space handle for a local tuple is placed in a tuple in a remote tuple space.

In this case the local tuple space referred to will become a remote tuple space

and will be moved from the LTSM on which it was resident to a single or set of

TSSs.

This gives a brief overview of the implementation. There are many details

that we have omitted due to the nature and size of this paper. For example in

the implementation we achieve parallelism between user computation and the

receiving of tuple spaces in the LTSM. Also we often never need to insert tuples

into the local data structure and can read them straight out of the message

6

bu�er. All these things help to make the implementation fast and e�cient.

Now we consider in detail what properties our implementation has that allows

it to achieve a speedup over other implementations.

4 Obtaining speed

It might seem strange that a kernel that requires the bulk movement of tuples

can achieve a speed up over traditional implementations. This happens because

of two factors, which we now describe in more detail.

4.1 Packet sizes

When a tuple space is being moved from a TSS to a LTSM or vice-versa it

is possible to control how many tuples are packed into a single packet . By

examining the characteristics of network communication it is possible to see

exactly how this can increase the performance of the system. The characteristics

measured here are derived using PVM, running over two Silicon Graphics Indy

workstations connected using a non-dedicated 10 Megabit per second Ethernet.

Figure 3(a) shows the time taken to send messages of between 0 and 1

Kilobyte, and Figure 3(b) shows the time taken to send messages of between

128 bytes and 100K in size. Figure 3(c) shows the bandwidth in megabytes per

second that is achievable for messages of sizes between 0 and 1 Kilobyte, and

Figure 3(d) shows the bandwidth for messages of between 128 bytes and 100K

in size. This clearly shows that as the message size increases the bandwidth

increases. A packet size of about 30K seems to produce the best performance.

Figure 3(e) shows the time that it takes to send a single byte in a message for

messages of sizes between 0 and 1 Kilobyte, and Figure 3(f) shows the time that

it takes to send a single byte in a message for messages of between 128 bytes

and 100K in size. These demonstrate that the cost of sending bytes signi�cantly

drops as more bytes are packed into a message.

Therefore, the ability to pack several tuples (or indeed several hundred

tuples) into a single message allows the message sizes to be increased achieving

better performance. In many of the domains where we use Linda it is not un-

common to have tuples containg just a few elements, with a total size of under

50 bytes (in our implementation this would be the size of a tuple with nine

integer �elds for example). Therefore the cost of sending these little tuples is

very large compared with the cost packing them into 30K packets and sending

them.

7

1.2

1.4

1.6

1.8

2

2.2

2.4

0 128 256 384 512 640 768 896 1024

T
im

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

(a) Latency for messages from 0 bytes

to 1K in size.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Message size (Kilobytes)

(b) Latency for messages of 128 bytes

to 100K in size.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 128 256 384 512 640 768 896 1024

B
an

dw
id

th
 (

M
eg

ab
yt

es
 p

er
 s

ec
on

d)

Message size (bytes)

(c) Bandwidth versus messages size for

messages from 0 bytes to 1K.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (

M
eg

ab
yt

es
 p

er
 S

ec
on

d)

Message size (Kilobytes)

(d) Bandwidth versus messages size for

message sizes of 128 bytes to 100K.

0

20

40

60

80

100

120

140

160

180

0 128 256 384 512 640 768 896 1024

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

(e) The time taken to send a single byte

for messages from 0 bytes to 1K.

0

2

4

6

8

10

12

1 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (Kilobytes)

(f) The time taken to send a single

byte for messages size from 128 bytes

to 100K.

Figure 3: The Ethernet network pro�le.

8

4.2 Less communication

By ensuring that a tuple space is stored locally if it is only accessed by a single

process that, we reduce the number of messages that need to be transmitted to

the tuple space servers. In traditional kernels every in or rd would require two

messages between the process and the tuple space servers. The �rst message

is from the process to the tuple space server with the speci�ed template, tuple

space and any other information the tuple space server may require. If the tuple

space server has the tuple it will then return it, requiring the second message. If

the tuple space server does not contain the tuple then further communications

may be required in order to check that no other tuple space servers have a

matching tuple.

In our system if the tuple space is stored in the LTSM, then there is no

need for any communication between the LTSM and the TSS(s). Therefore,

even if there was no saving on the time to bulk move the tuples as a group

and it was only possible to transmit them individually from the TSS to the

LTSM, there will be fewer messages if at least 50% of the tuples transferred

are required. This is because the number of messages required to move a tuple

space of N tuples to the LTSM will be 1 +N messages, whereas if the tuples

were individually fetched from the tuple space server the number of messages

required would be 2N . If the tuples can be packed into larger messages then the

number of messages required will be lower. By looking at the characteristics of

actual programs we speculate that in those using collect and copy-collect

it is most likely that all the tuples transferred will be used.

Reducing the number of requests that a TSS gets also has further advantages.

It is common in most implementations for individual servers to saturate. That

is they receive more messages per second than they can process, so a queue

forms. These are often referred to as hot spots. By lowering the number of

messages being sent to the TSSs we are lowering the load on each TSS so the

chances of it saturating drop.

5 Experimental results

In order to demonstrate the performance of our kernel we compare the perform-

ance with the LTSM enabled and disabled. When the LTSM is disabled the

kernel degenerates into a \traditional" implementation, where all tuple spaces

are always remote tuple spaces and therefore distributed across the TSSs.

For the experiments C was used as the host language. Two Silicon Graph-

ics Indy workstations were used, with a 10 Megabit per second Ethernet non-

dedicated connection. We used only two workstations because there is no sig-

ni�cant di�erence in the results using more workstations, and as each of the

experiments outlined here involve a single process there seems little point in

using more workstations.

Table 2 shows the times (in seconds) taken to perform two experiments.

Experiment One shows the time taken to place 1000 tuples in a tuple space

9

Experiment One Two

LTSM Disabled Enabled Disabled Enabled

out 2.890 2.861 2.769 0.018

in 3.224 3.227 3.270 0.017

Total 6.114 6.087 6.039 0.035

Table 2: Local tuple space access versus remote tuple space access.

using out and then retrieve them (in any order) using in. The tuple space used

is forced to be a remote tuple space. As can be seen there is no signi�cant

di�erence in the time taken when the LTSM is enabled or disabled. This is

expected, because the tuple space is a remote tuple space. Experiment Two

shows the time taken to perform the same experiment as in Experiment One,

except the tuple space is not forced to be a remote tuple space. In this case

when the LTSM is enabled it detects that the tuple space is a local tuple space

and stores it locally, creating a large speed up over the case when the LTSM is

disabled.

Experiment Three Four Five

LTSM Disabled Enabled Disabled Enabled Disabled Enabled

out 2.802 0.018 2.770 0.018 2.769 2.767

collect n/a n/a 0.007 0.038 0.007 0.007

in 3.303 3.877 3.258 3.670 3.255 0.056

Total 6.105 3.895 6.035 3.726 6.031 2.830

Table 3: Transfer characteristics between local and remote tuple spaces.

Table 3 shows the times (in seconds) taken to perform Experiments Three,

Four and Five. Experiment Three shows the time taken to place 1000 tuples in

a tuple space using out, then place in UTS

5

a tuple containing the handle of that

tuple space and then retrieve them (in any order) using in. This quite clearly

shows that the time taken to perform the operation is less when the LTSM is

enabled. This is because, when the movement of tuple occurs (as the tuple is

placed in the UTS), the tuples are packed into larger packets for dispatching to

the TSSs. What is important is that it is quite clear that the LTSM does not

slow the system down when such an operation occurs. Experiment Four shows

the time taken to place 1000 tuples in a tuple space using out, then collect

them all into UTS and then retrieve them from UTS (in any order) using in. As

one would expect the times are comparable to those of Experiment Three, as

essentially the same tuple space \movements" are occuring. Experiment Five

shows the time taken to place 1000 tuples in a tuple space using out in UTS, then

collect them all into a tuple space and then retrieve them from this tuple space

(in any order) using in. The tuple space used to store the collected tuples is

a tuple space that is local. This is an important operation, as it represents the

5

UTS is a universal tuple space, which all processes have access to.

10

communications behaviour of the basic operations that a process has to perform

to overcome the multiple rd problem[RW96].

These results demonstrate the e�ect that LTSM has on the execution time

for a number of speci�c examples. We have shown that the LTSM does not slow

the kernel down, and that when used it provides speed increases for bulk tuple

operations.

We now consider how our kernel performs against other kernels. The kernel

performs better than the original York kernel[DWR95, RDW95]. It has been

shown that the old kernel performs better than Glenda

6

[RDW95]. Therefore,

this kernel will perform better than Glenda! There is also a commercial version

of Linda available, called C-Linda

7

[Ass95]. This is one of the implementations

that uses a pre-compiler and optimiser and is therefore a closed implementa-

tion and is based on the work on implementations at Yale University, USA. It

does not support multiple tuple spaces, providing only a UTS

8

. Because of the

restriction that the program must be \complete" at compile time it is able to

do a large number of optimisations, such as determining which processes can

consume tuples, how to optimally store and search for tuples. Therefore, per-

sistent kernels are not normally compared to it as they can not normally be

so highly optimised. However, our new kernel implementation can, in many

circumstances compete with the performance of SCA C-Linda. In order to

demonstrate the advantages of our kernel we consider the implementation of

an image processing algorithm, the Hough Transform. The Hough transform is

an interesting algorithm for many reasons, but primarily because the parallel

implementation of it is not trivial using the standard Linda primitives because

it su�ers from the multiple read problem. We use it as an example because the

amount of communication required is high and the amount of computation is

not large. Therefore, the time it takes re
ects the communication properties of

the underlying system.

5.1 The Hough transform

We now brie
y consider the basic Hough transform for detecting straight lines,

as an example of a real application where the use of the our kernel is faster than

the SCA C-Linda.

The Hough transform maps a binary image pixel, (x; y), in the coordinate

space to a curve in the parameter space (or Hough space) which can therefore

be represented as a set of coordinates in parameter space. The version of the

Hough transform which will be considered here is described by the following

equation, where (�; �) pairs represent solutions of the equation given a speci�c

(x; y).

x cos � + y sin � = � (1)

6

A public domain implementation of Linda also running on top of PVM.

7

Available from Scienti�c Computing Associates, One Century Tower, 265 Church Street,

New Haven, CT 06510-7010, USA.

8

This is called the global tuple space on C-Linda.

11

For each pixel (x; y) in the coordinate space the set of (�; �) pairs de�ne a

sinusoidal curve in the parameter space. The range of � is �90

�

and the range

of � is D to �D where D is de�ned as:

D = max(x; y;

p

2

2

x+

p

2

2

y) (2)

Given two points in coordinate space, the equation of the line joining them

is determined by the point of intersection of their corresponding curves in para-

meter space | the (�; �) value at the intersection determines an equation of the

form of (1). Therefore, in order to detect the straight lines in an image, the

parameter space is examined for intersections, and the number of curves that

intersect at a particular point is equal to the number of image pixels lying on

the line so determined. The Hough transform therefore consists of two stages

| the transform from coordinate space to parameter space, and the subsequent

processing of parameter space. In this paper only the transformation stage will

be considered. Figure 4(b) shows the resultant parameter space for the simple

image shown in Figure 4(a). A more detailed description of the Hough transform

can be found in [GW87].

(a) Binary image

-15

-10

-5

0

5

10

15

-80 -60 -40 -20 0 20 40 60 80

(b) Parameter space after Hough transform

Figure 4: A simple image and its Parameter space after the Hough transform

It was necessary to use two slightly di�erent approaches to implementing

the algorithm, because the SCA C-Linda only has a single tuple space and does

not support collect or copy-collect. However, two implementations of the

Hough transform were conceptually similar, with the same number of tuples

being processed and a similar number of tuple operations required.

Table 4 shows the execution times for the Hough transform using four Silicon

Graphics Indy workstations connected by a 10 Megabit per second Ethernet.

As can be seen our kernel with the LTSM enabled is signi�cantly faster than

12

Our kernel with LTSM

SCA C-Linda disabled enabled

256x256 image

100% pixels set 523.20 seconds 670.48 seconds 56.32 seconds

(65536 pixels)

Table 4: Execution time for the parallel Hough transform.

either our kernel with the LTSM disabled and the SCA C-Linda. The speedup

achieved against the other versions is presented in Table 5. As can be seen there

is a signi�cant speed up against both the versions.

Our kernel with LTSM enabled speedup against

SCA C-Linda LTSM disabled

256x256 image

100% pixels set 9.3 11.9

Table 5: Speedup of the parallel Hough transform.

Due to the existence of the multiple rd problem[RW96] it is important to

compare the time when all the pixels are set, since the time that the imple-

mentation using SCA C-Linda takes is independent of the number of pixels set,

where as the time that the implementation running on our kernel takes is de-

pendent on the number of pixels set. Table 6 shows how our kernel with the

LTSM enabled compares over a range of pixel set densities. It quite clearly

shows how the set LTSM approach with the use of copy-collect to solve the

multiple rd problem provides signi�cant speed-up.

SCA Our kernel with LTSM LTSM enabled speed up against

C-Linda disabled enabled SCA C-Linda disabled LTSM

256x256 image

75% pixels set 523.37 559.03 42.61 12.3 13.1

(49152 pixels)

256x256 image

50% pixels set 510.92 447.14 26.39 19.4 16.9

(32768 pixels)

256x256 image

25% pixels set 514.47 337.91 15.19 33.9 22.2

(16384 pixels)

256x256 image

0% pixels set 520.59 182.15 7.46 69.8 24.4

(0 pixels)

Table 6: The advantages of using copy-collect.

It should be noted that with many algorithms the SCA C-Linda will perform

better than our kernel, simply because it is able to use information derived at

compile time for the placement of tuples. An ultimate implementation would

blend the two implementations into a single implementation, but it would be a

closed implementation.

13

6 Conclusion

We have presented a novel way of implementing tuple space based systems

(Linda) using the locality inherent in the use of multiple tuple spaces which can

be calculated cheaply on the
y using implicit information, without making the

programmer add any extra information. We have shown that such an approach

can lead to signi�cantly faster implementations.

Although the prototype implementation is complete there are many areas

where further work is needed. Currently all tuple spaces are classi�ed as either

local tuple spaces or remote tuple spaces. This is an e�ective way of introducing

simple locality information to tuple spaces. Work is currently underway aimed

at extending this principle to allow a larger classi�cation of tuple spaces, with

a view to creating kernels that will allow a large number of computers with a

wide geographical distribution to use them.

7 Acknowledgements

The authors wish to thank Andrew Douglas for his helpful comments and sug-

gestions. During this work Antony Rowstron was supported by a CASE stu-

dentship from British Aerospace Military Aircraft Division Ltd, and the EPSRC

of the UK.

References

[Ass95] Scienti�c Computing Associates. Linda: User's guide and reference

manual. Scienti�c Computing Associates, 1995.

[Bjo92] R. Bjornson. Linda on distributed memory multiprocessors. PhD

thesis, Yale University, 1992. YALEU/DCS/RR-931.

[BWA94] P. Butcher, A. Wood, and M. Atkins. Global synchronisation in

Linda. Concurrency: Practice and Experience, 6(6):505{516, 1994.

[Car87] N. Carriero. Implementation of Tuple Space Machines. PhD thesis,

Yale University, 1987. YALEU/DCS/RR-567.

[CG90] N. Carriero and D. Gelernter. How to write parallel programs: A

�rst course. MIT Press, 1990.

[DRW95] A. Douglas, A. Rowstron, and A. Wood. ISETL-LINDA: Parallel

programming with bags. Technical Report YCS 257, University of

York, 1995.

[DWR95] A. Douglas, A. Wood, and A. Rowstron. Linda implementation

revisited. In P. Nixon, editor, Transputer and occam developments,

Transputer and occam Engineering Series, pages 125{138. IOS Press,

1995.

14

[Gel89] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem,

and J.-C. Syre, editors, PARLE '89: Parallel Architectures and

Languages Europe. Volume II: Parallel Languages, pages 20{27.

Springer-Verlang, Lecture Notes in Computer Science Volume 366,

1989.

[GW87] R. Gonzalez and P. Wintz. Digital Image Processing, pages 130{134.

Addison Wesley, second edition, 1987.

[Hup90] S.C. Hupfer. Melinda: Linda with multiple tuple spaces. Technical

Report YALEU /DCS/RR-766, Yale University, 1990.

[Jen93] K.K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis,

Aalbrog University, Department of Mathematics and Computer Sci-

ence, 1993.

[Lei89] J. Leichter. Shared tuple memories, shared memories, buses and

LAN's { Linda implementations across the spectrum of connectivity.

PhD thesis, Yale University, 1989. YALEU/DCS/TR-714.

[NS93] B. Nielsen and T. Sorensen. Implementing Linda with multiple tuple

spaces. Technical report, Aalbrog University, Department of Math-

ematics and Computer Science, 1993.

[NS94] B. Nielsen and T. Slrensen. Distributed programming with multiple

tuple space Linda. Technical report, Aalbrog University, Depart-

ment of Mathematics and Computer Science, 1994.

[RDW95] A. Rowstron, A. Douglas, and A. Wood. A distributed Linda-like

kernel for PVM. In J. Dongarra, M. Gengler, B. Tourancheau, and

X. Vigouroux, editors, EuroPVM'95, pages 107{112. Hermes, 1995.

[RW96] A. Rowstron and A. Wood. Solving the Linda multiple rd problem.

In Paolo Ciancarini and Chris Hankin, editors, Coordination Lan-

guages and Models, Proceedings of Coordination '96, volume 1061 of

Lecture Notes in Computer Science, pages 357{367. Springer-Velag,

1996.

[SDGM94] V. Sunderam, J. Dongarra, A. Geist, and R Manchek. The pvm

concurrent computing system: Evolution, experiences, and trends.

Parallel Computing, 20(4):531{547, 1994.

15

