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Abstract

This thesis investigates techniques for the efficient iiiglietation of the Linda parallel process
coordination model foopen, distributeccomputing systems.

The principal focus of the research is on the use of the bulkement of tuples within open
systems which, contrary to intuition, can result in sigmifit efficiency gains for a large class of
problems. The emphasis opensystems — those in which future history of process creatimh a
deletion cannot be known at compile-time — is due to the curirgerest in extending the Linda
model to encompass widely distributed computing, as exéiegplby the ‘Network Computer’
notion. However, such open systems place severe constaairthe types of optimisation available
relative to closed systems — in particular, the very powerimpile-time analysis techniques
previously used are no longer feasible.

Methods for the construction of efficient Linda kernels atedduced based on a hovel method
of dynamicallyclassifying tuple spaces according to their locality, visadlows the run-time move-
ment of tuple spaces’ locations within the distributed ké&rrAn important consequence of the
proposed technique is that it does not require any ‘glolmdiirmation — it works solely on in-
formationlocally available to each component of the distributed kernel. Bgiraportantly, the
scheme is entirely transparent to the programmer, andftiiereequires no user-supplied ‘hints’
or ‘pragmas’.

The implemented kernel is fully distributed, consequettples within a particular tuple space
may be stored on several physical nodes. The kernel supgartdard Linda with multiple tuple
spaces, theol | ect primitive, and another primitive calletlopy- col | ect . The justification
for the addition ofcopy- col | ect is the multipler d problem which is described in detail in
this dissertation. No acceptable way of overcoming theiplalt d problem without the use of
thecopy- col | ect primitive has been published.

The performance of the implemented kernel is shown to befgigntly better than the perfor-
mance of a kernel that does not use the bulk movement of tugtelsthrough using a “real-world”
example the kernel is shown to provide, under some circurosta better performance than the
best commercially available closed implementation whisesuicompile time analysis.

Finally, an extension of the concept of classifying tuplacgs is presented, which generalises
the concept leading to a detailed proposal for a multi-ldyierarchical kernel, which is more
scalable than current traditional implementations.
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Chapter 1

Introduction

Linda was developed during the mid eighties by David Getg[@®el85]. The underlying philoso-
phy is that a complete programming model for parallel progrés created by two separate parts,
a computation model and a coordination model[GC92]. Themgdation model is provided by
a sequential programming language. The coordination misdeteded to allow the sequential
computation sections to coordinate and communicate. Lisdacoordination language which
supplies a number of operations or primitives that provigeability for sequential code segments
(processes) written in a sequential programming languagernmunicate. The Linda primitives
are normally embedded within the language to be usedhftkdanguage).

Linda uses a shared structure, calledgle spacéwhich is an unordered collection of tuples.
A tuple is an ordered collection of elements, with each elgrhaving a value and an associated
type. Processes insert tuples into the tuple spaces, aed mthcesses can then retrieve those
tuples using an associative matching process. The only natytwo processes can communicate
is via a tuple space, and Linda provides asynchronous cotication between processes. A fuller
description of Linda is given in Chapter 2. Linda provideshamred associative memgorigut
Gelernter[Gel85] states that:

Our new techniquélLinda] is closest to message passing, but the difference between
the two are as significant as the similarities.

Gelernter argues that Linda and the use of tuple spaces teadsew paradigm for process
communication and coordination callggnerative communicationGenerative communication
has two characteristiccommunication orthogonalitgndfree haming Communication orthog-
onality means that the receiver of a message does not knoehwhocess created the message,
and the sender of a message does not know which processaeiveghe message. Free naming
refers to the concept that any field within a message (tuple)e used to retrieve a message

!Also referred to as hagor multi-set
2This is discussed in Chapter 2 in greater depth.



2 CHAPTER 1. INTRODUCTION

Linda has a number of properties which make it attractive esardination language. The
property of communication orthogonality means that it fufgpprocesses that are spatially sep-
arated and temporally separatedhis means that two processes can communicate even if their
existence does not overlap (temporally separated), angtagesses can communicate without
knowing to which process they are communicating, or angthimout the address space of the pro-
cess with which they are communicating (spatially sepdjatenda is also a very simple coordi-
nation language, requiring only a few primitives to be aduaetthe host language and it is concep-
tually easy for people to use. These properties have lecetagh of Linda in many environments,
for many different and varied tasks. The success of Lindddubt® the development of at least one
commercial version, which in turn has facilitated the uskinfla by a diverse group of people from
academics to large Wall Street banks. The Linda primitiveagehbeen embedded into many dif-
ferent languages, including C[Car87, Nar89, Lei89], ISEIRW95, Has94], GoferfDRRW96],
and Fortran[YFY96]. There are many parallel applicati@aP3] that have used Linda, includ-
ing parallel ray tracing[MM91, BKS91], financial modelimfgf892, CCZ93, Cag93], real-time
data fusion[FGK 91], seismic applications[BS92], probabilistic fatiguealysis|[SLSC92], and
many others. More recently, as open implementations ofd.imave been produced, Linda has
been used in a number of applications in the domain of Com@&upported Cooperative Work
(CSCW), including using Linda to create shared distribwiemial environments for virtual reality
systems[Ams95].

All implementations of systems that use the Linda prim#jver more generally shared tuple
spaces, fall into one of two categories:

Closed implementations are ones which require information about all the procesgeshmwvish
to communicate via tuple spaces to be available when theraystiarts; and

Open implementations are ones which allow all processes to join and leave the reyatewill,
and do not require information about all processes whicth wiscommunicate to be avail-
able when the system starts.

All current implementations that are considered closedeémpntations have a further require-
ment, that all the source code must be available at compile.tiThis is because compile time
analysis is used to control many aspects of the run-timeesysincluding where processes are
placed and how tuples are distributed at run-time. Openemphtations allow processes to join
and leave freely without requiring them all to be presentoatgile time. Therefore, the run-time
system has to manage the placement of tuples and procedkesitwhe aid of information that
can be calculated at compile time. In open implementatioeagdmmunicating processes need not
even be written in the same language, and interpreted lgeguzan be used as well as compiled
languages.

3Also referred to as space uncoupling and time uncouplinoectively.



Closed implementations exist for many different platformaging from high performance
parallel computers (such as the Cray T3D) to networks ofrbgémous workstations. Closed
implementations which use compile-time analysis shou@ide better performance than open
implementations because of their ability to optimise the/ft tuples at run-time using informa-
tion about which processes can consume and generate tliplesundamental implementational
approach adopted for both the closed and open implememsdtias altered little over the years
despite the addition of new features to Linda.

Since its original inception Linda has evolved to includengnaxtensions. One of the main
extensions has been the addition of multiple tuple spae#88k The original model contained
a single tuple space, but most modern implementations sugimouse of multiple tuple spaces.
Multiple tuple spaces are important because they allowgsses and groups of processes to hide
information from other processes. When all processes shsirggle tuple space the process pro-
ducing the tuples has no control over which processes cathaseiples (coordination orthog-
onality). This is not a problem in dedicated programs (tgfycproduced using efficient closed
implementations). However, as the use of Linda is consititmemore general parallel computing,
distributed programming and Internet computing, the gbit hide tuples from other processes
becomes necessary. The introduction of multiple tupleesphas led to the question of whether
new primitives need to be added to the model.

In this dissertation the following two issues are addressed

e The sufficiency or otherwise of the original set of Linda gtives (given multiple tuple
spaces), and

e how can the bulk primitives afol | ect andcopy- col | ect be implemented efficiently
within anopenLinda implementation?

When multiple tuple spaces were first proposed, only a tupdees creation primitive was
proposed[Gel89]. However, the addition of multiple tupb@ses to Linda has inevitably led to
proposals of new primitives which rely on multiple tuple spa. Most appear to have been pro-
posed because they are either easy to implement or “appeaush

The addition of new primitives to the Linda model needs adrebnsideration. There should
be a strong justification for the addition of any new primé8v A number of criteria should be
satisfied; one is to demonstrate that the primitive is regulvecause the current primitives are
unable to perform an operation satisfactorily; and the s¢d® to demonstrate that the proposed
primitive does not simply move the underlying reasons wigydperation cannot be satisfactorily
performed into the implementation.

Other work at the University of York has shown the need for & r@imitive called
col | ect [BWA94] which uses multiple tuple spaces. In this disséstait is proposed that an-
other primitive,copy- col | ect, be added to Linda. Rather than just assume the need for such
a primitive, an identifiable operation that is difficult torfigm using the current Linda primitives
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is described (the multipled problem). The proposed primitive is then shown to solve ttobp
lem. Both thecol | ect primitive and the proposedopy- col | ect primitive are calledbulk
primitivesbecause they can manipulate more than one tuple in a singtatam.

Having shown that the proposed primitive is required the@ls question is how is the pro-
posed primitive implemented? Due to the relationship betveml | ect and the proposed prim-
itive, the techniques outlined for the implementation af iroposed primitive also work for the
col | ect primitive. Therefore, instead of asking, how is the proglogemitive implemented, the
more appropriate question is, how are both these bulk pviesiimplemented efficiently?

The implementation techniques used in Linda systems haaegehl little since the first im-
plementations despite the fact that new primitives (witlvithout justification) and multiple tuple
spaces have been added. Thus, when considering how therbulitiyes are implemented, a new
approach to tuple space implementation is proposed, whsiebimplicit information provided by
the bulk primitives, and by the general use of tuple spacésirwa Linda program to create an
efficient open implementation supporting the bulk pringgy An implementation for a network of
workstations using the implementation strategy outlireedresented with performance figures to
support the claim that the implementation strategy is béten traditional approaches.

1.1 Thesis Overview

Chapter 2 describes in detail the Linda model and its attributes. #cdbes some of the im-
portant extensions to Linda, including the addition of rimlét tuple spaces and proposed
primitives. A review of related and auxiliary work is alsepented.

Chapter 3 investigates thenultipler d problem A multiple r d is an operation that Linda is un-
able to express acceptably. A small example program is esslbiv the multiple d prob-
lem and show how current implementation strategies usiagtidindard Linda primitives to
overcome it are unacceptable.

Chapter 4 describes a new primitive for Linda callexbpy- col | ect. The purpose of the
primitive is to overcome the multipled problem. The example used in Chapter 3 is again
used to show how the new primitive solves the problem.

Chapter 5 investigates how a Linda run-time system can be producedhathkes full advantage
of the implicit information that the bulk primitives and ntiple tuple spaces provide. A
naive approach to implementing the bulk primitives baseda@imple extension of the
traditional implementation techniques is first discusgedovel approach is then presented
which usesmplicit information to move tuples around the system in advanceeif #ttual
use by a user process. An actual implementation for a netefavlrkstations is considered.

Chapter 6 the performance of the network implementation is showngugimumber of simple
examples and an image processing case study. The perfarisasisown to be better than
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other implementations including one that uses compile aimedysis (a closed implementa-
tion).

Chapter 7 is a discussion of how different programming styles cancettee performance of the
new approach, and how the generalisation of the technigessidled in Chapter 5 can be
used to overcome these different programming styles andd&@ more general run-time
system. A detailed proposal for a more general run-timeegyss able to cope with more
workstations which could be geographically separatedVaN computing) is presented.

Chapter 8 presents a number of conclusions about the research debanilbhis dissertation. A
number of future research questions which have arisen fnerwork described in this thesis
are also presented.

1.2 Contributions
The following contributions have been made in this dissiera

e experimental study of the limitations of Linda to perform altiple r d operation;

¢ the addition of a new primitive to Linda , with informal sentiaa (which can also be applied
to thecol | ect primitive) to overcome the limitation; and

e a novel run-time system for Linda, providing a number of wative features:

— a scheme to manage and perform the dynamic movement of taptetuple spaces
which is achieved by usingnplicit information provided from Linda programs to
achieve better performance; and

— a detailed description of the structure of a generalisedatdhical kernel, which is

scalable beyond the bounds of a local area network of wdiketa which utilises
dynamic movement of tuples and tuple spaces.
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Chapter 2

Related and background work

2.1 Introduction

This chapter presents a detailed review of Linda, followed Hescription of some of the proposed
(and adopted) extensions to Linda, including the additiomaitiple tuple spaces.

A number of important characteristics of Linda are then m®ered in detail, including the
role of thei np andr dp primitives, out ordering, the role of theval primitive, and non-
determinism. A detailed description of Linda implemertas is given in Chapter 5. An overview
of the properties of the implementations used in this diatien is given in Appendix A.

2.2 Linda

Linda[Gel85] is a process coordination language[GC92fcWlis based on the idea génerative
communication Linda as described here is based on Linda 2[CG89b] withipteiltuple spaces
added. The original Linda proposal[Gel85] (Linda 1) waghdliy different, and is described in
Section 2.2.3.

The fundamental objects of all the versions of Linda aredsigiemplates and tuple spaces:

Tuple A tuple is an ordered collection of fields. Each field has a tgpd a value associated
with it. A field with both a value and a type is known as an actddie same field can be
replicated many times within a tuple. The tuple:

<1Ointegera “Hello World”stm'nga 1Ointeger7 ]--Ofloat>

is a tuple containing four fields with the type of the field sinoss a subscript of the value.
The types of the fields are normally restricted by the languiaip which Linda is embedded.
Tuples are placed into tuple spaces and are removed from $pglces using an associative
matching process.
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Template A template is similar to a tuple except the fields do not nedubice values associated
with them, but all fields must have a type. A field that has ortlype and no value is known
as a formal, and a template is a tuple which can have formals.

The templates:

<|]-0'mtegera “Hello World”stringa 10integer7 ]--Ofloat |>

and

<|10integera Dstringa Dintegera 1-Ofloat|>

will match the tuple(10;pseger, “Hello WOrld” siring, 10integers 1.0 100t )- IN this dissertation
the symbold in a template is used to indicate that the field is a formalt bas no value. A
template is sometimes referred to asaati-tupldCar87].

Tuple space A tuple space is $ogical shared associative mematyat is used to store tuples. A
tuple space implementskag or multi-set and the same tuple may be present more than
once and there is no ordering of the tuples in a tuple spacigin@lly, Linda 2 had only
a single tuple space known as thbal tuple spac€GTS), however in the proposal for
Linda 3[Gel89] multiple tuple spaces were introduced. lpldttuple spaces are now widely
adopted, although in many different forms (see Sectiorip.3.

2.2.1 The Linda primitives

Gelernter[GC92] states that any parallel program can bidetivinto two sections: communica-
tion and computation. The communication section is pravidg a coordination language, such
as Linda and the computation section is provided bypstprogramming language into which the
Linda primitives are embedded. There have been many ditfémaguages from several program-
ming paradigms which have been used as host languageg]iigtiu

e C[Car87, Nar89, Lei89],
e C++,[CCH91],

e Pascal[YFY96],

e Fortran[YFY96],

e Lisp[YFY96],

e Prolog[Cia91, BW91],

o Eiffel[Jel90],
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e Scheme[Jag91],
e ISETL[DRW95, Has94], and

¢ Gofer[DRRW96].

This is not an exhaustive list, and there are many other edihgsl using both the languages
listed and languages which are not listed.

Processes are written using the host language. Differesitifiloguages manage processes in
different ways. In some implementations processes are etaputo functions and in others they
are mapped onto separate executable files. Regardless @ pmeess is created within the host
language the different processes can only communicateeaith other through tuple spaces using
tuples and the Linda primitives. The basic Linda primitifesich are embedded into the host
language) are:

out(ts, tuple) Theout primitive places a tupletple) into the specified tuple spaces)(

in(ts, template) Thei n primitive retrieves some tuple from the tuple space thatied the tem-
plate. If there is no tuple that matches the template themptingitive blocks until a tuple
that does match the template is inserted into the tuple sgdmematched tuple is removed
from the tuple space and returned to the user process.

rd(ts, template) Ther d primitive is similar to the n primitive, except the matched tuple which
is returned to the user processi removed from the tuple space. As with ihe primitive
when there is no matching tuple available tha primitive blocks until a matching tuple is
inserted into the tuple space.

eval(ts, active tuple) The eval primitive is included within Linda as a means of spawning-pro
cesses. Theval primitive creates a special tuple called an active tupleckvis a tuple
which contains one or more fields containing functions tleguire evaluation in order to
provide a value. The functions are evaluated concurrernitly thie process which performed
theeval primitive. When a field’s function has been evaluated thaltésinserted into the
active tuple. When all the fields in the active tuple that neeluating have been evaluated
the tuple becomes a passive tuple (like any tuple insertieg) tiseout primitive), which
can be accessed like any other tuple (see Section 5.3.2).

It should be noted that any primitive which blocks will cadlse process which performs the
primitive to block.

There are two more primitives which have been proposed byigtaCar87]. These are the
i np andr dp primitives, which are non-blocking versions of thie andr d primitives respectively.
If a tuple is not available then instead of blocking, the gtiva returns a value to indicate this.
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These primitives were not in the original Linda proposalg5¢, and are often not supported for a
variety of reasons (see Section 2.4).

There are currently no widely accepted formal semantichefliinda primitives, although
a number of proposals have been produced[But90, Jen93,5CX@W96, BJ96]. Most of the
proposals deal with providing a formal semantics for a paldir part of Linda. However, with
Linda constantly evolving the production of widely accebsemantics is difficult.

2.2.2 Tuple matching

Templates are matched to tuples using an associative matitiple 7 and a template\ match
when:

(ﬁ(T) - ﬁ(M)> /\(w (14T} s (50M) =157 ) A (M) =0T ¥ (1300) = D)))

is true, wheret;(Z) is a function which returns the type of field numpgeof tuple or templateZ,
v;(Z) is a function which returns the value of field numbeof tuple or templateZ, andf(Z) is

the cardinality of tuple or templafg. So, for a match to occur the number of fields in the template
must be equal to the number of fields in the tuple, for everd firelthe tuple the type of the field
must match the corresponding field type in the template, @hdrehe value of the fields must be
the same, or the template field must be a formal (have no value)

2.2.3 Lindal

When Gelernter[Gel85] first described Linda, it was in atgligdifferent form from the Linda that
has been described so far in this chapter. The primitivesvikee proposed in Linda 1 were the
i n,rd andout primitives. There were neval ,i np orr dp primitives. The other difference
was that tuples and templates used the concept of an identifich was a field attached to the
front of the tuple with a special type and was used as an fiteiton tag. This was necessary
because &uplewas allowed to contain formals. Matching on formals in tsplas not allowed,
S0 it was potentially possible to insert tuples that couldbematched, unless at least one field
was guaranteed to be an actual within every tuple, hencedifigdan of a identification tag which
was always an actual.

The ability to use all actuals present, rather than justdieatification tag, within a template
in the matching process was callsttuctured naming The properties thastructured naming
provides are the basis of tliee namingproperty required fogenerative communicatiomvhich
was introduced in Chapter 1.

By the time the first implementations were produced by Caf@ar87] Linda had become
Linda 2. The concept of being able to place tuples with fosmato the tuple space had dis-
appeared, which meant there was no need for identifier tagksabsequently these too were
removed.
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2.3 Linda extensions

Due to the nature of Linda there have been a number of prapésablterations and additions
to it. This has involved the creation of many new coordinafianguages based on the concepts
of Linda, including Bauhaus Linda[CGZ95], Piranha[ GJKI@I S-Linda[Jen93], Laura[Tol95a]
and Melinda[Hup90]. There have also been numerous impl&atiens of Linda which provide
extra primitives or features, including a special purposela machine[KACG87, ACGK88]. The
major suggestions of relevance and interest are now rediewe

2.3.1 Multiple tuple spaces

The concept of multiple tuple spaces was introduced by @lers part of Linda 3[Gel89].
Linda 3 added a types and a new primitive sc to Linda 2 to allow for multiple tuple spaces.
The idea of adding multiple tuple spaces has led to manyrdiifgproposals of how multiple tuple
spaces could be incorporated within Linda[Hup90, Jen93d, many implementations include
multiple tuple spaces in one form or another[DRW95, RDW9&s®!, NS93, Je096, Kie96].

Multiple tuple spaces were introduced as an effective wayidihg information. Information
within a tuple space camnly be accessed by those processes that know about the tupde gjsabe
use of Linda has changed to incorporate different stylessifibuted computing the need to hide
tuples has become increasingly important to ensure that ptiocesses do not either maliciously
or accidently tamper with the tuples that other processesising.

When multiple tuple spaces are added to Linda there are tporiiant questions: are the tuple
spaces first class objects, and what is the relationshipdestihe tuple spaces?

Tuple spaces as first class objects

Making tuple spaces first class objects has been proposedbynber of researchers, including
Gelernter[Gel89], Hupfer[Hup90] and Jensen[Jen93]. Hendew implementations support tu-
ple spaces as first class objects, although the MTS-Lind24Nig&plementation does and is based
on the work of Jensen[Jen93].

In general tuple spaces have not been widely adopted aslfisst abjects[Ass96, DRW95,
RDW95, Has94, Jeo96, Kie96]. This is because the ability amipulate entire tuple spaces as
first class objects raises many awkward questions, whick hiat/to be answered satisfactorily.
For example, what happens if a tuple space is removed by aess, whilst another process is
blocked on ari n primitive waiting for a tuple to appear in that tuple spacehathappens if a
process wishes to perform a tuple operation on a removed ggace? Can the removed tuple
space be manipulated within the user process, and if so halétr@er[Gel89] introduces the idea
of freezing tuple spaces, and then converting them to otier structures within the user process,
which would imply new primitives would be added to enable¢baversion to take place.
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The relationship between the tuple spaces

In some proposals tuple spaces are hierarchical[Hup9®9eh others they are flat structures
and in others a hybrid approach is used[NS94].

If the tuple spaces are first class, then this implies thaethél probably be some relationship
between tuple spaces, because tuple spaces will subslgdgoemiaceable inside tuples, and will
be inserted into other tuple spaces.

Melinda[Hup90] supports only a hierarchical system, whepde spaces are created within
other tuple spaces. In Melinda a tuple space is hamed by #re areating the possibility that
many tuple spaces can be called the same thing. If this gamogsanout primitive is performed
where more than one tuple space could be the destinatioa $yalce, then one is chosen non-
deterministically. This has the disadvantage that a psocaa no longer ensure that tuples it is
producing are being received by the intended process, e iththe potential that two unrelated
processes both create a tuple space with the same name camt@eess has no control over which
of the tuple spaces the tuples are being placed in. This saresd to unintentional deadlocks. For
example, consider a process that creates a tuple spaces plégple into the tuple space, and then
retrieves that tuple. If the tuple space it creates is najuaithen the process can not guarantee
retrieving the tuple it inserted, and could therefore deek|

MTS-Linda[NS94] supports hierarchical tuple spaces andttiple spaces. The hierarchi-
cal tuple spaces are created by allowing processes to drgaeespaces which are considered
as belonging to a process. The process can spawn a procegs thése tuple spaces, and the
spawned process sees the tuple space as its parent tupde #ptuple space which is local to a
process can bduplicatedin the parent tuple space, by placing a tuple within the garentain-
ing the tuple space. The flat tuple spaces that MTS-Linda suppoet similar to the flat tuple
spaces used by Douglas et al.[ DRW95, RDW95], SCA Paradss8|g], ProSet-Linda[Has94],
and PLinda[Je096]. Within all these approaches a tupleesigacreated. A tuple space handle is
returned to the process which created the tuple space. plegpacéandlecan then be passed
to other processes in tuples, and if a process has a tuple bpadle it is able to access the tuple
space. The tuple spaces are not first class objects, jusighledpace handles. Therefore, if two
tuple space handles are checked for equality, this cheekgttby refer to the same tuple space,
but does not compare ttententsof the tuple spaces to which the handles refer. Some of the
implementations support the concept of a parent tuple spaeeprocess. This can be seen as the
tuple space into which the active tuple which contains thetion (process) is placed. If a flat
structure of tuple spaces is being used it is common to iechuae (or more) global tuple spaces.

Tuple spaces used within this dissertation

The work presented within this dissertation requires mldtiuple spaces, but is generally in-
dependent of the way in which multiple tuple spaces areg@lal flat tuple space structure is
assumed, where a tuple space is unrelated to any other pgote.slf two processes are to share
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a tuple space, then the tuple space handle is passed betvegamotesses through another shared
tuple space, or by one process passing the tuple space femnaiteargument to the other process
when it is spawned. Tuple spaces are assumed not to be festaligects and tuple spagssnnot
be copied into local data structures within a user procesbeduple space handles can be seen
as pointers to a tuple space. Processes do not have a palergpgace, but there is a single tuple
space which all processedwayshave access to, called tiniversal Tuple Spac@JTS). It is
assumed that tuple spaces are unique, and therefore, dayshare handle can only refer to a
single tuple space at any one time.

A flat tuple space structure is used because of the issuesdhataised in the last two sections,
concerning tuple spaces as first class objects and hietatd¢hple spaces.

In order to allow the creation of tuple spaces a primitivedded to the basic Linda primitives
(as presented in Section 2.2.1), and a type for tuple spamtidsais also added.

2.3.2 New primitives

New primitives are normally proposed either to provide drefierformance or extend the func-
tionality of Linda. An overview is now presented of some oé thrimitives which have been
proposed. They are divided into either primitives whichvide more functionality or primitives
for performance.

Primitives to provide more functionality

Primitives are often added to Linda when multiple tuple ggadtave been incorporated, because
the addition of multiple tuple spaces introduces the pdggibf new coordination constructs. All
the primitives described in this section could be classifietbulk primitives which manipulate
more than one tuple at a time.

The first two primitives were added to the standard Linda jiies in MTS-Linda[Jen93,
NS93, NS94]. The original description of MTS-Linda[Jen@Rles not include either of these
primitives, but the implementation[NS93, NS94] of MTS-taincludes both of them.

e copy_contentsfsl, ts2) This primitive copies allthe tuples present in tuple spacel to
tuple spacé s2.

e move contentsfsl, ts2) This primitive moves allthe tuples present in tuple spacel to
tuple space s2.

The next primitive was proposed at the University of York hytéher et al.[BWA94] and was
first implemented in the York Kernel | by Douglas et al.[DRW9%he primitive is seen by the
authors as a replacement for and generalisation of, bothrtheandr dp primitives.

e n = collect(tsl, ts2, template) This primitive movesall the tuples that match the template
from tuple space s1 to tuple spacd s2, and a count of the number of tuples moved
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is returned. This primitive is similar to theove_cont ent s primitive except it uses a
template to match the tuples and returns a count of the nuofiteples moved. A more
detailed discussion of theol | ect primitive is presented in Chapter 4.

The next primitives are all similar in function, and were posed by Anderson et al.[AS91].
However, they have never been described as implementeceipuhlished literature. Simi-
lar primitives have been considered by researchers at Yaleetsity, which they refer to as
r d* /i n* [Car95] and n-loopsf d-loops[Lei89].

o rd(template)all(function)
¢ in(template)all(function)
¢ rdp(template)all(function)

¢ inp(template)all(function)

These primitives iterate through all the tuples that matehtémplate, and apply the func-
tion to each matched tuple. Whether the tuples are removedtodepends on whether
thein()all orrd()all primitive is being used. The example given in Anderson et
al.[AS91] is:

/* sumthe count field of all tuples matching
the tuple pattern */

int i, sum =0;

i np("exanple 8", "count", ?i)all {sum+=i;};

which iterates through all the tuples which match the tetepld‘example 8.,
“count”siping,s Dinteger|), SUMMIng the third field. When the primitive terminates the

variablesumwill contain the result.

The next two primitives are suggested as part of Objectind&iKie96]. Although not directly
using multiple tuple spaces, the primitives can return nibam one tuple in a single operation,
hence making it a bulk primitive.

e rd(min, max, template, timeout)

e in(min, max, template, timeout)

These primitives are extensions of the traditional Linaaandr d primitives. The idea is
to extend the primitives to deal with multiple tuples, saéasl of returning a single tuple a
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multi-set (tuple space) of tuples is returned. The figlds andmax refer to the minimum
and maximum number of tuples the primitive is to return, ¢fiere effectively providing a
way to bound the number of tuples matched. A traditianalprimitive would be emulated
by setting both the fields to one. The neout field allows the time that the primitive
can block to be controlled. If this field is zero, and tien and max fields are set to
one a traditional np primitive is emulated. The addition of timeouts to a prinstis not
necessarily desirable as it is unclear as to exaeligitis being timed[RW97].

The primitives described in this section are of particutaeliest because of their potential for
overcoming the multiple d problem introduced in Chapter 3. A description of the ddferes
between these primitives and the proposed primitive in @wapis given in Section 4.6.

Primitives for performance

These primitives have been proposed to increase the penfmenof Linda systems. In general,
it is possible to emulate them using the current Linda pim@ét. The motivation behind most of
these primitives is to allow implementations that do not cm@pile-time analysis to use some of
the optimisation techniques achievable when compile-amedysis is used.

o Wr

The motivation for this primitive comes from the use of tugdplication in run-time systems
to achieve faster tuple access times, and is proposed by Atedl.[WC95]. A Linda run-
time system must ensure that if a single tuple is placed ipla tpace, that tuple can only be
destructively removedince. In implementations using compile-time analysisyidissible to
check if a tuple is only non-destructively read (in other dgonly ther d primitive is used to
access the tuple). Ifitis known that the tuple is only nostdectively read then the tuple can
be replicated as many times as the implementation wantaubedhe control of replicated
tuples is simple. This optimisation is only normally usectiosed implementations as all
the processes which communicate need to be present at eotinpd to determine which
processes can access the tuple and how they access it. linggementations the costs of
managing replication of tuples usually outweighs the athgas, because of the arbitration
needed to ensure only one process can destructively rentopéefiFaa91l].

Wells et al.[WC95] suggest the addition of the primitive (or write primitive) which in-
dicates that the tuple will bmainly non-destructively read. Semantically, @ant primitive
and awr primitive are the same, both insert a tuple into a tuple spdbe idea is that an
out /i n pair is cheap and ar /r d pair is cheap. However, amut /r d is more expensive
than awr /r d and awr /i n is more expensive than arut /i n. Thewr primitive provides
a hint to the run-time system that the replication of a tupladceptable. If a tuple can be
replicated then possibly every store of tuples can contaniuple. Hence, the finding of the
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tuple within a run-time system is chepmvidedthe tuple does not need to be removed. If
the tuple has to be removed then there is significant corgoplired, to ensure that a repli-
cated tuple is not destructively removed more than oncecélamr /r d pair is cheap, but
awr /i n pair is expensive. The onus is then placed upon the prograrmmuzcide which
pairings to use to obtain the best performance. It shouldbedrthat if the run-time system
decides not replicate the tuple (and treat the operatiom @it primitive) the semantics
of the program will not be altered. Also, wheneveraut primitive is used aw primitive
could be used and the semantics of the program will not beedlte

add

This primitive was proposed by Carreira et al.[CSS94], amhables a field within a tuple
to be updated in a single action, without the need to remoupla,tupdate it and return it to
the tuple space. The motivation for this primitive is theeation that a tuple is often used
as a shared global counter. In order for a process to incre(oenlecrement) the global
counter, it has to destructively remove the tuple using amprimitive and then replace the
tuple with the updated counter value usingaart primitive. Theadd primitive removes
the need for the tuple to be returned to the process by alipavivalue to be specified which
is added to the appropriate field in the tuple. However, €aret al.[CG90b] states:

Optimising idioms.
Tuple space operations are often used in standard patterishwthe pre-
compiler can detect and the partial-evaluator support vafitimised code. One
important pattern is the following:

in(fields);

out(f(fields));
That is: remove a tuple, change some of its fields and thensertiit. A simple
case is the atomic update of a counter:

i n( Count er Nanme, ?val ue);

out ( Cout er Nane, ++val ue);

The premiss is that open implementations cannot perfornpiestime analysis. However,
the compile-time analysis required to detect this doesrequire all user processes to be
present at compile time, or to be present when the run-timtesy starts executing. This
means that the optimisation using compile-time analysiddcbe incorporated within open
implementations effectively. The need to add explicit infation to Linda programs by
Linda programmers should be avoided unless absolutelyssane

e update
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This primitive was also proposed by Carreira et al.[CSS®dlia similar to theadd prim-
itive. The principle of this primitive is similar to thadd primitive except a new tuple to
replace the old one is specified rather than an incrementgarteular field.

The semantics of thepdat e primitive are unclear, but as with tlad primitive the same
sort of compile-time analysis should make the optimisatidrat are suggested by Carriero
et al.[CG90b] applicable to this primitive.

In Chapter 5 a deeper discussion about the addition of éixjpiformation to Linda programs
is presented.

Miscellaneous primitives

There are some proposals for primitives that are not redlssdiable as either performance prim-
itives or primitives which provide extra functionality.

e cancel This primitive was proposed by Banville[Ban96], and enalidockedi n andr d
primitives to be “unblocked” by another process. The peagtineed that justifies the ad-
dition of this primitive is for a process blocked on &n or r d primitive to be able to be
“unblocked” by another process. Therefore, if a proces®p®s ani n primitive using the
template(|“work” s¢ring, Dinteger|) @another process can perforntancel primitive using
the templaté|“work” s;,ing, Dinteger |) @nd the process blocked will become unblocked. The
i n primitive returns a value to indicate thatancel primitive caused thén primitive to
become unblocked, not a matching tuple.

The need for such a primitive appears unclear. Most Lindgrnaraomers would use an
out primitive to place a tuple in the tuple space which matchestéimplate. This is the
basis of “poison pill” programming style that is in commoreus Linda programming (see
Section 4.7). The process that reads the tuple checks td $eetuple contains a “poison
pill” and if so acts accordingly. Theancel primitive seems to add nothing, except to be a
higher level construct compared to the “poison pill”. Theqass performing theancel
primitive has to be aware of the template that the blockeahifivie is using, and therefore
should be just as able to generate a tuple to match it as adamphfter the use of the
cancel primitive the process which becomes unblocked has to clieséd if a valid tuple
was found or if acancel primitive unblocked it. It could just as well check to see if
the “poison pill” was present within the tuple. The only amgent for using theancel
primitive is that the process which consumes the tuple aontathe “poison pill” may have
to replace it in the tuple space, in case other processessarblacked waiting for a similar
tuple, and with a&ancel primitive this does not have to be done.

The last three primitivesadd, updat e andcancel ) are examples of primitives that have
been proposed which are potentially unnecessary. Itisiitaptthat the addition of new primitives
to Linda are added because there is a solid and sound justifidar their addition.
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Within this dissertation theol | ect primitive is used as one of the primitives in conjunction
with the primitives described in Section 2.2.1. In genenal thp andr dp primitives are not used,
because theol | ect primitive and the primitive proposed in Chapter 4 replacel(generalise)
thei np andr dp primitives.

2.3.3 Piranha and Bauhaus Linda

Two variants of Linda are of particular interest, Piranhad &auhaus Linda, because they pro-
vide more than simply extra primitives and they support ngihes of programming based on the
concept of shared tuple spaces. Both were developed at Yialerdity by Gelernter and Carriero.

Piranha

Piranha]GJK93, CGKW93, GK92, CFGK94, CFG93] is a variatbhinda, which uses the same
basic primitives as Linda, except tval primitive has been removed. The concept behind
Piranha is that during any period the processors (or wdikegon a LAN) which are not being
used change dynamically. When a user starts using a nodesBendbwish his node to be slowed
by other people’'s computationally intensive tasks. Theefprocesses are made to migrate from
one node to another.

Piranha is designed to support this type of computing, apdats only a master-worker style
of parallelism. The user specifies a function that is the wrnd a function that is the master.
The user has no control over how many worker processes aceitéxg as the run-time system
decides this based on the resources (nodes) available.

When a node becomes busy the worker is terminated. Thisviesaxecuting a “retreat”
function within the worker process and then killing the @es. By using the retreat function
within a worker process the user is able to ensure that wheewdinker process terminates nothing
is lost, which is normally achieved by placing the curremiléuback into the tuple space. It is
possible that all the worker processes can be terminatddhianodes are busy, and then restarted
as nodes become available. Piranha does not actually migiaker processes but rather kills
them and then restarts them from the start of the worker imman another node.

Piranha has been successfully used, and is how a commerathigh from SCA, who also
produce the commercial SCA C-Linda compiler.

Bauhaus Linda

Bauhaus Linda[CGZ95] is in an attempt to address the neettslaborative working. It is specif-
ically designed for open computing, where agents (prosgssidl join and leave at will, leaving
information within a system to be retrieved later. Bauhaimsla removes the distinction between
tuples and tuple spaces, by introducing the concept of diestdti-sets which are first class ob-
jects. It also removes the distinction between tuples amphkates, using actuals given within a
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multi-set as the matching criteria rather than a mixtureatéi@s and formals as in Linda. As
Bauhaus Linda uses only multi-sets the ordering of elemeitisn a multi-set is arbitrary. It also
removes the distinctions between passive tuples and dapiles, by making processes first class,
and allowing them to move within the multi-set structure.

The initial work appears interesting, and represents thst maalical move away from Linda
that still uses the same basic access primitives and can¢dmred tuples). However, there are a
number of issues that need considering. For example, thegntly propose the addition to the
host language of operations to manipulate multi-sets whale been removed from the shared
multi-set structure. This creates a distinction in the as@nd use of multi-sets stored locally and
those which are shared, and also makes the use of Bauhauws him@é complex. It also appears
simple for processes to remove another process by matching @f the multi-set in which the
process resides. This may not be desirable in real life sys@nd access controls on nested
multi-sets may be required.

2.3.4 The Linda machine

The Linda machine[KACG87, ACGK&88] is a parallel computeattivas designed to support Linda
using specialist dedicated hardware. The machine was madé a set ofLinda nodes with
each node containing a general purpose processor (Moté80l20 processor), general purpose
memory, tuple storage memory and a Linda co-processor[K8&GThe tuples are distributed
across the Linda nodes, using an intermediate uniformiloligion (see Chapter 5, and Figure 5.1).
The Linda nodes are arranged as a two-dimensional mesh. d@usntion is used to control
replication of tuples within the Linda nodes, providing aansolution to managing replicated
tuples when using an intermediate uniform distribution.

Predicted results indicated that the performance of thehmaowould be good, and it was
scalable to at least 1024 nodes. Unfortunately, the Lindzhima was never completed.

2.3.5 Closing comments

There are many other proposals which have been made buttardated to the work described in
this dissertation. These include the proposals for thetiadddf timeouts on the primitives[Ban96,
Kie96], and the extension of the template tuple matchinggss[Ban96, AS91].

2.4 Thei np andr dp primitives: the need for out ordering

As mentioned in the Section 2.2.1, the two primitiveap and r dp were proposed by
Carriero[Car87] and incorporated into the first impleméates of Linda. However, thé np
andr dp primitives are not widely supported in other Linda implenations. There are a number
of perceived “semantic problems” associated with thesmipivies which are used as the primary
reason for their removal[Lei89], replacement[BWA94] ohem implemented, behaviour which
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can potentially lead to unintentional program behaviosg@6]. The problems associated with
these primitives can be consideredgiabal synchronisatiormandout ordering Both these mean
that the information the primitives return need not neaélydae useful.

2.4.1 Global synchronisation

The global synchronisatiomproblem is that in order to determine the result afdp primitive, a
global synchronisation is required[Lei89, BWA94], whichdxpensive, and should be avoided if
possible. Leichter [Lei89] states that:

The non-blocking operatiorigp and rdp primitives], on the other hand, refer to the
complete spatial extent of tuple spadenp must return true if there is a matching
tuple anywhere in the tuple space, and it must return falgbdfe is no matching
tuple. These are statements about a slice taken acrosspdd! fppace at a given time.
To state them at all requires a notion of simultaneous actioross tuple space; but
given an ability to specify a moment in time, the correctraddsnp returning false
can be falsified by the observation of a matching tuple at thament, anywhere in
tuple space.

The statement thathe correctness dfnp returning false can be falsified by the observation
of a matching tuple at that moment, anywhere in tuple spadmportant. If a user process cannot
know that there is a tuple that could match the template useithéi np primitive, then thd np
primitive result is correct. The crux of the problem is, iglke space is distributed (over a number
of processors), not all sections of the tuple space can brehsshat the same timenless there
is an expensive operation to lock the entire tuple spacéonmerthe search, and then unlock the
tuple space, which requires global synchronisation. Whoykhall sections of the tuple space be
searched at the same time? Because one section of the taptecan be searched, and then a tuple
inserted into that section of the tuple space which matdinesemplate. After this has occurred
the search of another section of the tuple space is perforamebno matching tuple is found. The
i np primitive therefore returns false, when in fact during isgarch time” a matching tuple was
inserted. However, this is not a problem due to the asynclu®mnature of Linda. A process does
not know what another process has done, unless the proaegdistly synchronise. Therefore,
if a process performs asut primitive placing the tupl€10;,.4¢-) iNto a tuple space, and another
process performs annp primitive using the templaté|10;,.4.-|), the second process doest
know that the tuple exists, and therefore cannot predictdbelt and so cannot falsify the result.
Hence, the np primitive could return either true or false, and this woulel fierceived by the
process as correct. This would still be correct if the tupéswnserted before thenp primitive
commenced and thenp primitive returned false. However, Leichter notes this baralsified by
the process iéxplicit synchronisation between the processasurs. This leads to the need fuut
ordering If out ordering is used there is no need to perform a global synigaton.
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2.4.2 out ordering

The example processes shown in Program 2.1 (which is basetheorexample given by
Leichter[Lei89]) demonstrate how a process can falsify rsult of ani np primitive. Let

us assume that the tuple spacgl is only accessible from the processes shown. Process one
places two tuples into the tuple spacel. Process two performs am primitive on one of the
tuples and then performs amp primitive on the other. If thé np primitive returns false, the user
process can falsify the result because it knows that angitoeess has placed a matching tuple
into the tuple space by virtue of the explicit synchronati Leichter argues that it is possible
(and correct) for thé np primitive to return false in this situation. This assumptieffectively
makes thé np andr dp primitives useless in practice as they can, under such ammaon,
always return false regardless of whether a tuple existaumler of implementations support the
i np andr dp primitives which, given the example program in Program @duld allow thei np
primitive to return false, most notably SCA C-Linda[Ass95]

Program 2.1 Out ordering example.

Process one Process two
out(tsl, [10]); in(tsl, |["DONE"]|);
out(tsl, ["DONE'])); x :=1inp(tsl, |[?int]]);

Leichter argues that the reason why thap primitive can return false is because the length
of time a primitive takes is unknown. The basic argumentas the time taken to send messages
to places where tuples are stored is not necessarily equraldfl processes. Therefore the tuple
which is inserted first could be travelling through the comination system whilst the other
tuple is inserted, and tHen primitive and the np primitive performed. However, this perceived
problem is an issue of implementation. Leichter also ndtasthe problem is further compounded
because explicit synchronisation that allows a procesadwkhat a tuple exists can occur through
other processes.

The solution to the problem is to ueat orderingDWR95, Hup90], which ensures thasimgle
process does not complete a subseqoent to a tuple space until the previous tuple the process
inserted is present and visible within the tuple space tergbhocesses. It is not guaranteemg
ordering across several processes — processes can independeettytuptes into a tuple space.
The ordering is only guaranteed for a single process. Tlpsrigctly achievable using an acknowl-
edgement message between the run-time system which dtereegpte and the process performing
theout primitive. Anotherout primitive cannot be performed until the acknowledgemerst ha
been received (see Chapter 5). If the system suppattsrderingthen the example in Program 2.1
has only one outcome: process two removes the t{iglO N E” ;;,.;n,) and then the variabbe is
assigned the tupl@0;,eger)-

Is out orderingacceptable within Linda? Due to the informal nature of thaaetics of Linda it
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is difficult to tell exactly what amut primitive does and when. It appears natural thatordering
should be preserved, becausedioe primitive is a non-blocking primitive that inserts a tuph¢a

a tuple space, implying that the tuple should be presenimfitie tuple space when the primitive
has been performed. Carriero et al.[CG89b, CG90a] in therigtion of theout primitive state
that: out (t) causes tuple t to be added to tuple space; the executomeps continues immediately
This could support the first argument that the tuple is imskiitiring the primitive notafter the
primitive (and this is true of the early shared memory imm@eaiations created by Carriero[Car87]),
but the notion of the executing process continues immedidteigy imply that the tuple can be
inserted after the primitive has returned (and this intetgiron is assumed by Hupfer[Hup90]).
Given the vague semantics attached toahée primitive it does not seem unreasonable to assume
that theout primitive doesinsert the tuple before completing, thus providimgt ordering and
this can be specified in the formal semantics. This can beostgzpby considering two issues.
Firstly, if a tuple is not inserted before tlo@it primitive completes, whedoesa tuple have to be
inserted? It would appear in the informal semanticsyuif orderingis not used, to be a concept of
as soon as possible after the primitive has completed, lmg this mean that there is no need for
an implementation to ever insert a tuple? Secondly, by derisig the nature of tuple space access
within Linda. Linda provides asynchronous communicatietweemrocesses but the primitives
of i nandrd (andcol | ect) provide synchronised tuple space access. Once the penidti
initiated a tuple space access occurs and completes bafomimitive completes. By providing
out orderingeffectively theout primitive is being made synchronous, like the other tuplkecsp
access primitives.

This leaves the gquestion of whethart orderingshould be over all tuple spaces or single tuple
spaces. Consider Program 2.2.olft orderingis guaranteed over all tuple spaces, rather than
just a single tuple space, then the outcome of the programtésrministic withn being assigned
one. However, if theout orderingis not guaranteed over all tuple spaces then the valueisf
non-deterministic. Because the tugl®ONE” ;,;,,) can appear in tuple spate2 beforethe
tuple (10integer, 10integer) CAN appear in tuple spate 1 thecol | ect primitive may or may not
find the tuple(10,tegers 10integer) iN tuple space s1.

If out orderingis only guaranteed over single tuple spaces, then to makertdgram de-
terministic, the same tuple space would have to be used fitr the (10;ncqer, 10integer) and
(“DONE” s4ring) tuples. Shoulaut orderingbe guaranteed over all tuple spaces or just individual
tuple spaces? tut orderingis only guaranteed for a single tuple space, then this woojdyi that
the tuple isnotinserted before the primitive completes, raising the qoesigain of when a tuple
is inserted, after the last tuple was inserted by the sanmeepsaand before the next tuple is inserted
from the same process, but that is all. If thet primitive, whenout orderingis guaranteed, is
seen as a synchronous tuple space access primitivepthenderingshould be guaranteed over
all tuple spaces. This is because when a primitive comptatetuple will be present in the tuple
space, henceut orderingis guaranteed over all tuple spaces. As a final poinbuif ordering
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Program 2.2 Out orderingacross multiple tuple spaces.
int ACTS tsl, TS ts2)

{

out(tsl, 10, 10);
out (ts2, "DONE");
return O;

voi d B(voi d)
{
int n;
TS tsl1, ts2;

tsl
ts2

tsc();
tsc();

eval (tsl, A(tsl,ts2));
in(ts2, "DONE");
n = collect(tsl, ts2, 10, 10);

is used then there is no need to perform a global synchramisadr thei np or r dp primitives.
Each of the sections of the tuple space can be searched imiayly, without fear of a matching
tuple not being found that a process knows exists.

2.5 Hostlanguages used in this dissertation

All examples in this dissertation are given using eitherT&E.inda[DRW95] or C-Linda. A brief
description of the syntax of the Linda primitives for eactited embeddings is now given.

2.5.1 ISETL-Linda syntax

ISETL (Interactive SET Language)[BDL89] is a set based interpreted imperative uage.
ISETL-Linda is a full implementation of Linda as outlinedoale, except that it supports only
alimitedeval primitivel. The ISETL-Linda used in this dissertation runs on a Meikanpating
Surface 1 with 32 transputers, and uses the York Kernel Lirma-system (see Appendix A).

There is another implementation of Linda using ISETL as th& language called ProSet-Linda[Has94]. The main
difference between ISETL-Linda and ProSet-Linda is thatlétiter does not support tlesral primitive, but provides
another mechanism for process spawning (based on futures).
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In ISETL-Linda the tuple

<1Ointegera “Hello World”stm'nga 10integer7 ]--Ofloat>
is written as
[10, "Hello World", 10, 1.0]

where the interpreter automatically types the fields foruber. The templates

<|10integera “Hello World"stringa lointegera 1-Ofloat |>
and

<| lointegera Dstringa Dintegera 1-Ofloat|>

are written as
|[10, "Hello World", 10, 1.0]]
and
| [10, ?str, ?int, 1.0]]

where, if a field is an actual it is typed automatically, and ffeld is a formal it is represented by
a “?” followed by a type descriptor. As tuples are first class otgén ISETL-Linda, all Linda
primitives that return results representing tuples retuptes. The following keywords are added
to ISETL:

e NewBag

This functiorf creates a new tuple space:

ts 1= [{}I];
ts : = NewBag;

where both functions create a new tuple space and assigratttdehof the created tuple
space to the variables. A tuple space has to be explicitly created before it can leel.us
Tuple space handles can be passed within tuples, usingpgbelgscriptobag.

o | out
This is theout primitive. It has the following syntax:
| out (tupl espace, tuple);

wheret upl e_space is a valid tuple space handle andpl e is a tuple.

The functionNewBag is overloaded with the functiof{ }|. Thereford{}| has the same effect &ewBag.
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elin
This is thei n primitive. It has the following syntax:
result := lin(tupl espace, tenplate);
wheret upl e _space is a valid tuple space handle andnpl at e is a template. The tuple
returned is assigned taesul t .
elrd
This is ther d primitive. It has the following syntax:
result := Ird(tupl espace, tenplate);
wheret upl e _space is a valid tuple space handle andnpl at e is a template. The tuple
returned is assigned teesul t .
e | coll ect
This is thecol | ect primitive. It has the following syntax:
count := lcollect(tuplespacel, tupl espace2, tenplate);

where t upl e spacel andt upl e space2 are both valid tuple space handles and
tenpl ate is a template. The number of tuples moved framapl e spacel to
t upl e_space? is assigned taount .

e | eval
This is theeval primitive. It has the following syntax:

| eval (tupl espace, activetuple);

wheret upl e_space is a valid tuple space handle aadt i ve_t upl e is an active tuple.
In the context of ISETL-Linda an active tuple is said to be shene as a tuple excepb
more than onef its fields is a function to be evaluated concurrently. Wtrenfunction has
been evaluated a tuple is inserted into the tuple spapd e _space.

An example interactive session using ISETL-Linda is showRigure 2.1. First a new tuple
space is created, then a tuple is placed into that tuple spdeetuple is then retrieved, printed
and then the two elements of the tuple are printed indepéiydénmore detailed explanation of
ISETL-Linda is presented in Douglas et al.[DRW95].

2.5.2 C-Linda syntax

Two versions of C-Linda have been used. One is a commercialoveproduced by Scientific
Computing Associatésvhich will be referred to as SCA C-Linda[Ass95]. The prodisdtased on

3Scientific Computing Associates, One Century Tower, 265r€h6Gtreet, New Haven, CT 06510-7010, USA.



26 CHAPTER 2. RELATED AND BACKGROUND WORK

> ts = [{}];

> lout (ts,[10,"HELLO']);

> answer = lin(ts,|[?int,?str]]);
> answer ;

[10, "HELLO'];

> answer (1);

10;

> answer (2);

"HELLO';

>

Figure 2.1: An example of an interactive session using ISERda.

the work completed at Yale University and is a closed implaiat#on using compile time analysis.
The other is a C-Linda which uses the York Kernel Il (desatibeChapter 5) or the York Kernel
I[DWR95], which is an open implementation, and does not eseler-time analysis. Throughout
this dissertation wheany C-Linda code is being presented it will use a modified synfaQ ©A
C-Lind&'. In C-Linda the tuple:

(10integer, “Hello World” siing, 10integer, 1.0f10at)
is written as
(10, "Hello World", 10, 1.0)
where the compiler automatically types the fields for the.uBke templates
(|10integer, “Hello World” s4ring, 10integers 1.0 fioat |)
and
(|10integers Ostring> Dintegers 1.0 fioat|)
are written as
(10, "Hello World", 10, 1.0)

and

(10, ?str, ?var_nane, 1.0)

“See Appendix A for an overview of the main features of eachefimplementations/run-time systems.
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where, if a field is an actual it is typed automatically, and field is a formal it is represented
by a “?” followed by either a type descriptor or a variable name \ehttie compiler determines
the type. Tuples araot first class objects in C-Linda, therefore if a type descrifgoused the
information is discarded. If the field is a formal and a valéaib used then the result for that field
is placed into that variable. In the last example above, ¢bersd field of the tuple is discarded, but
the third field (an integer) is placed into a variable called _nane. The first template appears
identical to a tuple; whether a collection of values is ad¢upl a template is based upon the Linda
primitive with which they are associated. The embeddingiofia in C involves the addition of
the following functions/procedures to C:

e fSC
This function creates a new tuple space. The prototype #fuhction is:
TS tsc(void)
Therefore, the statement
ts = tsc();
creates a tuple space and assigns its handle to the varigbl€he typeTS is added, and
variables of typ€el'S are used to store tuple space handles.
e Out
This procedure is theut primitive. The prototype for the procedure is:
void out (TS, ...)
Therefore, the statement
out(ts, 10, "HELLO');
places a tupl€10;y,scger, ‘HELLO” g4ing) into tuple space s. There are no limits on the
number of elements in the tuple.
ein
This procedure is then primitive. The prototype for the procedure is:
void in(TS, ...)
Therefore, the statement
in(ts, ?nmyval, "HELLO");

retrieves a tuple in tuple spate which matches the templa{é;,,cger, “HELLO” g4ping|)-
When a tuple is found it is split into component fields. In thexe exampl€mnmy val is a
formal (of type integer) and the first field of the returnedi¢upill be assigned tory val .
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erd
This procedure is thed primitive. It has the same syntax as the procedure above, except
it is calledr d.
e col | ect
This procedure is theol | ect primitive. The prototype for the procedure is:
int collect(TS, TS, ...)
Therefore, the statement
count = collect(tsl, ts2, ?int, "HELLO");

moves all the tuples in tuple spacesl which match the template(|Dineger,
“HELLO” 4ring|) to tuple space s2. A count of the number of tuples moved is as-
signed tocount .

e eval
This procedure is theval primitive. The prototype for the procedure is:
voi d eval (void (*)())
Therefore, the statement
eval (wor ker) ;

will spawn the processor ker . The result of the functiomor ker is discarded.

2.5.3 Processes and the host languages

In ISETL-Linda theeval primitive requires a function that is currently in scope &used as the
function to be evaluated concurrently. Therefore, a péean ISETL function that is in scope
at the time theeval primitive is performed.
In SCA C-Linda theeval primitive again requires a function to be specified that isdope
within the program performing theval primitive. In York C-Linda theeval primitive requires
a filename for an executable file. The file is executed, andaate with the run-time system.
Whether the process is an executable file, or a function wisisemehow executed concur-
rently, they will be referred to as processes. Within thisdrtation’s example programs processes
are always given as though the process is a function.

2.6 Non-determinism and Linda

There are two characteristics of Linda which introduce determinism. An understanding of
these characteristics and their implications is imporfananyone working with Linda, especially
if new primitives are to be proposed. These characteriaties

5SCA C-Linda supports a fuval primitive that allows many functions to be specified withisiagle tuple.
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Inter-process tuple competition When two or more processes compete for the same tuple, which
process receives the tuple is non-deterministic. This @vshin Program 2.3, where a
process spawns two processes both of which will competehtosame tuple. One of the
processes will obtain the tuple and the other will block Kiis tase forever). It is impossible
to say whether the first process spawned or the second predesstrieve the tuple, the
choice is non-deterministic.

Program 2.3 Example showing inter-process tuple competition.

wor ker := func(ts); $ ts is a tuple space handl e
X = lin(ts,|[[?int]]); $ CGet a tuple
return O;

end func;

sinple := proc();

| ocal tuple_space;

tupl e_space : = NewBag; $ Create a new tupl e space

| eval (ts, [worker(tuple_space)]);

| eval (ts,[worker(tuple_space)]);

| out (tupl e_space, [1]); $ Put a tuple in the tuple space
end proc;

Multiple tuple competition When there is more than one tuple within a tuple space thatdvou
satisfy a template the tuple is chosen non-determinisfic@his is shown in Program 2.4,
where a tuple space is created and two tuples placed intopegpace. Then primitive
will match one of the tuples, but which one is chosen is a netefthinistic choice.

Program 2.4 Example showing multiple tuple competition.
sinple := proc();

| ocal ts,X; $ Local variabl es

ts : = NewBag; $ Create a new tuple space

lout(ts,[1]); $ Place a tuple in the tuple space

lout(ts,[2]); $ Place a tuple in the tuple space

x ;= lin(ts,|[2int]]); $ Get a tuple out of the tuple space
end proc;

These competition characterstics are important to theeLirgr, providing natural interaction
between processes and tuples. If the user requires momokoner the non-determinism then
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the ability to use explicit coordination of structures ipleispaces provides a way. For example
to control the order in which tuples are retrieved from adugpace each tuple can be explicitly
tagged with a field. Such a method is described in Chapter 8nwllescribing the stream method
for the multipler d problem.

However, sometimes a poor understanding of non-determinighin Linda can led to flawed
proposals. The case of the proposal to ins¢ructional footprintingwith the Linda primtives is a
good example.

2.6.1 Instructional footprinting

Landry[LA92, LA93a, LA93b, LA95] examined the applicatiaf instructional footprinting to
Linda programs in order to reduce the execution times. Tlkeslar the work is the idea that an

i norrd primitive can be split into two sections, the “sending” oéttemplate to the run-time
system ( n;,;;) and the receiving of a tuple from a run-time systém,(..,). Landry’s proposal

is that a pre-compiler can automatically split all ihe andr d primitives into their components,
and move them apart. Normally, when a Linda primitive is perfed the user computation stops,
waiting for a reply message. The separation of the requesttigple and the actual retrieval of the
tuple allows user computation to be performed concurrenitls the tuple space access, thereby
providing a speed increase.

At first sight, the idea seems sound, and the results prefeA@5] indicate that on the par-
ticular LAN based kernel used, a significant drop in executimes is achieved in most cases and
the execution times never increase. However, Landry fadextcount fully for non-determinism
and its effect on the Linda programs. He assumed that, usieg af rules, moving computation
between thé n;,;; andi n,.., parts of an n primitive would not alter the semantics of the pro-
gram. This is true, the semantics of the program are notealidyut the coordination constructs
used in Linda programs often make use of the time computédikes.

In order to demonstrate this consider theing philosophers probleniandry[LA95] presents
a good description of the dining philosopher problem. PaogR.5 and 2.6 are slightly modified
code sections taken from [LA95]. Program 2.5 shows themaidiinda function for a philosopher,
while Program 2.6 shows the so-called optimised versiorhefsame function which the pre-
compiler doing the instructional footprinting would pramiy with each n primitive split into two
components. Both pieces of code have been modified to allevetigth of time a philosopher
thinks before he eats to be specified.

Landry sets all the philosophers to work for the same lendttinee (O seconds). Let us
consider, for the sake of simplicity, two philosophers]adPhil0 and Phill, with Phil0 thinking
for 20 minutes and Phill thinking for 40 minutes. It is assdrti®at they both eat for the same
length of time, 10 minutes. Figure 2.2 shows how the two giiners spend their time in the
original Linda version.

The version that has been optimised using instructionaipfoting can produce the same
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Program 2.5Linda code for a philosopher.
voi d Phil osopher(int time, int Phil _ID)
{
t hi nk(time);
i n("Room Ti cket");
i n(" Chopstick",Phil _ID);
i n("Chopstick", (Phil I D+1) % Num Phil);
eat ();
out (" Chopstick",Phil I D);
out (" Chopstick", (Phil _ID+1) % Num Phil);
out ("Room Ti cket");

) thinks eat .
Phil0 | } { 30 minutes

) thinks eat )
Phill } } | 50 minutes

Figure 2.2: How the philosophers spend there time in thed wetsion.

result§ as shown in Figure 2.2. However, it is also possible for tiselteshown in Figure 2.3 to

be produced. In this case Phil0 blocks for 30 minutes, bechath philosophers try to grab the
room ticket tupleat the same timeThere is only one room ticket tuple and as the two processes
compete for the same tuple, which philosopher gets the ragketttuple is non-deterministic. If
Phil0 gets it then everything will proceed as in the Lindasi@mn. If Phill gets it, then PhilO does
his thinking and then must wait for Phill to release the ticke PhilO is blocked. Phill thinks for
his 40 minutes then eats and then releases the room ticket ®Bhil0 now becomes unblocked
and is able to eat. In this case the total execution time is Biites, as opposed to 50 minutes
representing an increase in the execution time.

) thinks BLOCKED eats .
Phil0 } } } | 60 minutes

thinks eat .
Phill | } | 50 minutes

Figure 2.3: How the philosophers may spend their time in fhierosed version.

In the Linda version the computation provides a natural wiagontrolling the access to the
dining room. Only when a philosopheriisadyto eat does he attempt to get the ticket, so once
he has the resource (the ticket) he uses it immediately amdrtHeases it. Many Linda programs

5The execution time will be slightly less, but because lorigkimg times and eating times are chosen the effect of
reducing the communication time can be effectively ignored
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Program 2.6“Optimised” Linda code for a philosopher using instructibfootprinting.
voi d Phil osopher(int tinme, int Phil _ID)

{
I Ni nit("Room Ticket");
I Ni nit("Chopstick",Phil _ID);
I Ni nit("Chopstick",(Phil _ID+1) % Num Phil);
t hi nk(time);
I Nrecv("Room Ti cket");
I Nrecv(" Chopstick",Phil _ID);
I Nrecv(" Chopstick”, (Phil _I D+1) % Num Phil);
eat ();
out (" Chopstick",Phil _ID);
out (" Chopstick", (Phil _I D+1) % Num Phi l);
out ("Room Ti cket");
}

use the fact that computation takes time to do natural lo&hbeg[CG90a, page 114], in these
cases the instructional footprinting optimisations cadl& longer execution times, as with this
example.

2.7 Summary

An overview of Linda, describing the basic objects of Lindaswpresented in Section 2.2. A num-
ber of extensions to Linda were then described, includingiphe tuple spaces and tlemol | ect
primitive, which are adopted in the Linda used within thissdirtation. More information about
the bulk primitives is presented in Chapter 4. The need fobal synchronisations aralt or-
dering has been discussed in detail with respect to tirpandr dp primitives. An overview of
the host languages and their Linda embeddings was presemeiti)g with a description of non-
determinsim within Linda. Chapter 5 will present a detaierview of both closed and open
implementations, and the techniques which they use.

In the next chapter a limitation of the functionality of Limés examined. This limitation forms
the justification for a new primitive for Linda, theopy- col | ect primitive, which is a bulk
primitive related to theol | ect primitive.



Chapter 3

The multiple r d problem

3.1 Introduction

In this chapter, an expressive limitation of the Linda madédentified, which is referred to as the
multipler d problem A multiple r d is defined as an operation where two or more processes are
required to concurrently, and non-destructively read anaare tuples from a tuple space which
match the same template, where there are at least two tinglematch the template, and at least
two of the processes can be satisfied by the same tuple. Thieprds that a multiple d cannot

be performed efficiently using the current Linda model if taranore processes are concurrently
and non-destructively reading from a tuple space usingdhegsemplate.

As an example, consider a tuple space containing a numbeplektwith each containing two
fields representing peoples names sucl(f‘,emtony”stmg,“Rowstron”string> . This tuple space
is shared among many processes that may require accesstplége How would all the tuples
representing people whose surnamBdsvstronbe retrieved by a process?

Initially, the answer would appear to be the repeated ushexf d primitive. The template
(|Ostring, “Rowstron”s,.ine|) Will match a tuple whose surnameR®wstron This will only work
if there is a single tuple which matches the template. Iffal hames of an entire family are in
the tuple space, or there are several unrelated people lwditeame surname stored in the tuple
space, the repeated use of @ will not work. The semantics afd mean that if more than one
tuple matches a template the tuple returned is chosen ntemuaaistically. Having discounted
the use of the d primitive the answer may appear to be to use ¢lod | ect primitive. The
col | ect primitive will match all the matching tuples. However, thenpitive is a destructive
operation therefore the collected tuples are removed s&r pitocesses cannot read them. Also,
the behaviour of concurregtol | ect primitives is not well defined (see Section 4.2).

There are only two methods that enable many processes tarcentty and non-destructively
access a tuple space using the current Linda model. One dhistlhm use a designated tuple as a
binary semaphore and the other is to organise the tuplestasaans Before these two methods are
examined and evaluated another example containing thépteuld problem is described.

33
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3.2 Parallel composition of two binary relations

The parallel implementation of the composition of two bineglations is now considered in order
to show how the different methods of solving the multiptk problem perform.

3.2.1 Formal definition of the composition of two binary relations

A binary relation is defined as a relation between two setsinArig relation defines a subset B, of
the Cartesian product of the two sets. Therefore, given t®75and X, the Cartesian product
T x X is defined as:

{(t,z): (t€ T) and(z € X)} (3.1)

If the ordered paiKsy, s2) is @ member of the set B, then the binary relation B is said td ho
between the two values. This binary relation could for exanbe “less than”, s@; < s3. Given
two binary relations R and S, their compositifire S is defined as:

{(a,d) : ((a,b) € R) and((c,d) € S) | b= ¢} (3.2)

3.2.2 The general approach to implementation

This example assumes that the ordered pairs in each setidtia keparate tuple spaces, with each
tuple representing a single ordered pair. After performimcomposition a new tuple space will
be created containing the resulting tuples. This is showrigare 3.1.

Tuple space F Tuple space ¢ Tuple space R !

Figure 3.1: Composition of two binary relations representsing three tuple spaces.

Due to the properties of the composition of binary relatirshould be simple to implement
in parallel, with every pair in tuple space R being comparéth wach pair in tuple space S con-
currently. The results for each pair in tuple space R arepedédent of the results for any other
pair in tuple space R. So a number of processes are used. Eswsp takes a pair from tuple
space R, and checks the chosen pair with every pair in tupleesp. If the second element of the
pair from tuple space R is the same as the first element in drpairtuple space S, a new pair is
produced. This new pair contains the first element of thefpain tuple space R and the second
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element from the pair from tuple space S. The finest graineallphapproach using this method
will use a process for every pair in tuple space R. The deigaif the elements in tuple space S
which match is an associative matching process which itebdaat Linda should be ideal because
of the associative matching properties it has.

The multipler d problem is seen within the parallel composition of two bynaglations
because there are several processes that need to corgugerass the tuple space S non-
destructively. The stream and semaphore methods of solimgnultipler d problem are now
considered using the parallel composition of two binargtiehs as an example.

3.3 Tuples as semaphores

The first method considered for overcoming the multipteproblem is to use a tuple as a binary
semaphore, dock tuple The lock tuple is a single and unique tuple that allessr processe®
control access to a tuple space.

The general concept is that a process obtains the lock ttigda,destructivelyremoves the
matching tuples, using either thep or col | ect primitivest. Once all the tuples have been
removed they are replaced, and then the lock tuple reimsertee removal of tuples is acceptable
because only a single process can obtain the lock tuple hanefore access the tuple space at any
one timé provided the tuple space is returned to the same state as ivhven the lock tuple was
removed no other process will be aware that the tuples haae feenoved and replaced.

In the case of the parallel composition of binary relatighs,ISETL-Linda code for a worker
process is shown in Program 3.1. Each worker process renaottgde from tuple space R and
then tries to remove the lock tuple in tuple space S. Theralisane lock tuple in the tuple space
S so all but one of the processes will block on theprimitive (line A in Program 3.1). When a
worker process retrieves the lock tuple it has unrestriatamss to the tuple space S.

The worker process creates a template using the second frigld tuple removed from tuple
space R as the first element of the template. In this examipdetemplate is then used by a
col | ect primitive tomoveall® the tuples that match the template in tuple space S to a ook t
space. The same operation can be performed usinigrthgrimitive.

The worker process then removes each of the tuples from da¢ tfiople space using then
primitive. The worker process then places the tuple baaktimle space S. Because of the fine
grained nature of the worker processes used in the conqositibinary relations, as the worker
process returns the tuples to tuple space S it also calsuate results and places them in the
result tuple space C. If the computation “associated” wétbhetuple is more complex then either

LIf the Linda implementation supports neither of these tihersemaphore method cannot be used, and strearsts
be used.
2Provided that all the processes accessing the tuple spheesa the use of the lock tuple.
%In this case all is acceptable because the tuple space wilbloveif all processes adhere to using the semaphore

tuple.
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the worker process can place another copy of each tuple iffiesedlit tuple space for processing
once all the tuples from tuple space S have been replaceditbef processes can be spawned to
actually perform the calculations.

Once all the tuples in the local tuple space have been predessd replaced into the tuple
space S, the lock tuple is placed back into tuple space S.nié&és that tuple space S contains
all the tuples that were present when the worker processneltshe lock tuple. The tuple which
acts as the semaphore aamy be replaced in the tuple space when the tuple space is iridigalr
state. If the tuple is returned prior to this then the othecpsses are not guaranteed to find all the
tuples that they require.

Program 3.1 A worker process using a tuple as a binary semaphore or Iqb&.tu
comp_worker := func(R S, O ;

local nmy_val, ny_ ts, nmy_conb, todo;

my_ts : = NewBag;

my_val :=1lin(R |[?int,?2int]]); -- Get the elenent fromR

dumy :=1in(S,|["lock"]]|); -- Get the lock (A

todo := lcollect(S, ny_ts,|[my_val(2),?int]]);

while (todo > 0) do -- Gab matching tuples in S
todo : = todo - 1;
nmy _comb :=lin(my_ts,|[my_val(2),?int]|); -- Process each one
lout(C,[ny_val (1), my_conb(2)]); -- Create result tuples
[ out (S, my_conb); -- Replace tuple in S

end whil e;

lout (S, ["lock"]); -- Let the lock tuple go

return ["TERM NATED'];
end func;

3.3.1 Performance

There are two reasons why thisrist an acceptable solution to the multiple problem.

e One is that the solution requires the processes that usdeadpce to adhere to using the
lock tuple, and there is no guarantee that other procesdeadhiere to it. Consider the
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example given in the introduction of this chapter, involyimtuple space containing a set of
names. There is no reason why several processes perforiiffierggat and unrelated tasks
may all require access to the name tuples within the tupleespancurrently. Suppose one
process does not adhere to the use of a lock tuple, eithecimadlly or accidently, then all
the processes can no longer reliably have access to all gsthjpmtuples.

e The second reason why such an approach is not acceptablat it theates a sequential
bottleneck for the access of the tuple space, as only onegsaan obtain the lock tuple
at any one time. Therefore, in the parallel composition ofby relations example the only
speed up achieved is the parallel reading of the tuples fupie tspace R. The majority
of the time that the program executes only a single workectiweacreating a sequential
solution because only one process can access the tuplés tujpke space S at anyone time.

3.4 Streams

The second approach is to ussteeam The basis of this approach is to remove the multipte
problem by having only one tuple match the template being.uBhis is achieved either by using
information which is already in the tuples, or by adding aqueei field to each tuple. This means
that a unique template can be generated which will matchgdesiaple in the the tuple space. Any
processes which wants to use the tuples within the tupleespaust be aware of the fields used
within the tuple and, if necessary, how the field is generaRrdcesses accessing the tuple space
use ther d primitive to retrieveeverytuple, and use a local check to see if the tuple is required.

Consider the example of the parallel composition of binatgations, and assuming that the
tuple space S contains the five tuples (as shown in Figure 3.1)

<3integer7 7integer>7 <6integer7 12integer>a

<3integera 9integer>a <5integera 8integer>a <9integera ]-Ointeger)-

There is no unique field that allows each tuple to be indepahdehosen. Therefore a unique
field is added to each of the tuples:

<1integer7 3integer7 7integer>7 <2integer7 6integera 12integer>a

<3integer7 3integer7 9integer>a <4integer7 5integera 8integer>7 <5integera gintegera 10integer> .

After adding the extra first field, each tuple contains a uaifieid, and the relationship across
the tuples between the unique fields is known (an integerteotimat is incremented by one for
each tuple). This allows a process to access the tuple sisaug the template|indez;nieger
Ointegers Dinteger |) Whereindexis a value between one and five in this example. Every worker
process takes a tuple from tuple space R, and then maatygtuple from tuple space S, using
the indexfield to match each tuple in turn. The worker process checkseifreturned tuple is
actually required and either discards it or uses it accgiginf the implementation supports the
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r dp primitive then this removes the need to check the tigdally, but all tuples still have to be
checked. A template of the forfndez;nicger, R(2)integer Dinteger|) Would be used, wher@(2)

is the second element from the tuple retrieved from the tapéee R. The dp primitive would
then be used, and would return either the matching tuple afwewto indicate it was not found.
Every tuple still has to be checked. The ISETL-Linda codeafarorker process using the stream
method is shown in Program 3.2.

Program 3.2 A worker process using streams.
comp_worker := func(R, S, C, NumrupS) ;

-- NuniTupS - No. of tuples in S
| ocal nmy_val, ny_conb;

my val :=1in(R|[?int,?int]]); -- Get a tuple fromR
whil e (NunifupS > 0) do -- Check all tuples in S
nmy_conb = 1rd(S,|[ NumlupsS, ?int,?int]|);

NumlupS : = NumflupS - 1;
if (my_conmb(2) = my_val(2)) then -- Does the tuple match?
lout(C [ny_val (1), my_conb(3)]);
end if;
end whil e;

return ["TERM NATED'];
end func;

In this example it is necessary to add an extra field but somestia unique field is already
present within the tuple. For example, when an image is dtiora tuple space, with each pixel
being stored as a tuple of the form:

(x-coordinatecger, y-coordinate, . ..., pixel valug,,; .. )-

A process may want to access all pixels that are of a partiaame*. Here the obvious
template would b€|Dipteger, Dinteger, PIXEl valuqntegerb. However, if many processes wish to
perform the operation in parallel it will introduce the mplé r d problem. Assuming that usually
the coordinate system used within the image will be knowhécetccessing processes, and there is
only one pixel value for each coordinate, the coordinatelsilithin the tuple can be used as the
unique fields. The processes can then use a stream appreadimg every coordinate to check if
the pixel value is the one required, and discarding if it it no

4See Hough transform, Section 6.3.
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3.4.1 Performance

Although, with this method all the worker processes canquarfthe accessing of a tuple space in
parallel, there are two problems that make this approachoamsable.

e Firstly, it negates the advantages of the tuple matchingiabiof Linda. Everytuple in the
stream structurenustbe read. If there are many tuples in a tuple space and only arfew
required, the time cost and communication cost of readiegyeuple is considerable. This
is compounded if the implementation does not support theprimitive, because additional
checking within the user process of the returned tuple igired, to check if the tuple is one
that is required.

e Secondly, every tuple in the tuple space requires a uniqla thebe added, and all the
processes using the tuples must be aware of the unique figdltl@am it is generated. This
removes the natural use of a tuple space as the data strbgtadding another structure (a
stream) to the tuples within the tuple space. In order toesghihis, either the producer must
be aware of the need to add this unique field in which case thteof@dding it is minimal,
or the tuples are pre-processed to add the unique field bieéimg used.

Even if the producer can add the extra field, and so no preepsirng of the tuples is required,
the communication and time costs of checking every tupldi@ttp using either ther d orr dp
primitives is unacceptable unless the majority of tuplethiwia tuple space match the template.

3.5 Experimental results

In order to show the problems of both the binary semaphorestredm methods the execution
times of the parallel composition of binary relations usb@h these methods are considered.
The experimental results presented in this section arénglgtaising ISETL-Linda executing on a
transputer based Meiko CS-1 parallel computer using Yonk&d[DWR95] (an overview of the
main features of York Kernel | is given in Appendix A). For teeperiments the cardinality of the
tuple space R is set to five; the cardinality of tuple space3B.id-or every pair (represented as a
single tuple) in tuple space R there are four pairs (agapresented as single tuples) in tuple space
S that match, therefore the cardinality of the compositigriet space C is 20. The worker processes
are altered to enable them to be instructed on how many tapéegrocessed from tuple space R.
Thus, a single worker computes the results for all five paitsiple space R, whereas five worker
processes each compute the results for a single pair frola space R, as in the example code
segments Program 3.1 and 3.2. This is used to show that tregphene method forces sequential
access to tuple space S, whilst the stream approach alloaigbaccess to tuple space S.

The execution timeloes notinclude the time taken to spawn the worker processes, aral doe
not include the time taken to create the tuple spaces S andtRe ktream approach it is assumed
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that the producer added the unique field to the tuples as teeyr@ated, thus avoiding the need to
pre-process the tuples to add the unique field.

The performance for both the methods of solving the multipde problem are compared
against a sequential version of the composition of binalatioms. The code for the sequential
version is shown in Program 3.3. The sequential versiorstakeh tuple from tuple space R, then
uses thecol | ect primitive to destructively move to another tuple space y¥aple from tuple
space S in which the first element of the tuple is the same aetlond element of the current tuple
chosen from tuple space R. The moved tuples are then désttyatead using thé n primitive
from the other tuple space, processed and then placed badkjohe space S. The result tuples are
placed in tuple space C. The sequential version uses thee$ppkes to store data structures as do
the parallel versions.

Program 3.3 The code for the sequential composition of binary relations
comp_worker := proc(R, S, C, NunTupR) ;

- NumTupR i s the nunber of tuples in R
local nmy_val, ny_ts, ny_conb, todo, |oop;

ny_ts = [{}];
for loop in [1 .. NumlfupR] do -- For all tuples in R
ny_val :=1lin(R|[[?int,?int]]); -- Get a tuple
todo := lcollect(S, ny_ts,|[my_val (2),?int]]|);
while (todo > 0) do -- Process the matched tuples
todo := todo - 1;
my_conmb = lin(nmy_ts,|[my_val (2),?int]]);

lout (C [ny_val (1), ny_conb(2)]);
| out (S, my_conb) ;
end whil e;
end for;
end proc;

3.5.1 The binary semaphore method

Figure 3.2 shows the execution times taken for the versiorgube semaphore method when the
number of worker processes are varied from between one amdAlgo shown is the time taken
for a sequential version of the program. The timings arergimdicks, which are arbitrary units of
time (15625 ticks per second).

The sequential version is slightly faster than the paraiesion using the semaphore method
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Figure 3.2: Execution time for the parallel composition ofawy relations when using the binary
semaphore method.

and one worker process. This is because the sequentialimaptation is similar to the semaphore
method except that a lock tuple is not used, as only one pga@@saccess the tuple space. This
means the difference in the execution times representsoiteot fetching and replacing the lock
tuple.

When two worker processes are used the execution time faetim@aphore method is slightly
less than the execution time for the sequential versiors iBhecause of the parallel access to the
tuple space R. The fetching of a tuple from tuple space R istiework that can be performed
concurrently; the access to tuple space S is forced to bestgll

There is no performance gain by increasing the number ofevgniocesses above two. Ideally,
the execution time taken by five worker processes should bd¢himd of the time taken when using
two worker processes. When there are two worker processewitirconsume three tuples from
tuple space R and the other will consume two tuples from tepéece R. Five worker processes
will each consume only one tuple from tuple space R. The reagy this does not occur is shown
in Figure 3.3 where the solid line represents the time a waqpkecess is accessing tuple space
S, and the dotted line represents the time when the workexcissaing tuple space R. The solid
thick black lines represent the time when a worker procesbitked awaiting the lock tuple. The
length of the time taken by the longest worker is the exeautime of the program. Figures 3.3(a)
and 3.3(b) show that the time taken by the longest workerge®uhen either two or five worker
processes are used is the same. If three or four worker mexese used then the longest worker
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Number Number of tuples | Maximum number of tuples Execution| Time
of workers | processed per workgr processed by any worker|  Time per tuple

1 5 5 49506 9901

2 2,3 3 29633 9877

3 1,2,2 2 20280 10140

4 1,1,1,2 2 20298 10149

5 1,1,1,11 1 12079 12079

Table 3.1: Time taken per element in tuple space R as the nushl@rker processes increase.

process will again take the same time. As the number of wqrkaeresses increase there is no
performance increase because there is nothing more thaecachieved in parallel.

pp |- I
P2l |

(a) Execution pattern using two worker processes.

PL -t
P2 |- I

P3 |- I

P4 |- I

P5 |-,

(b) Execution pattern using five worker processes.

Figure 3.3: Execution patterns for two and five worker preesaising the semaphore method.

3.5.2 The stream method

Figure 3.4 shows the execution times taken for the versiomyuke stream method when the
number of worker processes is varied from between one and Aigain the time taken for the
sequential version is also shown and the predicted exectitices are also shown. The predicted
execution time is calculated on the basis of the time takeorie worker process.

The results show that the execution time is dependent uponumber of worker processes
used. The relationship between the execution time and thideauof worker processes is shown
in Table 3.1. The first column represents the number of wgrkeresses used, the second column
shows the number of tuples from tuple space R that each wprkeess consumes (the total must
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Figure 3.4: Execution time for the parallel composition fasy relations when using the stream
approach.

always be five, as there are five tuples in tuple space R). Titledblumn shows the maximum
number of tuples from tuple space R a single worker processurnes. The fourth column shows
the execution time for the program. The solution is parakelthe time taken depends on the
worker process or processes which consume the most tuptedtiple space R. The fifth column
shows the time taken for the worker processes to procesgke $uple from tuple space R, and
is calculated by dividing the execution time (shown in cotufour) by the number of tuples from
tuple space R consumed by the worker process performing tist work (indicated in column
three).

The time taken to process a single tuple (column 5) shouldireeonstant as the number of
worker processes is increased from one to five. The predietadts shown in Figure 3.4 are based
on the execution time using one worker process which tak@s 86ks per tuple from tuple space
R. When five worker processes are used the time taken per frgphetuple space R increases
noticeably. This is because the underlying run-time sydiemg used cannot service the requests
fast enough so when there are five worker processes, thémarsystem becomes a bottleneck.

Table 3.1 also shows why there is a plateau in the executiogstivhen three and four worker
processes are being used. In these cases the maximum nuintlpgles from tuple space R that
a single worker process consumes is two tuples. The exedirti@ of the program does not alter
because the execution time is dependent on the time takdrebgrigest worker process. In both
cases the time taken by the longest worker process is the secagise they perform the same
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amount of work.

3.5.3 Experimental conclusions

The experimental results show the dilemma that a progranfewes when needing to perform a
multiple r d with Linda. The binary semaphore method provides no spemdase as the number
of worker processes used increases but is slightly faster ttie sequential version when two or
more worker processes are used. The stream method showsdagpas the number of worker
processes are increased but it takes a longer time to exbaméhe sequential version, even when
five worker processes are being used.

In Chapter 4 a new primitive is introduced which solves thdtiple r d problem. However,
before considering the new primitive, some further obd@wa are made about the multipi@
problem.

3.6 Coarsening the approach

Some experienced Linda programmers suggest that the feultipproblem caralwaysbe over-
come by using a coarser granularity of structures in tupieap. In the parallel composition of
binary relations to create a coarser grained approachegfidirs stored in tuple space S are placed
into a single tuple stored in tuple space S. Now, each of th&evgrocesses removes a tuple from
tuple space R and then uses the primitive to read the single tuple in tuple space S into alloca
data structure within itself. This local data structurehisrt used to determine which pairs match
with the tuple chosen from tuple space R. A tuple space is a statcture in its own right and
it seems wrong to have to use a special local data structuveieter, such an approach appears
attractive because of the apparent reduction in tuple camuation this will entail. The code for
the worker process using this coarser approach is showrogrén 3.4.

Figure 3.5 shows the experimental results when using thikade and shows the best case
execution time for any other method, which is when a lockdLiplbeing used. These results
show that the adoption of a coarser grained approach hasrodtiged a speed increase over
the best of the other methods. It should be noted that for smigerithms a coarser approach
will lead to faster execution times. This is dependent upoth the algorithm, the amount of
unnecessary “information” communicated and the chariatites of the implementation being used
(the processor speed compared to the communication speed).

Since inception Linda has been used Moultiprocessinga single application consisting of
several processes). More recently use has been made of fondaultiprogramming (several
applications distributed over many processors)[Has94jel\Linda is used famultiprocessingt
is natural to use closed implementations; the use of tugleespcan be well defined and controlled,
and in such a case the granularity of the program, and datetstes can be regulated to gain

SItis also possible to refer tmultiprocessingsparallel processingindmultiprogrammingasdistributed computing



3.6. COARSENING THE APPROACH 45

Program 3.4 A worker process using a coarser data structure.
comp_worker := func(R S, O ;

| ocal nmy_val, pair_list, todo;

my_val :=1lin(R|[?int,?2int]]); -- Get the tuple fromR
pair_list :=1rd(S,|[?tuple]])(l); -- Get the single tuple
todo := #pair_list; -- Traverse the local structure

while (todo > 0) do
if (pair_list(todo)(1) = nmy_val (2)) then
lout (C [ny_val (1),pair_list(todo)(2)]);
end if; -- Produce the results if needed
todo := todo - 1;
end whil e;

return ["TERM NATED'] ;
end func;

maximum performance. For example, how is a digitised imaged in a local data structure?
The image contains a number of coordinates each with a padakvassociated. In traditional
programming such a structure is stored as a two-dimens&nay (if the language used supports
two dimensional arrays). To retrieve a pixel from the artag pixels coordinates are used as an
index into the array.

How would a digitised image be stored in a tuple space? Theresewveral possibilities, each
representing a different granularity of data structuree fihest grained representation possible is
to use tuples of the form:

( X-coordinat€nteger, y-cOOrdinate;,,; ., Pixel-valug,, ., )

where each tuple represents a single pixel in the image. Aumedranularity approach is to use
a tuple per row or column of the image:

( x-coordinatg, g, pixel-value[ x-coordinatel;,cger—array)

wherepizel —value[x — coordinate]inteqer represents a one dimensional array of all pixels which
reside on the column specified by- coordinate. The coarsest data structure is to place the whole
image in a single tuple:

(image

integer—array>'
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Figure 3.5: The worker process when adopting a coarser agiprio the parallel composition of
binary relations.

The granularity adopted is important. For example, comsid2024x1024 image where an
integer is represented as four bytes. Table 3.2 shows fdr efathe above representations the
number of tuples required and tineinimum memoryequired. The image will always require
4 Megabytes of memory, regardless of the granularity, kexdhbere are 1048576 pixels each
requiring 4 bytes. The other fields which are also in the tggleupy memory as well and this is
shown in theoverheadsolumn. Not included in the overhead measurements are daehicosts
of other information that may be stored with each tuple.

Granularity No. of tuples| Memory required for | Total memory

of data structure in tuple spage image ‘ overheadg requirements
Fine 1048576 | 4 MBytes| 8 MBytes| 12 MBytes
Medium 1024 4 MBytes | 4 KBytes 4 MBytes
Coarse 1 4 MBytes | 0 Bytes 4 MBytes

Table 3.2: Comparison of the number of tuples and minimum amgrmasage for different granu-
larities of tuple usage.
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3.7 Conclusions

The Linda model has been in use for over ten years, so why bamdittipler d problem not been
identified previously within the Linda model?

When considering data parallelism within the context of lthedla model, some researchers
have alluded to the need for some operations that allow trel@leapplication of a function to all
tuples that match a given template[AS91]. Anderson et akndiescribing PLinda state that the
motivation for such operations is:

Since many applications, particularly database ones, aprassed naturally in sets,
we expect operations that iterate through sets of tuplegtodeful. In vanilla Linda,
ar d may repeatedly return the same tuple, even if several othpdes match.

There is no discussion of why tmeal primitive returning the same tuple is a problem, and the
current implementations of PLinda do not support such djgersa

Currently, Linda programmers either know that the datacsiine stored in tuple space is such
that using the stream approach produces an acceptablerparfce, or they increase the coarseness
of the tuple structure within the tuple space until the lefatoarseness removes the multiple
problem, as shown in the previous section with the compwsitif binary relations. Table 3.2
shows the use of coarser data structures is advantagea@adlgpf memory usage is of primary
concern. One of the strengths of Linda is the ability to p@nfgoordination in a natural way, and
often fine grained structures are more natural. The binanposition example used in this chapter
seems natural using tuples of pairs. The argument as to ethetimot the granularity of the data
structures stored within tuple spaces overcomes the rfeuitgb problem is largely fruitless when
consideringmulti-programming

When the Linda model is used fawulti-programming controlling many aspects of coordina-
tion and data structure granularity becomes more comples.different applications create tuple
spaces and share tuple spaces created by other applicdtiersby sharing information. Each
application controls the granularity of the tuple strueturithin the tuple spaces it creates. If one
application chooses to store an image as a tuple for eachthixe any other application that
wishes to use that image tuple space has to adhere to thdagignset by the application which
created the tuple space.

This chapter has described the multipleé problem and through the use of an example has
shown that the current methods for overcoming the multiplgproblem, using a binary semaphore
and streams, are not acceptable. Therefore, Linda is ut@iplerform a multipler d in a viable
fashion. In the next chapter a new primitive for Linda is preed calledcopy- col | ect . This
primitive is used to overcome the multiplel problem.
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Chapter 4

Copy-collect: A new primitive for the
Linda model

4.1 Introduction

In the last chapter the multipted problem was described. What makes the multipdeproblem
frustrating is that it appears natural that several corectirand non-destructive reads of a number
of tuples should be possible. Within the Linda model thermisotion of synchronisatiobetween
primitives, thus two (or more) Linda primitives can be peni@edconcurrently and the first York
Linda kernel (York Kernel N[DWR95] supports concurrenirpitive operations. If twa d primi-
tives can be serviced concurrently it should be possiblenfamny processes to perform a multiple
r d concurrently.

In this chapter a new primitive calleatbpy- col | ect is proposed. The informal semantics of
the new primitive are described and it is shown how the priis used to overcome the multiple
r d problem.

4.2 Thecopy-col | ect primitive

Thecopy- col | ect primitive is closely related to theol | ect primitive, so first the semantics
for that primitive are considered. In Butcher et al.[BWA3AE authors state that the informal
semantics of theol | ect primitive are:

int collect(TS destination, <tenplate>)

The (informal) semantics @fol | ect is that it moves all the tuples which match the
<t enpl at e>into the tuple spacdest i nat i on, and returns the number of tuples
collected.

More formal (and full) semantics for this primitive are cently being investigated.
However, for the purposes of this paper we need only one pgopgiven astable

49
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tuple space (one in which rions or out s are occurring),col | ect will remove
all tuples matching the template. The intricacies of a formalasics centre on the
meaning of ‘all tuples’ in a non-deterministic active tugigace.

The authors note that although not used in the paper the tiy@rdould be extendible to
allow two tuple spaces to be explicitly stated, a source addstination tuple space. No more
publications have been produced by the authors on furtimeasiics of thecol | ect primitive.
The difference between theol | ect primitive and thecopy- col | ect primitive is that the
copy- col | ect primitive copiesrather tharmoveguples. However, the semantics given to the
col | ect primitive appear rather unclear, particularly the use eftdrmsstableandactivetuple
spaces. Therefore the informal semantics ofdbgy- col | ect primitive described here will
be more comprehensive in order to clarify the ambigufities

n = copy-collect (ts1, ts2, template)This primitive copiestuples that match enpl at e from
one specified tuple spaceq1l) to another specified tuple spades@). A count of the
number of tuples copiedj is returned. Tuple spadesl is known as the source tuple
space and tuple spats 2 is known as the destination tuple space.

To determine how many tuples are copied a series of rulessa u

1. If acopy-col | ect primitive and no other Linda primitives are performed using
the source tuple space concurrently, tlhdrthe tuples that match the template will be
copied to the destination tuple space.

2. If acopy-col | ect primitive and ar d primitive are performed using the same
source tuple space concurrently, and one or more tuples thgis can satisfy both
templates, themll the matching tuples will be copied to the destination tujplace
and ther d primitive will not block and return a matching tuple. If no tokhing tuples
exist then thecopy- col | ect primitive will return zero, and the d primitive will
block.

3. Ifacopy- col | ect primitive and anothecopy- col | ect primitive are performed
using the same source tuple space concurrently, and onerertopdes exist that can
satisfy both templates, thall the matching tuples will be copied to the destination
tuple space for each of theopy- col | ect primitives. If there are no matching
tuples then both primitives will return zero.

4. If acopy-col | ect primitive and anout primitive are performed concurrently,
and theout primitive is placing a tuple into the source tuple space thatches the
template used in theopy- col | ect primitive, then the result is a non-deterministic
choice between copying the inserted tuple or not. All othataming tuples will be
copied.

LIt is proposed that theol | ect primitive uses similar semantics.
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5. If acopy-col | ect primitive and ani n primitive are performed using the source
tuple space concurrently, and one or more tuples exist #rasatisfy both templates,
then thecopy- col | ect primitive either copies all the tuples or all the tuples nsinu
the matcheduple that the n primitive returns (the choice is non-deterministic).

6. If a copy-col | ect primitive and acol | ect primitive are performed concur-
rently using the same source tuple space, then the numbeplastcopied is non-
deterministic within the bounds of zero to the maximum nunade¢uples present that
match the template. The number of tuples thatabkl ect primitive will move will
be the number of tuples present that match the template.

If any primitive occurs concurrently with aopy- col | ect primitive that does not use
either a template which matches one or more tuples thattpy - col | ect primitive
template matches, or the source tuple space, then thereidenterence between them.
The exception is when the primitive is eithecal | ect primitive or acopy- col | ect
primitive performed on the destination tuple space with ragiate that matches one or
more of the tuples being copied. Then each tuple placed @aléstination tuple space
is non-deterministically copied or moved by thel | ect primitive orcopy- col | ect
primitive being performed on the destination tuple spacehelVa value is returned by a
copy- col | ect primitive the copied tupleare present within the destination tuple space.

Thecopy- col | ect primitive will never live lock — it will always complete anckturn a
value. Rule 4 states that if @ut primitive occurs concurrently with@opy- col | ect primitive
then the inserted tuple may or may not be included in the dopigles. Is it possible for one pro-
cess to perform many primitives concurrently with anothecpss performing aopy- col | ect
primitive? Within Linda there is no notion of time assocthteith a primitive. Therefore, with no
loss of generality it can be assumed that all primitives takesame time. The maximum number
of out primitives that can occur concurrently withcapy- col | ect primitive is the number
of user processes minus one. Therefore,ctbpy- col | ect primitive will complete provided
there are a finite number of processes. Pragmaticalypey - col | ect primitive may take longer
than a singleut primitive and therefore, severaut primitives may occur concurrently with the
copy- col | ect primitive. This in itself is not a problem because it is imgibée for the pro-
cess performing theut primitives or the process performing tbepy- col | ect primitive to
know that severabut primitives from the same processes have occurred, howeigenp to the
implementor to ensure that tlh®py- col | ect primitive completes and does not live lock.

To clarify what the rules mean it has been suggested[Wod@ e primitive order should be
considered. This can be achieved by taking a trace of thetpés for a sequential Linda system,
where the primitives cannot be serviced concurrently. bhsasystem ann primitive and ar d
primitive occurring “concurrently” will in reality produzeither the trace:

[onyin, rd, ...],
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or
[.co,rd,in, ...].

If the template used in both operations match a single tulpé the first trace would repre-
sent thei n primitive retrieving the tuple first, and thred primitive blocking. The second trace
would represent thed primitive retrieving a copy of the tuple and then the primitive removing
the tuple. Both traces are acceptable, and the choice ohwitdce occurs is non-deterministic.
This analogy covers any single tuple primitivési( out andr d) occurring concurrently with a
copy- col | ect primitive. If acopy- col | ect primitive and twoi n primitives occur “con-
currently” where the template for each matches severatsuplthe tuple space, the possible traces

are:

[....,in, in, copy-collect, ...],
or

[....,in, copy-collect,in, ...],
or

[...., copy-collect,in,in...].

Assume that before the first of these primitives occur theeenatuples in the tuple space
that match the template used in thepy- col | ect primitive. Then, in the first trace the
copy- col | ect primitive will copy n — 2 tuples; in the second traee— 1 tuples; and in the
third tracen tuples.

The rules described use the ideas of non-determinism dlyrmesed within the Linda model
(as described in Chapter 2). Ifral primitive and ani n primitive occur concurrently, and they
both use a template that can match the same tuple, then timegieterministically compete for
that tuple. The n primitive will always be satisfied because the primitive does not remove the
tuple. However the d primitive will either get a copy of the tuple or block. Ifeopy- col | ect
primitive and an n primitive occur concurrently they compete for the tuplethiéi n primitive
acquires the tuple first, theopy- col | ect primitive does not copy it. This is described using
the traces.

What happens if aol | ect primitive and acopy- col | ect primitive occur concurrently?
Rule 6 indicates that the same non-deterministic competitdr tuples occurs. Therefore, the
col | ect primitive and thecopy- col | ect primitive compete for each tuple that matches the
template. The sequential traces force the primitives toeeiget all or none of the tuples because
the traces can be either:

[...., collect, copy-collect, ...],
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or
[...., copy-collect, collect, ...].

The choice as to which trace is produced is non-determinibtit the competition for indi-
vidual tuples no longer exists. In the first trace trapy- col | ect primitive will not copy any
tuples, and in the second trace thepy- col | ect primitive will copy all the matching tuples.
The rules appear to embody the true spirit of Linda. The temseantics for single tuple space
primitives provide the same semantics. However, the traoestics when applied to the bulk tu-
ple primitives interaction (theol | ect andcopy- col | ect primitives) provide a subset of the
possible results. The primitives could be implementedgisich semantics and be valid because
the two outcomes described are achievable using the rules.gi

Because of the relationship between titd | ect primitive and thecopy- col | ect primi-
tive the informal semantics of tleol | ect primitive used within this dissertation are now consid-
ered similar to the informal semantics of thepy- col | ect primitive, except instead aopying
the tuples, they armoved

When the primitive returns the count of the number of tuplegied, all copied tuples are
present within the destination tuple space. Thereforecalde segment shown in Program 4.1 will
always result in tuple spacés1 andt s2 containing the same number of tuples that match the
template(| 0,0 |). This can be seen as the extensiomof ordering described in Chapter 2 to
cover both the&opy- col | ect primitive and thecol | ect primitive.

Program 4.1 Demonstration of completion afopy- col | ect .
voi d deno(TS source)

{

TS tsl, tsz;

tsl = tsc(); -- Create two tuple spaces
ts2 = tsc();

| copycol | ect (source, tsl, ?int); -- copy source -> tsl

| copycol | ect (tsl, ts2, ?int); -- copy tsl -> ts2

}

Finally, on a pragmatic note in Chapter 2 a detailed desorigif global synchronisation and
out ordering was given and these are now both considered in titexdaf thecopy- col | ect
primitive. For many uses of theopy- col | ect primitive out ordering is required since, without
out ordering it is difficult for one process to indicate to anathieat a set of tuples exist. For
example, consider Program 4.2. Assuming that both funetéma passed the same tuple space and
no other processes have access to that tuple space, then drdering is not guaranteed the value
of n in the functionmast er would be non-deterministic between 0 and 100out ordering is
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guaranteed the functiamast er knows that when the tupCOMPLETE") appeatrs in the tuple
space, the other tuples the functiaor ker produces are also present in the tuple space. If the
functionmast er is not aware of how many tuples are producedabpy- col | ect will gather

all tuples that were produced.

Program 4.2Qut ordering anccopy- col | ect .
wor ker := func(tsl);

| ocal x;
for x in [1..100] do
lout(tsl, [x]);
end for;
| out (tsi1,["COVPLETE"]);
end func;
master : = func(ts);

| ocal n;

lin(ts,|["COWLETE"]]|);
n := lcopycollect(ts, my_ts, |[?int]]);

end func;

This brings us to the second pragmatic issue, which is whitkee opy- col | ect primitive
requires a global synchronisation as described in Chaptém £hapter 5 an implementation of
thecopy- col | ect andcol | ect primitives will be presented which does not use any global
synchronisation of tuples spaces in implementing the pixieni A global synchronisation could be
considered as necessary because, as withripeandr dp primitives, different sections of a tuple
space could be checked at different times. Therefore, onesection of the tuple space has been
checked, a matching tuple is inserted before another sectithe tuple space is searched. Under
the rules given, if amut primitive occurs concurrently with aopy- col | ect primitive then
whether this is copied ison-deterministic Therefore, if tuples are missed because they are being
inserted after that part of the tuple space has been chetHleds not matter. Therefore, a global
synchronisation is not required.
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4.3 Usingcopy- col | ect to solve the multipler d problem

Thecopy- col | ect primitive provides the functionality to overcome the mpikéir d problem.

It allows several processes to concurrerttypythe tuples they require. Consider again the ex-
ample where a tuple space is used to store a number of tupitsiriag peoples’ names. All the
people with the same surname are required. Usingtey- col | ect primitive it is possible

to extract into a separate tuple space all the tuples witlsdinee surname. Hence, to extract all
people with the surnamiRowstronacopy- col | ect primitive is performed using the template
(|Dstring: “ROWSION"s4ping|).

<0,0,1>
<0,1,1>

image_ts _é

<0,0,1>
<0,1,1>

image_ts _6

image_ts _£

Figure 4.1: Using theopy- col | ect primitive to solve the multiple d problem.

Figure 4.1 shows the use of thepy- col | ect primitive to overcome the multipled prob-
lem. The shared tuple space is callethgets and the processes are calleg, Pz and R-. Each
process creates a tuple spaiteagets P,) to which only they have access. They then perform a
copy- col | ect primitive usingimagets as the source tuple space dnthgets P, as the des-
tination tuple space. Once the tuples have been copied teftenation tuple space each process
can retrieve each tuple in turn using ihe primitive. Each process knows the number of tuples in
the tuple space because thepy- col | ect primitive returns a count of the number copied, and
the process can, by destructively removing the tuples,rertbat every tuple is retrieved once and
only once without effecting the other processes. Becauséutiie space cannot be accessed by
any other process the destructive removal of tuples doeaffeat any other process. The example
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in Figure 4.1 has two of the processes requiring all the pixgdich are set (the third field set to
one) and the other process requiring all the pixels whichmateset (the third field set to zero).

Program 4.3 The worker process using tie®py _col | ect primitive.
comp_worker := func(R S, O ;

local ny_val, ny_ts, todo, ny_conb;

my_ts : = NewBag;

my val :=1in(R|[?int,?int]]|); -- Get the tuple fromR

todo : = |l copycollect(S,ny_ts,|[ny_val(2),?int]]);

while (todo > 0) do -- Process all matching tuples
todo := todo - 1;
ny_conmb :=lin(my_ts,|[nmy_val(2),?int]]);
lout (C [ny_val (1), nmy_conb(2)]);

end whil e;

return ["TERM NATED'] ;
end func;

The parallel composition of two binary relations used asxam®le in the previous chapter,
is now used to show how theopy- col | ect primitive overcomes the multipled problem in
more detail. The worker process using t@py- col | ect method is shown in Program 4.3.
The general structure of the approach is the same as in thiosa given in the previous chapter,
with each worker process removing a tuple from tuple spacen worker process then creates a
template using the retrieved tuple for use with ¢fmoy- col | ect primitive. The second field of
the retrieved tuple from tuple space R is used as the firstdietlde template and the second field
of the template is left as a formal of type integerc8py- col | ect primitive is then performed
which copies the tuples from tuple space S to a tuple spacehvithe worker process creates. The
count returned by theopy- col | ect primitive is then used to control an iterative loop which
destructively reads the tuples from the tuple space andesréiae result tuples in tuple space C.

4.4 Experimental results

The experimental results presented in this section, asipitbvious chapter, are obtained using
ISETL-Linda running on a transputer based Meiko CS-1 parabmputer using the York Kernel
I. The copy- col | ect primitive was added to the run-time system by Douglas[DWR@Ad
the implementation is naive (the approach adopted is dmstin Chapter 5). As in the previous
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chapter the worker process was altered to enable the nuribgples from tuple space R to be
consumed to be specified.

For the experimental results the cardinality of the binatation R (stored in tuple space R) is
set to five and the cardinality of binary relation S (storeduiple space S) is set to 50. For every
pair in R there are four pairs in S that match, therefore thdiicality of the composition (stored in
tuple space C) is 20. This is the same configuration used iexperimental results presented in
the previous chapter. Figure 4.2 shows the execution tiorabé worker processes for computing
the composition of two binary relations usiegpy- col | ect, the best execution time of the
other two methods (using a lock tuple with four worker pr@es3, and the expected execution
time for thecopy- col | ect method is shown.

8000 T T T
7000 N
6000 - Copy-collect version—— E
Expected results for copy-collect version-—
Best case for other versions----
5000 Fx

4000

3000

Time taken in ticks

2000 s + i
1000 o
0 L I |
1 2 4 5

3
Number of worker processes

Figure 4.2: Execution time for the parallel composition ofdsy relations when using the new
copy- col | ect primitive.

Figure 4.2 shows some interesting results. Firstly, thewi@n time using a single process
is less than the best time achievable using any number ofengniocesses for any of the other
methods. This is because thamberof tuple space operations that have to be performed is sig-
nificantly smaller. This is expanded upon in Section 4.5. Tiime taken when three and four
worker processes are used is similar, for the same reasoim the& stream method the time taken
for three and four worker processes is similar. The expemedlts are calculated using the time
taken for the single worker process and dividing it by the banof tuples in tuple space R, which
is five. As with the stream method, because there is paraltsss it is expected that with five
worker processes, each processes a single tuple from fogpde &, and therefore, the time each
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worker takes should be one fifth of the time the single workecess takes. The actual execution
times are greater than predicted because the underlyingnmensystem is “saturating”; in other
words the run-time system is receiving more requests th@miprocess, so becomes a bottleneck.
However the performance even with the run-time system &gy is twice as fast as the best
time produced by the semaphore or the stream methods, amed Egrease is observed as more
worker processes are used.

This shows how the new primitive can be used. The same agpiat be used whenever
a multipler d is required. Thecopy- col | ect primitive solves themultiple r d problem A
worker process creates a copy in a tuple space of the tugleththworker process requires using
thecopy_col | ect primitive, and then destructively reads them from thatdiggace. For exam-
ple, given a tuple space containing an image with each pigeparate tuplg k_coor di nat e,
y_coordi nate, value]) the command: copycollect(inmgets, |ocal ts,
| [?int, ?int, 1]]|) copies all the tuples with a pixel value of one into the local¢ space.
Given the tuple space containing tuples representing fastas and surnames. Each process
would use thecopy- col | ect primitive with the template(|Tging, “ROWStron” gpingl), to
copy all the tuples with a surname of “Rowstron” to a sepatapde space, where they can be
destructively processed.

So far with all the experimental results the execution timresf specific cardinality of binary
relations S and R have been considered. Now the effect ofngakiore tuples in tuple space S
match each tuple in tuple space R is considered. For thisattténality of tuple space R is again
fixed at five. Figure 4.3 shows the execution times for five wogrocesses when the number of
tuples in the tuple space S that magadchtuple in tuple space R is increased from one to 50 (the
cardinality of tuple space S is 50).

As the number of tuples in tuple space S that each tuple i tsjphce R matches increases
there will be an increase in the computation time within eaohker process associated with the
calculation and placement of the result tuples into tupkecepC. Although it might be expected
that the stream method should take a constant time becdusplas in tuple space S are always
read by every worker process, the actual time increasd#lglig his increase is attributable to the
extra computation that the worker processes perform. The taken for the semaphore method
increases uniformly with the addition of the extra tuplesuiple space S that match each tuple in
tuple space R. The reason why the execution time increasagaater rate than the other methods,
is that the other methods are parallel. So when the numbeptds that match each element in
tuple space R increases by one, each of the five worker pex@sscess one more tuple. If the
method is parallel then this is performed concurrently. 8se the semaphore method is sequential
the five tuples are processed sequentially leading to aeaserin the execution time which is five
times greater than for the parallel methods. The execuitioa for thecopy- col | ect method
increases as the number of matching tuples in tuple spacéases. As more tuples match there
is extra computation costs associated with each extra puptessed by the worker processes and
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Figure 4.3: Execution time for the parallel compositionsees the number of pairs in tuple space
S which each pair in tuple space R matches.

there is extra communication because the number of tupleesgaerations is proportional to the
number of tuples in tuple space S that match each tuple ie ggace R. Within Section 4.5 why
the stream method performs better thandlog@y- col | ect when 33 or more tuples out of the
50 are matched is considered.

4.5 Modelling the performance

How the copy- col | ect primitive solves the multiple d problem has been shown by us-
ing a number of experiments. To evaluate the three methagmafshore, streams and the
copy- col | ect primitive) in a more general way, a simple model of perforoeais produced
for each of the methods. This allows the performance of eattteanethods to be evaluated using
arbitrary numbers of processes, tuples and tuples thatragtemplate.

Let there be a tuple spacg containing N tuples; a templateé with n of the tuples inT
matching this template; anfl processes needing to perform a multipk concurrently. Initially,
assume thaP = 1. How many and which Linda primitives are required in ordartfe process
to read all the tuples and leave tuple spacin its original state?

Stream method If there areN tuples inT' then each tuple will be read once usingaprimitive.
Therefore, in the stream method the number of Linda primstikequired is:
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No. of Linda primitives= N x rd. 4.1

Binary semaphore method There are two approaches to implementing the semaphorendjeth
one uses theol | ect primitive and the other uses thep primitive. For thecol | ect
approach the number of Linda primitives required is: the benof primitives required for
obtaining and replacing of the lock tuple (a single andout ); the primitive to move the
matching tuples to another tuple space(d | ect ); the number of primitives to remove
the tuples from that tuple space ( n); and the number of primitives to replace theniin
(n out ). Therefore, the number of Linda primitives required is:

No. of Linda primitives= (n + 1) x out 4+ (n + 1) X in + collect. 4.2)

For thei np approach the number of Linda primitives required is: the beinof primitives
required for the semaphore accessi(@and anout ); the number of primitives to move
the matching tuples to another tuple spacé fp +n out +i np which fails); the number
of primitives to remove the tuples from that tuple space (); and the number of primitives
to replace them iff" (n out ). Therefore, the number of Linda primitives required is:

No. of Linda primitives= (2n + 1) x out + (n+ 1) x in+ (n 4+ 1) x inp.  (4.3)

copy-collect method The number of Linda primitives required is: the primitivectapy the tuples
to a tuple space (aopy- col | ect); and the number of primitives to remove the tuples
from the tuple spacen(i n). Therefore, the number of Linda primitives required is:

No. of Linda primitives= copy-collect +n X in (4.4)

When P > 1 the number of primitives requireth total will also rise proportionally with
the number of processes. Each process has to perform thensemieer of Linda primitives to
access the same tuples in the tuple space. Therefore, e#foh @fjuations given above must be
multiplied by the number of processes performing the opmrgassuming that all the processes
wish to access the same number of tuples). The absolutetipgroount is defined as the number
of primitives a set of processes need in order to perform diphait d.

Assuming 100 tuples in atuple spadé & 100), Figure 4.4 shows the absolute primitive count
for the stream method, Figure 4.5 shows the absolute pvienitbunt for the semaphore method,
and Figure 4.6 shows the absolute primitive count forab@y- col | ect method. Figure 4.7
shows the absolute primitive counts for both the semaphutes@ieam methods on the same graph.
In all the figures the labell stands for the absolute primitive countand P are as defined above,
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Figure 4.4: Absolute primitive count for the stream methadthe multipler d problem.

where the range of is 0 toV and the range aP is 1 to 5, representing 1 to 5 processes performing
the multipler d in parallel. Analysis shows that the semaphore method regjunore primitives
than the stream method once 49% of the tuples are required {#49% of N, in this instance

n = 49).
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Figure 4.5: Absolute primitive count for the semaphore méttor the multipler d problem.

Figure 4.6 shows the absolute primitive count for ttepy- col | ect method. Analysis
shows that the&eopy- col | ect method will always have the lowest absolute primitive count



62 CHAPTER 4. COPY-COLLECT: A NEW PRIMITIVE FOR THE LINDA MODEL

copy-collect —

>
FENNWWANJT
JIOJI0UJI0UJI0UJUIO
slelslsls/slslolslals]
TT T T T T 11711

50 2
: 100~ 1

Figure 4.6: Absolute primitive count for theopy- col | ect method for the multiple d prob-
lem.

except whem = N — 1 when the stream method will have a lower absolute primitment.

Does this imply thattheopy- col | ect method is the best? The use of the absolute primitive
count is not the best measure, because Linda makes no agmsrgiiout primitives being serviced
sequentially. In an ideal Linda system if two processesgperfar d concurrently these would be
serviced concurrently. Therefore, as well as consideffregabsolute primitive counts, a count
of the number of primitives thatannotbe performed concurrently should be considered. The
primitive counts for both the stream andpy- col | ect versions are independent of the number
of processes performing the multiplel. The stream method uses omlg primitives and so they
can all be serviced concurrently with othradt primitives. Thecopy- col | ect method also uses
primitives that can be serviced concurrently. The primaitbount for the semaphore method will
rise proportionally with the number of processes as eadpetiform ani n primitive on the lock
tuple, and ther® — 1 will block. In the case of the semaphore method when using thd ect
primitive the number of primitives that cannot be perforncedcurrently is:

No. of Linda primitives= ((n + 1) x out + (n + 1) X in + collect) x P. (4.5)

When using thé np primitive the number of primitives that cannot be perforngedcurrently

No. of Linda primitives= ((2n + 1) x out + (n 4+ 1) x in+ (n 4+ 1) x inp) x P. ~ (4.6)

Figures 4.8 and 4.9 show how the count of the number of Lindaifives that cannot be
performed concurrentlyl() varies as the value d? andn are varied. In both cases the number
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Figure 4.7: Comparison of absolute primitive counts forgtream and semaphore methods.

of tuples inT', (denoted agV) is fixed at 100. Figure 4.8 shows how the stream and semaphore
methods perform, and Figure 4.9 shows how the stream andpbematol | ect approach)

methods perform. Figure 4.8 has a Z axis representing théeuof processes performing the
multipler d

stream ——
semaphore------

1500
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500

Figure 4.8: Comparison of the non-concurrent primitive rdsufor the stream and semaphore
methods to the multipled problem.

because the number of primitives that cannot be performedurcently in the semaphore method
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depends on the number of processes. Because both the stndacwp@y - col | ect methods
are independent of the number of processes performing thigphau d, this information is not
required on the graph (represented by the Z axis in Figute 4.8
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Figure 4.9: Comparison of the non-concurrent primitiverdgsuorcopy- col | ect and stream
methods to the multipled problem.

Simple analysis indicates that when one or more procesststavperform a multiple d, the
copy- col | ect primitive method utilises less primitives if either the ahge primitive count or
the number of primitives that cannot be performed conctigrésm considered, except when all the
tuples in a tuple space match. In this instance the streammothét better regardless of which count
is considered. The use of primitive counts assumes thahalptimitives take the same length
of time. Pragmatically, this is not the case, but they prewaa indication of the performance.
Given a specific Linda implementation the performance ofrtie#thods can be compared using
both the primitive counts. To show this the Meiko CS-1 ISHIihda implementation is now
considered. (See Appendix A for the characteristics of thik Xernel | which the ISETL-Linda
implementation uses).

For the implementation on the Meiko CS-1 the time cost ofgrenfng all the Linda operations
is described in Table 4.1. These timings are calculatedyusiple spaces containing 100 tuples
and 10000 tuples. As the number of tuples within a singleetigplace increase so do the costs
associated with matching the tuples. Therefore, the tiraeahi n primitive and ar d primitive
take is dependent on the template used and the number o$ tagtlee tuple space. In the worst
case all the tuples are matched, and in the best case theufitstfound matches the template.
When 100 tuples are used, the best case and worst caseifor primitive yield similar results.
When there are 10000 tuples the difference between the taxed¢imes is significant.
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Primitive Time in ticks
100 tuples 10000 tuples
Average | Best case{ Worst case
out 71 74
in 130 124 1192
rd 128 121 1183
col | ect 458 17675
copy-col |l ect 726 44290

Table 4.1: The time taken to perform the Linda operationsguSETL-Linda on a Meiko CS-1.

The primitive count models described in conjunction with grimitive timings given in Ta-
ble 4.1 for 100 tuples are used to estimate the performanite afifferent methods of the parallel
composition of binary relations on the Meiko CS-1. The tigsrior 100 tuples are used because
the number of tuples in a single tuple space on which priedtiare performed does not rise above
100 in the parallel composition of binary relations. Theddbte primitive count represents an
upper bound of the performance (worst case) and the prenitunt for the number of primitives
that cannot be performed concurrently represents a lowandéor the performance (best case).
This is because the absolute primitive count representsety@ential servicing of the primitives,
whilst the primitive count for the number of primitives thannot be performed concurrently rep-
resents all the primitives being serviced in parallel. Aritisited implementation will service some
primitives in parallel but others will be serviced sequalhji

Using the models described above amdudingthe cost of performing a singleut primitive
for every tuple to tuple space C when a match is found, it isipes to predict the time taken
for the synchronisatiomithin the parallel composition implementations. The etpd time spent
performing synchronisations in the best case is shown iarEig.10 and in the worst case is shown
in Figure 4.11. These are created assuming the same progeacteristics as used to obtain the
results in Figure 4.3, namely 5 worker processes, with tapkrce R having a cardinality of 5,
tuple space S having a cardinality of 50, and withepresenting the number of tuples each tuple
in tuple space R matches in tuple space S.

If these expected communication timings are compared wélekperimental results used in
Figure 4.3 there are a number of points that should be noteelagtual timings for the semaphore
approach are greater than the estimated times. This is $edtae actual timingscludethe time
taken for the computation as well as the coordination. Theutated timings represent only the
coordination time. The actual execution times for both tlogy- col | ect method and the
stream method lie in between the worst and best case timebothsof these methods perform
the computation in parallel it is expected that the effeatarhputation on the actual results is less
than for the semaphore approach, where the computation erformed concurrently. In the best
case, estimated coordination times of the stream methazhiEethe fastest when approximately
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43 tuples from tuple space S match each tuple from tuple sRate the worst case estimated
coordination times of the stream method are always slowethe achieved results the stream
method becomes the fastest method when approximately 8&stagatch. This would indicate
that the run-time system is performing most of the tuple af@ns concurrently, considering the
computation that the actual timings include.
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Figure 4.10: Best case expected communication overheadsefdhree different methods to the
multipler d problem.

The results and the primitive counts represent a fair wayoffaring the best case and worse
case performance of the three methods for overcoming thigeul d problem in general, and for
a particular implementation. The actual performance dapéargely on the implementation being
used. In most implementations the cost of performing arprimitive and ar d primitive should
be comparable. The cost of performing th&l | ect andcopy- col | ect primitivesshouldbe
comparable to the cost of performing ian primitive that blocks plus the time overheads to either
copy the tuples or attach them to a different tuple spaceedsrthecopy- col | ect primitive is
implemented badly, the performance, in general, shouldettertthan the semaphore method and
the stream method.

In the next chapter the implementation of thepy- col | ect primitive is considered, and a
more efficient implementation approach is suggested, whigkes th&opy- col | ect primitive
far more efficient. Before considering the implementatidrth@ copy- col | ect primitive,
the primitive is compared to other proposed primitives, attter uses of the opy- col | ect
primitive are considered.
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Figure 4.11: Worst case expected communication overheadsed three different methods to the
multiple r d problem.

4.6 Comparison with other similar proposals

In Chapter 2 a number of proposed primitives were describegdiding acopy _contents
primitive, a bounded multiple d primitive and ar d() al | primitive. These primitives can all
potentially be used to overcome the multipld problem, and each of these primitives are now
considered in detailed. A description of their function igegy in Section 2.3.2.

copy._contents [NS93, NS94] This primitive is the closest to thepy- col | ect primitive. The
copy_cont ent s primitive copiesall tuples in a tuple space and does not return a count
of the number of tuples copied. This primitive has two disadages when compared to the
copy- col | ect primitive.

e The lack of “global information”.

Thecopy- col | ect primitive returns a count of the number of tuples copied.sThi
information can be used to control how the tuples are preces3 he information
provides an indication to the process that performed theatipa of the number of
tuples, and this process can then control how the tuplesomumed. For example, if
there are many tuples then several processes may be cregediarm the processing,
and if there are only a few tuples then no other processes &/ to be spawned.
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Because both theol | ect andcopy- col | ect primitives return counts, they can
replace the primitives of np and r dp respectively. Thecopy_cont ents and
nove_cont ent s primitives do not replace thenp andr dp primitives. Indeed,
to overcome the multipled problem using theopy_cont ent s primitive ani np
primitive would still have to be supported. This is because processes perform-
ing the multipler d needto know how many tuples should be consumed. For example,
how would all the people with the surname “Rowstron” be ezt from a tuple space
containing tuples representing people’s hames (as usdusbpter 3)? A process would
duplicate the entire tuple space using tlogy _cont ent s primitive, thenhow many

i n primitives would the process perform to retrieve the cdrteples (containing the
surname “Rowstron”)? If too many were performed the usecgss will block for-
ever on an n primitive, and if too few were performed some of the peoplegsé
surname is “Rowstron” would be missed. Extra informationldde placed into the
tuple space, such as a tuple containing a counter and the ‘fiRaomestron”, however,
such an approach can be seen to rapidly become unsatigfadtoerefore, the np
primitive is required, to be used to destructively remowetiliples and return a value
indicating when no more tuples are available.

The lack of selectivity of which tuples are duplicated.

The duplication ofall tuples within a tuple space is unnecessary in order to ousgco
the multipler d problem. If entire tuple spaces are duplicated it leads rigeléuple
spaces, which need to be searched, manipulated, and stomxperience with using
the copy- col | ect primitive an entire tuple space is duplicated rarely, ndiyna
selective subsets of tuples are required from a tuple sp¥¢kere an entire tuple
space was required, there was a template that matched aligles in the tuple space.
Obviously, there is no guarantee that tuples which matdbreifiit templates will need
to be duplicated, but multipleopy- col | ect primitives could be used if required.

Thecopy- col | ect primitive provides the ability to duplicatenly the tuples needed, and
provides enough information, in the form of a count of the benmof duplicated tuples, to
make the post-processing of the duplicated tuples easyefne, thecopy _cont ent s
primitive is not considered to have sufficient flexibilitydeercome the multiple d problem
in a satisfactory manner.

bounded multiple r d [Kie96] This primitive is again similar to theopy- col | ect primitive.

Kielmann[Kie96] has proposed a Linda system called Ohjedtinda for use in open sys-
tems. When describing the background information to juskié primitive which Objective
Linda supports Kielmann[Kie96] states:

“Another approach is presented in [BWA94] and introducesodiect operation
which atomically returns all tuples matching a given tentlia a certain tuple



4.6. COMPARISON WITH OTHER SIMILAR PROPOSALS 69

space. This approach allows to select multiple objects todmsumed, but in the
case of a RM-ODP trader, unrestrictedly returning the coetgllist of service
providers might still be too much (eg. with respect to mensany) or at least too
inefficient.

There is also a demand for an in operation which atomicallnoges several
objects[tuples] from an object spacfuple space].”

There are a number of observations that should be made.c®héect primitive re-
turns only a count of the number of tuples movet the tuples themselves, and the
copy- col | ect primitive returnsonly a count of the number of tuples copied. The under-
lying run-time system controls the placement of tuples, tiedeneed noteither individ-
ually or as a collective, be moved to the processor on whielptiocess that performs the
col | ect primitive resides.

Kielmann then continues to propose the bounded primitigedeacribed in Chapter 2. The
bound multipler d primitive copies a number of tuples (objects) from a tuplacgp(object
space) to a local data structure, called a multi-set. Theimar and minimum number
of tuples to be copied can be specified, as can a timeout fordwgvthe primitive should
block. Kielmann[Kie96] states:

“Here,a Multi-set is a simple container type with the opésat put and get and
the predicate nhitems denoting the number of items stored inside.”

The bounded d primitive can be used to overcome the multipld problem. However,
there are a number of observations that make such a priniés® attractive than the
copy- col | ect primitive:

¢ Firstly, when being used to overcome the multipteproblem the primitive would not
be used with bounds, all tuples that match the template gréresl. Therefore, the
statement that: “complete list of service providers migdiilt Ise too much (eg. with
respect to memory size) or at least too inefficient”, apptiebe bounded d primitive.
The management of the storage of tuples withdbg@y- col | ect primitive is left
to the underlying run-time system.

e Secondly, the primitive appears unnatural, particulanhits use of a multi-set. A
multi-set is a tuple space. Therefore, it would be more laidic say that the bounded
rd primitive returns a tuple space, with the copied tuples gresvithin that tuple
space. Then, a simple abstraction is to specify the tupleesipdio which the copied
tuples are placed, which igery similar to the original proposal for theol | ect
primitive[BWA94], where only the destination tuple spasespecified (the source is
assumed to be the global tuple space).
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As the distinction is made between tuple spaces and thensgtunulti-set, a number
of operations which can be performed on multi-sets have frdéded, and Kielmann
proposed the operationgut, getandnbr_items The use of the operatiambr_items
allows the number of copied tuples to be calculated for uiginvihe process to ensure
all the tuples are found when being removed from the muitti-Sehe put and get
operations would map onto the Linda (ori np) andout primitives.

The use of a separate data structure, the multi-set, is maseary. The same operations
can be performed upon a tuple space as a multi-set, exceptefmounting of the number
of tuples within a tuple space. Tlpy- col | ect primitive provides this information.
Hence theopy- col | ect primitive appears more natural and a closer fit with Lindantha
a bounded d primitive. If there is a need for a bounded primitive that copies a minimum
or maximum number of tuples then tle®py- col | ect primitive could potentially be
extended to support this.

rd(template)all(function) [AS91] This primitive is another primitive which is similao the

copy- col | ect primitive?. This primitive is interesting because computation is ciored
with a primitive. The function is applied to each of the tugpllbat is matched by the template
provided. The description given is an overview of the priveitrather than a detailed de-
scription. The primitives are stated not to be atomic, aedetfore the set of tuples that are
being matched can potentially change. Anderson[AS91éstiiat a “snapshot” semantics
were not used because of the implementation difficultieb semantics pose. There are a
number of questions about the semantics ofrtti€) al | primitive and its relations:

e Isthe primitive guaranteed to terminate? If a process istamtly inserting tuples does
this primitive terminate?

e Does therd() al | primitive automatically terminate once all matching tuphkere
found, given that andp() al | primitive is also proposed?

e What happens to any tuples that the function provided witénprimitive produces?
If they match the template used in the primitive are they med@

e The function within the primitive appears to be able to siffect tuple spaces. Do
the functions run concurrently? If not this allows deadlookditions to be introduced
trivially, by placing dependencies between the functiossdlin the primitive.

e Where is the function given in the primitive executed?

e How is the interaction between sevesgdll primitives managed?

The semantics for such a primitive would be complex. The doimb of computation and
communication appears to be against the natural philosophinda. A parallel program

The idea of d-loops is proposed by Leichter[Lei89]. This similar to theé( ) al | primitive considered here.
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consists of coordination and computation. The coordinaisoprovided by a coordination
language, and the computation provided by a programmirguige. The primitive does not
necessarily allow the same level of control asdl@y- col | ect primitive. For example,
because theopy- col | ect primitive returns the number of tuples copied it is possible
for the program to control the number of processes that a@d tes consume the tuples.
Therefore, if there are a small number of tuples one procasde used, and if there are
many tuples more processes can be used. rid(© al | primitive does not provide the
same flexibility as theopy- col | ect primitive.

Therd() al | primitive can be emulated using tk@py- col | ect primitive, and this is
shown in Program 4.4. This particular implementation eestinat the d() al | primitive
terminates, tuples produced by the function in the priraitive not matched by the primi-
tive itself, and the function can deadlock if the functiofie® on tuples produced by other
instantiations of the same function.

Program 4.4Emulating ar d() al | primitive using thecopy- col | ect primitive.
rd_all := proc(ts, tenplate, f);
-- ts is the tuple space, tenplate is the tenpl ate,
-- and f is the function

local ny_ts, my_tuple;

my_ts = NewBag;

todo := |l copycollect(ts,my_ts,tenplate); -- Get the tuples
while (todo > 0) do -- Process the tuples
todo := todo - 1;
my tuple :=lin(ny_ts,tenplate); -- Get a tuple
f(my_tuple); -- Apply the function
end whil e;
end proc;

Having considered other proposed primitives that coulddesl wo solve the multipled prob-
lem, it is possible to conclude that tlh®py- col | ect primitive is the most suited because it
supports two unique features: it allows the user to spediéplate for tuple matching and there-
fore is selective in the tuples it duplicates; and it retuon$y a count of the number of tuples
copied, not the tuples themselves. A number of other isswesav considered.

Hasselbring[Has94] discusses the addition of primitiasecifically to “extend generative
communication with data parallelism”, which is seen as tlodivating factor behind the proposal
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oftherd() al | (and its relatives). Hasselbring[Has94, page 82] conalulat:

Because of these problems we do not consider to extend geeretammunication
in PROSET with data-parallel operations. Such an extension wouldsestlne serious
problems both for the definition of the semantics and fortiy@émentation.

However, Carriero[CG90a] states there are three paradignsoordinating in coordination
languages (particularly with reference to Lindedsult parallelism agenda parallelismrand spe-
cialist parallelism When discussinggenda parallelisfgCG90a, page 19] Carriero states|CG90a,
page 20] that:

“Data parallelism is a restricted kind of agenda parallatis’

As agenda parallelism is supported within Linda it is logtcaconclude the data parallelism
is supported, and indeed in Carriero et al.[CG92] the ghilftLinda to express data parallelism
is discussed in depth. The need for new primitives, likedb@y- col | ect primitive, is not
driven by the need to introduce new coordination paradigimsnda, but by the need to be able
to perform certain operations satisfactorily. In the cadsh@copy- col | ect primitive thisis a
multiple r d operation.

Finally, a brief comparison between the use oftlogy- col | ect primitive and the use of
first class tuple spaces to overcome the multigdeproblem is considered. In Section 2.3.1 a de-
scription of multiple tuples was presented. If tuple spaesfirst class, as in MTS-Linda[Jen93]
and Bauhaus Linda[CGZ95] then can they be used to overcoenmtiitipler d problem? It is
possible to produce a copy of an entire tuple space, by siogihg ther d primitive to take a copy
of it. This solution is similar to merging the bounded and thecopy_cont ent s primitives.

All the tuples in a tuple space can be copied into a local datiatsire within a single process. The
tuples which are then required can be retrieved from that staticture and processed. However,
as with the boundedd primitive, what happens if the local memory is not large egtoto store
the tuple space? Theopy- col | ect primitive does not return the tuples so they remain stored
within the run-time system, which can control their placemeilso, operations that can be per-
formed on a tuple space stored within a process would have tieéd, to at least retrieve the tuples
from the data structure. Given the implementational diffies (see Section 5.5) that having first
class tuple spaces, combined with the unanswered questianszmain about how tuple spaces
can be manipulated, and that the copying of a tuple spacé/aw/the retrieval of an entire tuple
space, theopy- col | ect primitive is still required if tuple spaces are first clasgeaks.

4.7 New coordination constructs

In this chapter a new primitive was presenteapy- col | ect. It has been shown how this
primitive solves the multiple d problem. In this section another use of thepy- col | ect
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primitive is considered, when theopy- col | ect primitive is used for the detection of comple-
tion of worker processes. Many Linda programs are writtesnnmaster worker style of parallelism
(or agenda parallelism)[CG90a]. This means that there awmavder of worker processes work-
ing concurrently with a single master process overseeiagvrker processes. With this style of
Linda programming usually, when a set of worker processeslablocked, they have reached a
completion state. Once this has been identified by the mpsieess goison pillis passed to the
worker processes. Program 4.5 shows the basic structurevofker process that uses a poison
pill. The worker process keeps removing tuples which corfiaformation” to be processed. This
is repeated until the worker process reads a tuple which kakia that it recognises as a “poison
pill”. Once the poison pill has been identified the workergass terminates, knowing that all the
required work has been performed by the set of worker prese§® ensure that the other worker
processes terminate as well, the process replaces thengmilsiuple before terminating. The use
of poison pills has been well documented[CG89a, Lei89, G0

Program 4.5 Example of the use of poison pills in a worker process.
i nt worker (voi d)

{
int task id;

i n("work", ?task_id);
while (task_id !'= PO SON_PI LL)

{
process_task(task_id);
in("work", ?task_id);
}
out ("work", PO SON Pl LL);
return O;

How does the master process which produces the poison W kwhen to produce it? If
the poison pill is produced before all the tasks have beeswuorad by the worker processes,
they may terminate before completing all the work. In theest case the consumer process
consuming the results produced by the worker processesskhow many results are expected.
Once the consumer process has consumed the required nuhrbsults it produces the poison
pill tuple and thus initiates the termination of the workeogesses. The occasions when the
consumer process knows the number of results requireditetimand the more usual approach is
to use a tuple as a global counter. The worker process usimgi@ds a global counter is shown
in Program 4.6 where the tuptécount”sying, Ointeger) iS the tuple which is used as the global
counter. The proceduist art spawns a number of worker processes which consume tupkbs, an
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a functionpr oducer . The functionpr oducer creates a hundred tuples with a string and an
integer in each tuple. These tuples are consumed by the spaworker processes (the function
consurer).

Program 4.6 Example of the use of counters and poison pills.

i nt producer (void) i nt consuner (voi d)
{ {
int x, value; int task id, value;
for (x = 0; x < 100; x++4) while (true)
{ {
in(uts, "count", ?val ue); in(uts, "work", ?task_id);
out (uts, "count",val ue+l); if (task_id == PO SON_PI LL)
out (uts, "work", x); br eak;
} process_task(task_ id);
return O; in(uts, "count", ?val ue);
} out (uts, "count",val ue-1);
}
out (uts, "work", PO SON_PILL);
return O;
}

void start(void)

{

int x;

out (uts,"counter",0);
for (x = 0; x < WORKERS; Xx++)
eval (uts, "consuner", consumer());

eval (uts, "producer", producer());
i n(uts, "producer",0);

in(uts, "count", 0);

out (uts, "work", PO SON_PILL);

The main process waits until the producer has finished, amdwhaits for the counter tuple to
reach zero. Each time th@ oducer function places a “work” tuple in the tuple space the global
tuple counter is incremented by one, and every time a won@ggss consumes a “work” tuple
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it decrements the global tuple counter by one. If a workec@ss creates more work tuples then
it increments for each tuple it produces. The functidrart blockswaiting for thepr oducer
function to finish. Once th@r oducer function has finished thet art function then again
blockswaiting for the global tuple counter to have a zero value. Wine global counter is zero
all theconsuner functions will be blocked, and all the “work” tuples will habeen processed.
When thest art function becomes unblocked it places the poison pill tupléhe tuple space so
initiating the termination of all theonsumer functions.

The producer and consumer functions execute concurreiithe global counter tuple can
become a bottleneck, because all the worker processes eupdatiucer process compete for the
tuple. When updating the global counter, the tuple comaiiiti has to be removed from the tuple
space, the counter updated, and then a new tuple created fnfle space with the new global
counter value. This means that the access of the global eoissequential. If the program is
coarse grained this is not such a problem as few processes@eayto concurrently update the
counter. However, as the granularity of the program is desgr@, or the number of processes being
used increases, the regularity with which multiple proesssant to update the global counter
concurrently increases. Therefore, this single tuple asta bottleneck for the entire system. An
alternative approach using tb@py- col | ect primitive is shown in Program 4.7.

In Program 4.7 there is a counter freryprocess which wishes to access the global counter.
The worker processes consuming the work tuples no longeeent a single global counter
every time a work tuple is consumed but rather decreraegtone of the counters. When the
producer creates a work tuple it incremeats/ one of the counters. A worker process can create
more work tuples, by simply producing them and updating thenter as appropriate. When all the
counters summed have a value of zero, and the producer proasither terminated or indicated
that it has stopped producing work tuples, then all the waoptels that have been produced by
the worker processes and the producer process have beesggdcand the worker processes are
blocked waiting for more work tuples.

How can a check be made to see if the counter tuples summee@® Zhis is achievable
using thecopy- col | ect primitive to “grab” a copy of the counter tuples using the pate
(|“count”siring, Dinteger|)- If there are less counters copied than exist then this nibanst least
one process is currently updating a counter and therefdeasitone of the worker processes is still
working and a completion state has not been reached. Ifaltdnter tuples are copied then all
the counters are summed to check if the total is zero. If tta iwzero, then the worker processes
have completed and the poison pill can be inserted into thle space. In order to perform the
check a tuple space is created into which the counter tuptesapied. The repeated creation of
a tuple space in the checking loop will result in a large nuntbeinreachable tuple spaces being
created. Unreachable in the sense that they contain tuptethé tuple space handle is out of
scope and not stored in a tuple space. Current work by Memdz¢$Men96] shows that garbage
collection of such tuple spaces is achievable.
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Program 4.7 Example of the usage of tlmopy- col | ect primitive and poison pills.

i nt producer (void) i nt consuner (voi d)
{ {

int x, val; int task id, value;

for (x = 0; x < 100; x++) while (true) {

{ in(uts, "work", ?task_id);
out (uts, "work", Xx); if (task_id == PO SON_PILL)
in(uts, "count", ?val); br eak;
out (uts, "count", val +1); process_task(task_id);

} in(uts, "count", ?val ue);

return O; out(uts, "count", value-1);

} }
out (uts, "work", PO SON_PILL);
return O
}
void start(void)
{
int count, ms, finished = fal se;
for (count = 0; count < WORKERS; count ++) {
eval (uts, "consuner", consuner());
out (uts, "count", 0);
}
eval (uts, "producer", producer());
out (uts, "count", 0);
i n(uts, "producer", 0);
whil e (finished == fal se)
{
ns = tsc();
if (lcopycollect(uts, nts, "count", ?int) == WORKERS + 1)
if (sumtuples(nts) == 0)
finished = true;
}
out (uts, "work", PO SON_PILL);
}

By creating one counter tuple for each process which acegksecounter, the counters will
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never act as a bottleneck. Any process which wishes to aacaasnter tuple will be able to do so.
In the example given all the counter tuples appear the saroeever, it is possible to have each
process maintain its own tuple in the tuple space which sgmis its current state. For example,
each process could have its own counter, which would be wséeétermine not only when all
the processes have completed but also the number of wokstaphorker process had consumed
and produced. Theopy- col | ect primitive has been used in this way in a parallel algorithm
for stable assignmefwR95}°. In the program for the stable assignment problem complaifo
the assignment occurs when all the processes are blockeel.st@ite of each process is stored
in a tuple in a tuple space. Tlopy- col | ect primitive is used as described above to detect
completion by “grabbing” the state tuples for all the pramss Once they have been “grabbed”
they are checked to see if there is one tuple for every pranessf the process’s state contained
in the tuple is correct for completion to occur.

Which of the two methods, the use of a global counter or thingobf distributed state using
thecopy- col | ect primitive, is better is a subjective question? The use otthgy- col | ect
primitive follows more in the asynchronous nature of thedanmodel, but the continuous polling
may cause extra load on the run-time system. Alternatitieé/use of a global counter requires a
global tuple shared by all the processes which can becomtlartszk.

4.8 Conclusion

The proposal of new primitives for Linda is common place. t®ac2.3.2 outlined some of the
more sensible suggestions. The addition of new primitivesiksl not be motivated by the need
to make something easier for the run-time system implemeatao make something which is
implicit (using compile-time analysis), explicit. TheEopy- col | ect primitive solves a real
problem with Linda and the expressive power of the primitias been shown through the use of
experimental results and predicted results.

What primitives are required if multiple tuple spaces arepgeld within the Linda model? The
answer to this is that theol | ect primitive and thecopy- col | ect primitive are required.
The justification for thecol | ect primitive is given in Butcher at al.[BWA94]. The justificati
for thecopy- col | ect primitive is the multipler d problem as specified in Chapter 3. Are any
other primitives needed when multiple tuple spaces aredatiéhe Linda model? So far there
appears to be no requirement for more general primitivesh s$ entire tuple space copies or
moves. These more general primitives could potentiallyreated using a number obl | ect
orcopy- col | ect primitives if they were required.

This leads to the second question presented in Chapter 1. ddovwthe bulk primitives of
col | ect andcopy- col | ect be implemented efficiently within an open Linda implementa-

3This was originally known as thetable marriage problembut in these politically correct times people preftable
assignment problem
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tion? So far, the implementation of tk®py- col | ect primitive has not been addressed in any
depth. In the next chapter the implementation ofdb@y- col | ect primitive is considered. By
combining implicit information about multiple tuple spacand knowledge about the use of the
copy- col | ect (andcol | ect) primitives a novel Linda run-time system is proposed.



Chapter 5

The implementation of bulk primitives

5.1 Introduction

Having presented the neaopy- col | ect primitive in Chapter 4, in this chapter the efficient
implementation of both theol | ect andcopy- col | ect primitives is considered. These bulk
primitives require multiple tuple spaces, and creatingficent implementation of multiple tuple
spaces provides a foundation for a fast and efficient imptgatien of the bulk primitives. The
original inspiration came from observing the use of the ilknitives in programs using the York
Kernel | with ISETL-Linda on the Meiko CS-1.

In this chapter a new kernel is described called the York Bdiinwhich has been fully imple-
mented. The performance of the York Kernel Il is shown in Geap, and Chapter 7 gives a de-
tailed proposal for the extension of the ideas presentdusrchapter to create a truly hierarchical
kernel. Before the techniques used in the York Kernel Il &scdbed, a detailed review of imple-
mentations is given in the next section and a “naive” apgrdadmplementing bulk primitives is
described.

5.2 Review of implementations

It has already been alluded to that implementations can dsifled as either open or closed
implementations. All Linda implementations require somn@time system which is referred to as
thekernel In some implementations this is a set of library routinegctvlare linked in at compile
time, in other implementations it is a single separate m®cand in some other implementations
it is a set of distributed processes. If the kernel is digteld then the different processes will
be referred to agernel processesDifferent implementations and implementors refer to ¢hes
kernel processes by different names, for exanyghe space manager, TS-managedTSMhave
all been used. The terikkernel processwill be used regardless of what the authors originally
christened their processes.

A closed implementatiois considered an implementation which requires infornmatibout

79
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all processes which are to communicate via tuple spaces &vdikable when the kernel starts.
The implication of using a closed implementation is thatcpsses cannot leave and join at will,
because information about the processes that are to coroateris required when the kernel
starts. Most closed implementations require either theatlgjode or source code for all processes
to be available at link or compile time. Such closed impletagons have the advantage of being
able to use compile-time analysis, and therefore, norntalhsist of two sections; a pre-compiler
(or compiler) and a kernel (either distributed or non-dsited). The compilers perform some
form of compile time analysis to enable better control andhagement of tuples. Most early
implementations of Linda were closed implementations aadevproduced by researchers at Yale
University[Car87, BCG89, Lei89, Zen90], where Linda waigjioially created.

An open implementatiors defined as an implementation where the processes comatunic
ing through tuple spaces need no information about the psesewith which they share tuples
and vice-versa. Also the kernel requires no prior knowledbeut processes when it starts.
This means that processes (programs) can leave and joirllab&dause no information about
processes (programs) is required when kbmel starts. The communicating processes can be
written independently, and even in different programmiagguages. Open implementations
consist of a kernel and sometimes a pre-compiler or compilée role of the pre-compiler is
normally to provide a more natural syntax for the Linda ptiveis embedded in the host lan-
guage. Because not all the processes are available to tfeoimgler less analysis of tuples
and tuple usage can be performed. There have been severaimplementations, including
[DWR95, RDW95, SCM93, Pin91, Ams95, FGY95, Ban96, Tol95a].

5.2.1 Open implementations versus closed implementations

Most of the recent work has been performed on the developoferen implementations. The
performance achievable by open implementations is cuyréetow that of closed implementa-
tions which use compile time analysis because of the pedbo@ increases that compile time
analysis can provide. Closed implementations have théyatnl alter the kernel’'s fundamental
characteristics based on knowledge of how a program usksstuphis should lead to a reduction
in the number of messages being sent between the user @e@ssthe kernel, and as the com-
munication costs are significant, there should be an impnewt in performance. The best closed
implementation using compile-time analysis is the SCA @da, a commercial system based on
the implementations produced at Yale University.

However, the drawback with closed implementations is thay tare restrictive. Most of the
closed implementations are used foultiprocessinfHas94] (a single application utilising several
processes) rather thamultiprogrammingHas94] (many applications possibly utilising several-pro
cesses). With multiprocessing it is easier to control theleskystem, a group of programmers cre-
ate the application and they are able to design the coordinpatterns of the application. There
is little use of spatial and temporal separation, becaudbeprocesses are available at compile
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time. Whereas multiprogramming uses more of the generalriesof Linda, such as the ability

to support processes which are spatially and temporallgraggd[Ban96, Kie96, CG90b]. Appli-

cations need to be able to join and leave the kernel at wilsoAdpen implementations support
the concept of persistence of tuple spaces. One appliceagiomplace information in a tuple space
and then another application can use that information atiamgy in the future. Persistent tuple
spaces have been likened to files within a file space[Gel88@rrhation can be placed within a
tuple space as it would be placed into a file, and then rettiava later date.

5.2.2 Closed implementation techniques

Carriero[Car87] implemented the first Linda system for b&hlared memory parallel computers
(Encore Multimax and Sequent Balance) and a distributed angrmparallel computer (S/Net).
The Encore Multimax and Sequent Balance implementatioliesdren the use of compile-time
analysis. The compile-time analyse involved the exanonatif the tuples and templates to enable
efficient data structures to be constructed for storingupkes. The analysis specifically examined
field types and actuals present within the templates anésugDnce this information is known
the fields which need to be matched at run-time can be cadcllaind redundant fields can be
removed. The shared memory implementation placed the ttai@ise in which the tuples are
stored in the shared memory. The distributed memory imphtatien on the S/Net did not use
any compile time analysis and simply replicated a simpla @atucture for storing tuples within
each processor module of the computer, and used broadoastsibdes to ensure that the data
structures were kept synchronised.

The same compile time analysis techniques used in the EMudteanax and Sequent Balance
implementations are used by Bjornson et al.[BCG89, Bjo®2] Zenith[Zen90]. However, both
these implementations examined how the kernel could becimghted for distributed memory
parallel machines where the replication of all tuples orttedl nodes is unacceptable. In these
implementations the kernel is distributed over severatggeors within the parallel machine and
the tuples stored on one of the many kernel processes. Thes e distributed across the kernel
processes using a hashing function. For a given tuple thértgainction identifies a unique kernel
process for that tuple. For a given template the hashingiifimidentifies the kernel process on
which a matching tuple would reside. The kernel architectiged within these implementations
provides the basic architecture that has been widely usetbgt kernels since then.

The next major advancement of compile time analysis was nagairoduced by
Carriero[CG91a, CG90b, CG91b]. Instead of just analyshng tuples and templates to gen-
erate efficient data structures, and detect which fields teeled matched at run-time, the compiler
actually performed “partial evaluation” of the Linda priiwés. The basic approach is to recognise
how tuples are being used and then implement a suitable agpto deal with the coordination
patterns. For example, if there are a number of processdsrpéng i n( " semaphore")
followed by out (" semaphor e") the compile-time system can recognise this coordination
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pattern. Once recognised the kernel at run-time can creaiarder to act as that particular tuple.
Whenever am n( " semaphor e") is performed the kernel simply decrements the global counte
if it is greater than zero otherwise the primitive blocks. &dbver arout (" senaphor e") is
performed the kernel increments the counter. The compiie tinalysis recognises a particular
coordination pattern (in this case a tuple being used as agggore) and instructs the kernel to
use a more efficient mechanism to control that tuple. Thedtdsnalso able to ensure that the
mechanism is placed in a kernel process close to the useegses using the semaphore. The
compile time analysis is also capable of recognising whpletuare being used as global counters,
and instead of removing the tuple, updating it and then oipdgit, the operation is implemented
as a counter stored within the kerhelThe analysis also improves the placement of tuples, for
example with the ability to detect that tuples can only bescomed by a particular user process
implies that the tuples can be sent directly to that userga®cAlso, if a tuple, once produced,
is only non-destructively read then it can be broadcastltosalr processes that could potentially
access it.

The commercial version of C-Linda, SCA C-Linda, is basedhawtork of the Yale University
researchers[Car87, BCG89, Lei89, Zen90]. More optinusathave probably been developed for
compile time analysis by SCA but have not been published @germnmercial considerations.

Work outside Yale University on closed implementations &las been performed. This has
mainly concentrated on the development of “hierarchicafriels|ldHM91, CAHMW92, CW92,
MP93]. The underlying idea is that by grouping processeskwtshare” tuples a more efficient
implementation can be made.

Matos et al.[MP93] have created an implementation basetienge of multiple tuple spaces
called Linda-Polylith. The multiple tuple space model agogds a hierarchical one. The compile
time analysis can be considered to produce a tree, whereottesrepresent a tuple space and
the leaves represent user processes. If a process is t@ @actugde space then the process must
be a descendent of the node which is the tuple space. The odetia the global tuple space,
so all processes can access it. The problem with such anagbpie the fixed nature of the
communication allowed. A tuple space handle cannot be gassether processes because they
are fixed at compile time. However, the concept of a hieraadtkernel is an interesting one, and
is used in Chapter 7. A more in depth description of Lindayktblis given in Section 5.5.1.

Clayton et al.[CW92, dHM91] described their kernel as admehical kernel, however, it ap-
pears to use a flat structure of their kernel processes. Témyaompile time analysis to group
tuples in a similar manner as Carriero[Car87] to allow distiion across a number of kernel pro-
cesses. They also use compile time analysis to create a@liatement mechanism for spawned
processes[dHM91, CdAHMW92]. This relies on a machine detson; compile time information
about when processes are spawned; and heuristic rulesitie dtatically (at compile time) where
the processes should be placed.

See the description of thepdat e primitive in Chapter 2.
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Within this section a brief overview of the role of compileng analysis within closed imple-
mentations has been presented. The kernel implementatim ¢ described in this chapter is an
open implementation. Most of the compile time analysisnépines described here are not suitable
for open implementations because they require informatioich is not available. There are a few
of the compile time analysis techniques that can be useéxBmple the conversion of am/out
pair (as described in Section 2.3.2) into a single operatitmwever, within the context of this dis-
sertation the primary interest is with the implementatiéthe copy- col | ect primitive (and
the bulk primitives) rather than other optimisations that@ready well known and documented.

There are many similarities between the kernels used iedlmsplementations and those used
in open implementations. In many ways the kernels currarghd for open implementations are
cut down versions of the kernels used in closed implememtstiln the next section an overview of
current techniques which are used in kernels (approprigteden implementations) is presented.

5.3 Kernel implementation techniques

The basic role of a kernel in an open implementation is to manaples. It “receives” messages
containing instructions (which normally map onto the Lirgtamitives), it processes these mes-
sages, and returns, if appropriate, a tuple or reply messaljé&ernels have a number of basic
characteristics which are:

e Tuple distribution, which is how the tuples are going to b&tributedacrossa number of
kernel processes,

e Tuple format, which is the format of the tuples,
e Tuple storage, which is how the tuples are stored within glsikernel process, and

e Eval implementation, which is how theval primitive is implemented.

The characteristics are not disjointed and making deasidiout using one approach for one
characteristic can often limit the choices for another abtaristic. The tuple distribution mecha-
nisms and the implementation efal are now considered in more detail.

5.3.1 Tuple distribution

How are sets of tuples distributed across the kernel (assagpi within kernel processes)? There
are four approaches used within current kernels to coirtgothe distribution of tuples across a
kernel[ACGK88, CSS94, Cam96]. These four approaches are:

Centralised This is where the kernel is a single process. All tuple spagaiions are sent to
this single process, and all the tuples are stored in it.
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The advantages of such an approach is that the kernel isesiampl all the tuples are kept
together which means it is easy to take a “snapshot” of theentistate of the tuple space.
This property has made the centralised approach populaaity implementations support-
ing fault tolerant tuple spaces, such as PLinda[JS94, Jem@bParadise[Ass96].

The disadvantage of having a centralised kernel is thatittggeskernel process becomes
a bottleneck. As more processes try to perform tuple spaeeatipns concurrently the
kernel simply cannot service them fast enough. If either allsnumber of user processes
are to be used, or the number of tuple space accesses thabfusetr processes are to
perform is low then a centralised approach provides acbeptegerformance. This type of
approach is used in Parlin[SCM93], TsLib[SVS94], PLin&H4, Je096], Paradise[Ass96]
and Glenda[SAB94].

Uniform distribution This is where the kernel is distributed (there is more tham kernel pro-
cess) and the tuples are distributed evenly over the kerneepses. This is often achieved
by every user process having two sets of kernel processifidenitcalled anin-setand an
out-set Whenever a tuple is placed into a tuple space the tuple edoest to all the ker-
nel processes in thaeut-set Whenever a tuple is required from a tuple space the regsiest i
sent to all the kernel processes in theset If the tuple is retrieved using amn primitive
then all the kernel processes in timeset have to synchronise to update the tuple spaces
to ensure that two user processes cannot retrieve the sahee tuthere aret tuple space
servers the cardinality of theut-setcan vary from one ta@ (and the cardinality ofn-set
will vary from ¢ to one). All theout-setspresent within the user process must include a
member from each of thim-setsin all of the user processes and vice-versa. Carriero’s
S/Net implementation[Car87] uses this approach witinasetbeing a local kernel process
(one that resides on the same processor as the user pracgdbaut-setbeing all kernel
processes. This is because the S/Net provided a cheap asbddoction. If this kind of
approach is required then it is more common to adopt an apiprk@own asntermediate
uniform distribution

Intermediate uniform distribution This is a particular case of uniform distribution. If there a
t nodes then the cardinality of both thesetand theout-setare v/¢. This is shown in
Figure 5.1.

This variant of uniform distribution has been proved the tmogtimal uniform
distribution[ACGK88] in terms of the number of nodes inwllv in anin prim-
itve and an out primitive.  This particular approach is adopted in the Linda
machine[ACGK88, KACG87, KACG88], where the bus that joite tdifferent Linda
nodes provides the arbitration necessary to ensure thatiphe spaces remain consistent
when severai n primitives are performed by different processes conctigre® number

of other implementations have used the same approach, da[Faa91] (for transputer
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Figure 5.1: Intermediate uniform distribution using 16redrprocesses.

meshes) and the Bag-machine implementation[Tol95b] (odtwf workstations). In these
cases the communication costs of synchronising the diugtidaples is too great[Faa91] to
make the method efficient without specialist hardware stp@s in the Linda machine).
Whenever a tuple is retrieved by a user process from a keroeégs, the kernel processes
which are members of thim-setused by the user process have to determine which can
provide a suitable tuple. If many kernel processes can geosi suitable tuple then one
has to be chosen. Once the kernel process has been chosamlihto inform the kernel
processes that are in the samé-setthat the tuple is being removed. Without the support
of special buses such an approach requires a large amountrohgnication to control
all the arbitration that is needed[Faa91]. Tolksdorf[B}I®as created a kernel that can
dynamically change over time allowing the number of kermetpsses to be both increased
and decreased, where the distribution strategy is basadenmiediate uniform distribution.

This leads to the final general type of tuple distributionstBbuted hashing.
Distributed hashing Distributed hashing is another distribution mechanismufi@ in distributed

kernels, and the kernel process which stores a particysée isichosen by using the proper-
ties of the tuple or template being used. In order to do thiashimg function is used which
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when applied to a tuple or template provides the kernel moa which either the tuple
should reside, in the case of a tuple, or where a matching tuplld reside in the case of
a template. Hashing is discussed in detail by Bjornson[Bjo@nd is used as the basis for
most open implementations, including several previoudeémpntations at the University of
York[DWR95, RDW95]. The aim is to develop a hashing functibat has two properties.
Firstly, this should provide a uniqgue mapping between evepje and a template which
matches it to a single kernel process and secondly it shaoldde a good distribution of
the tuples over the kernel processes. This has the advahisgee kernel process given by
the hashing algorithm will contain a matching tuple, if #né& one in the tuple space, which
removes the problems of searching multiple kernel proseddewever, pragmatically this
has only been achieved effectively in closed implemematioFor open implementations
no general purpose hashing algorithms have been creataddmeof the limited amount of
information potentially provided within a template and thek of compile-time analysis of
all tuples and templates used within a system. Thereforém systems, hashing functions
are chosen that enable evenple to be hashed to a unique kernel process and a template
hashed to a set of kernel processes. In the best case theaditydof this set will be one
because the information the hashing algorithm uses for la igpresent in the template.
The request for the tuple is then either broadcast to all éheed processes produced by the
hashing algorithm for a particular template, or to a paliickernel process. If there is a
broadcast to more than one kernel process then some forrhiwaéion has to be performed
by the user process (transparent to the Linda programmehesas may be more than one
tuple returned. If the request is sent to a single kernelgg®and that kernel process cannot
find the tuple it will then broadcast the message or pass intwhar kernel process. The
original kernel process then deals with the arbitration.itaresting point is that the kernel
created by Bjornson[Bjo92] provides dynamic analysis @iduaccesses. Therefore, if a
particular process is consuming tuples of a particular kineh the hashing functions in the
user processes are dynamically altered (by messages feokethel) to send the tuples to
the kernel process that is local to the user process conguimintuples. This technique is
calledbucket switching

The choice of the distribution approach used depends jaogethe requirements of the system.

Most current implementations use the distributed hashipgaach, because it is more efficient and
it does not require the synchronisation of kernel processest-setsvhenever a tuple is destruc-
tively retrieved. The kernel developed in this chapter wweapproach based on the distributed
hashing method, which is discussed later in this chapter.

5.3.2 Theeval primitive

In Chapter 2 theval primitive was described. To reiterate; teeal primitive creates aactive
tuple, which is a tuple with one or more of the fields a functidnich are evaluated concurrently.
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Whenever the evaluation of a particular field is completedvilue produced is placed within the
active tuple. Once all the fields have been evaluated theedciple becomes a passive tuple.

Linda 1 did not contain aeval primitive, but the first implementations of Linda suppogtin
what is now called Linda 2, contain &val primitive and introduce the concept aftivetuples.
The need for active tuples appears unclear in the early imgaations as they cannot be matched
or manipulated by any user process.

Implementation strategies vary from not providing any safrteval primitive, through
mapping theeval primitive onto the basic spawning characteristics of thetay being
used (for example, Glenda[SAB94], PLinda[JS94], eLind&®¥] and York Kernel | (PVM
version)[RDW95]) to providing a mechanism that literalllages an “active tuple” within the
tuple space that can be manipulated by other processexaimpée MTS-Linda[NS94] (although
not fully implemented).

The creation of a tuple in the tuple space when all the funstimave been evaluated appears
desirable. It provides a simple and effective mechanisnidavaother processes to detect when
a set of processes have terminated. Allowing active tupldsetretrieved raises many questions.
How are active tuples matched, and in particular how is a fidlath is a process matched? How
does a process know if it is getting a process or a value? \Wipgtems to the matched process and
what does it mean to performra primitive matching an active tuple?

Nielsen et al.[NS94] discusses these issues, proposingnéi@hed processes are bound to
variables, and the addition otauch primitive which forces the functions to be evaluated before
the tuple can be retrieved. The example given in Nielsen.pN$94, page 27] implies that the
t ouch primitive is given a template that matches the tuple. Thitaltd manipulate active tuples
raises many questions about how this should be managed atehiented, which have not yet
been sufficiently answered.

There has been some research into howethal primitive can be implemented to provide
a passive tuple upon completion, without supporting theipudation by user processes as ac-
tive tuples[HKCG91, RA95]. Both approaches are similar apguire compile time analysis
which makes them useful for closed implementations, butfeiobpen implementations. Both
approaches use the concept efval servers” which receive instructions to execute particular
functions. When a user process performsearal primitive the description of the function or
functions to be executed are sent to theal servers. When each function has been evaluated
theeval server updates a shared structure (which is a special tupse)ting the resulting value.
When all the functions are evaluated and the values instréetliple becomes a passive tuple. All
the communication is achieved through the use of tuple sp@ueuding the passing of arguments
to the functions). In both approaches care has to be takensiare that “spurious” deadlocks
do not occur if there are fewaval servers than spawned processes, becausevthke servers
can only sequentially evaluate a single function. Spuribesdlocks can be produced if there is
a synchronisation between two process which are consideiteg executing concurrently but are



88 CHAPTERS. THE IMPLEMENTATION OF BULK PRIMITIVES

in fact not. Consider the two functions in Program 5.1. Assgrmanother process has created
a tuple space and then uses éhaal primitive to spawn these two process concurrently. These
two process need to be executed concurrently, therefotigelié was only oneval server, one
function would be picked and executed, but it would blockil the other process was executed.
If the eval server is only able to service one function at a time, therethal server will be
deadlocked and the other process will never execute.

Program 5.1 An example of a “spurious” deadlock.
process_one : = func(tsl);

| out (tsl, ["HELLO']):
lin(tsl, |["REPLY"]]);
return O;

end func;

process two : = func(ts);
lin(ts, ["HELLO']);
lout (ts, |["REPLY"]]);
return O;

end func;

An alternative adopted by Clayton et al.[CAHMW92] in a tiauter implementation of Linda
involves the development of a static heuristic approacth¢oplacement of processes. The ap-
proach is only suitable for a closed implementation and strictive, assuming certain types of
characteristics about the use of Linda programs, and isuitaide for use in open implementa-
tions.

In the ISETL-Linda implementation[]DWR95, DRW95] at the Maisity of York, the system
supports arval primitive which produces a passive tuple but can only conaie function to be
evaluated. This is achieved without using compile time supgs the language is interpreted, but
by using “ISETL engines” which receive both the function anpartial tuple. Once the function
has been evaluated by the ISETL engine it updates the panial by filling in the returned value
from the function, and then places the (complete) tuplettmcaappropriate tuple space. The ISETL
engines use threads and can therefore evaluate more th&matien concurrently which ensures
that spurious deadlocks, due to functions not executinguwoently, cannot occar

The kernel which is described in this chapter provides alsirapal primitive which allows
a single process to be spawned. There is ho concept of ae agpike, and a tuple is not created in
the tuple space when the function evaluation is complefeituple is required the function must
create it before completing. It is not possible to pass aitigiiparameters to a spawned process.

2Provided that the number of threads being executed on e&H_IEngine is within the bounds of the hardware
being used.
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If initial parameters are required they must be passed ¢fir@ishared tuple space. The York
Kernel Il provides a universal tuple space to which all peses have access. It would probably
be possible to extend the work of Hupfer at al.[HKCG91] tovisle more generatval servers
that could be used within open implementations, howevsrhiths not been considered within this
dissertation.

This section has presented a brief overview of some of tha nmicepts and characteristics of
open implementations. In the next section the addition pfieix information to Linda programs
is considered as a mechanism for improving the performahcada programs.

5.4 Adding explicit information to Linda programs

The addition of explicit information to Linda programs cédtea improve the performance of the
kernel. The explicit information can take many forms inéhgdspecial primitives and “hints” (or
pragma3. The special primitives are treated in a more efficient neaiinan the equivalent using
Linda primitives. Examples of such primitives were outtine Chapter 2 (thadd andupdat e
primitives). Many programming languages already make @ipeagmas which are either language
specific or compiler specific but do not normally alter the aptits of the program in which they
are used. There are a number of examples, including the usegifst er in C. This instructs
the compiler, that in the programmer’s opinion, a varialfiewdd be stored in a register. If the
compiler chooses to ignore this the program’s semantidewilchange. Ada also uses compiler
hints in the form oforagmas, which control such things as whether functions should bedd
and what type of optimisation should be used. Within the @dantf Linda, pragmas have mainly
been used to help control tuple spaces, and in particulartinoles flow through tuple spaces, and
how the tuple space is used.

Controlling the flow and order of tuples in and out of tuple cgsiRow95] can be used to
remove some of the costs of the extra synchronisation adedoivith forcing a specific order on
the tuples within a tuple space. Within the context of Linda érder in which tuples are removed
from a tuple space has no relationship with the order in wthely are inserted. Pragmatically, in
most implementations, there is a relationship between ttieran which tuples are inserted into
a tuple space and the order in which they are removed, whidbt&ministic. This is acceptable
in implementations because the order in which the tuplesetwened is a member of the set of all
possible orderings. If the implementation was fully notedeinistic then it could always produce
the same ordering. A dilemma that often faces a programntieais small performance advantage
can be gained by ordering tuple retrieval, but the cost ofagany the ordering in terms of extra
coordination outweighs the benefits. Therefore, if a tupkcs could be tagged adast in first
outqueue, or dirst in first outqueue the benefits of tuple ordering are achieved withougxtra
synchronisation costs. If the implementation cannot sttggerticular ordering then the program

3Some of the Ada pragmas alter the semantics of a program.
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will still work (as long as the program has been written to heéependent of the ordering), but
without the performance gain of having ordered the tuples.

Eilean[CSS94] uses programmer hints which are used to diwidistribution of tuples. The
hints take the form of library calls indicating how certaiples are used within a program, typing
the tuples as being one of the following classes: produgasumer, result, write-many, read-most
and general read/write. Once classified the kernel treats type of tuple differently, allowing
more efficient placement and retrieval of tuples. A more igegpproach has been suggested by
Wilson[Wil91] where configuration files are created to allthve kernel to be configured and then
the programs explicitly state where individual tuples dtidae placed. Such an approach may lead
to increased performance but degrades Linda into littleertioain a system providing asynchronous
buffered communication channels between processes asitnilmany message passing systems
such as PVYM[SDGM94].

In the description of the implementation of MTS-Linda[N$84s suggested that tuple spaces
should be explicitly tagged to indicate their use. Themfar tuple space could be tagged as a
persistent tuple space, a tuple space to be replicatedlessipgice that compile time analysis should
be performed on, a local tuple space, etc.. The kernel tleatstthe tuple space appropriately.
MTS-Linda is considered in depth in Section 5.5.2.

The addition of explicit information to Linda programs meu@e onus of producing efficient
kernels from the kernel developer to the Linda programméis Teans that the Linda program-
mer has to understand and appreciate how the underlyingimggitation works in order to be
able to write efficient programs. The aim should be to makeingiprograms easier for Linda
programmers rather than more complex. This has led to alséaran alternative to the use
of pragmas and new primitives which has resulted in a progriag tool called the Linda Pro-
gram Builder[ACG94] being developed. The Linda ProgramldBariis an interactive tool which
supports the design and development of Linda programs. $éieisiable to design programs by
choosing code templates which generate the code for diffem®rdination patterns and constructs.
Because the Linda Program Builder is aware of which code letegpwere used to generate a se-
guence of Linda primitives, it knows more information abbatv the tuples are being used. This
extra information has been used in conjunction with the Galeénda compiler[CG90b] to enable
the compiler to further optimise the programs. Therefoldoagh a standard Linda program is
produced by the Linda Program Builder it is able to add coengiints. Unfortunately many of
the optimisations used within the Linda Program Buildersarn¢able for closed implementations
rather than for open implementations. All communicatingogssses are developed using the Linda
Program Builder, and consistency in the use of particulplesican be checked and enforced. All
the compiled processes know how a particular tuple or tuptesstored or how a coordination
construct is implemented.
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5.5 Implementing multiple tuple spaces

Throughout this dissertation references are made to taleeshandles and names. In most im-
plementations the name of a tuple space acts as its handlellasTive name of a tuple space is
a (unique) tag that allows a tuple space to be identified. momplementations the tuple space
name must be unique because when a tuple space is createdsther knowledge about which
processes will eventually be able to access the tuple spgadeo tuple spaces have the same
names then it would be impossible to distinguish betweemthia this dissertation tuple space
names such as “TS1” are used, however in reality they ardlysueombination of several pieces
of information which when combined create unique names.

The simplest way of adding multiple tuple spaces is to allogvgrogrammer to pick the tuple
space names as in Glenda[SAB94]. However, this means thatateuple spaces can uninten-
tionally be called the same name, particularly in open im@etations, and individual processes
cannot create tuple spaces that other processes cannss.aSceit is normal for either the kernel
or the user processes to create the tuple space names. InLMAENS93] the kernel chooses
names by providing a global name generator which ensurés\hey tuple space name is unique.
Such an approach requires communication between the ussrgzes and the kernel whenever a
tuple space is created. Therefore, it is more common to dlewvaser processes to create the tuple
space names[DWR95]. In a LAN implementation a user procehkealy to use: the computer’s
name (IP address), process identifier, local counter wittéruser process, and potentially the date
and time. The advantage of producing the tuple space naroallylis that there is no commu-
nication required with the kernel, but the tuple space naanesisually longer. Any user process
which is aware of the name can then potentially write tupdethé tuple space.

The kernel has to manage the access of the tuple spaces Whittipte space names represent.
The simplest approach is to treat the tuple space name asrariek within tuples and templates.
Therefore, the first field of every tuple and template has tarbactual of the type string[SAB94].
The tuple(10;,teger, 1.0 £104¢) Stored in a tuple space with the handt®00.13.1” would be stored
as the tuplg*4000.13. 1 sring, 10integers 1.0f10a¢). The syntax of the primitives embedded into
the host languages disguises this so the programmer is umafvenis. When am n primitive is
performed the template has the tuple space name added titsitfiast field. This will always be
an actual rather than a formal within the template. The Kehan treats the tuples and templates
as it would do if multiple tuple spaces did not exist.

By not considering the tuple space name as part of the tuplender of implementations have
used tuple space names in a more efficient manner. Two implatens of particular interest are
Linda-Polylith[MP93] and MTS-Linda[NS93], which are nowstribed in greater detail.
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5.5.1 Linda-Polylith

Linda-Polylith(MP93] is interesting because it uses dfasation of tuple spaces to achieve better
performance, and utilises a hierarchical kernel. It is a@tbimplementation which uses compile
time analysis to analyse the use of tuple spaces, and preduee like structure of tuple spaces.
The position of the tuple spaces within the structure iscstand is fixed at compile time. The
leaves of the tree are considered to be user processes,@dndagte of the tree is considered as a
store for asingletuple space.

Program 5.2 Linda-Polylith program example.

t upl espace gl obal void main()
{ {
tupl espace | ocal 1 int i, num
{ rd(0, "NUMBER', ?num
init_process main(); for (i=0; i< nuny i++)
init_tuple("NUMBER', 5); {
1 out(0,"fork",i);
t upl espace | ocal 2 eval (0, phi |l osopher(i))
{ if (i>0)
init_process main(); out (0, "ticket");
init_tuple("NUMBER', 7); }
} }
}

Matos et al.[MP93] give the example shown in Program 5.2. @rogram consists of tple
space descriptiowhich names the tuple spaces; defines any tuples that shepldded inside the
tuple space when it is created; and also specifies any ipitiglesses that are executing “under” a
tuple space. Therefore, in this example, there is a glolpdé tspace with two other tuple spaces
beneath it. The functiomai n is spawned into each of these two lower tuple spaces. Thédanc
mai n is an initialisation function for a dining philosophers gram. It creates the tuples which
represent the room tickets and the forks, and spawns thespbpiher processes. The number used
as the first parameter in the Linda primitives in the functien n are used to indicate how far up
the tree the tuple space to be used resides. In this casduledvaeans the first level, which will be
either tuple spackocal 1 ortuple spacé ocal 2 depending on the tuple space to whicdi n is
attached. If the value 1 is used, regardless of which logé¢tspace the functiomai n is attached
to, the tuple spacgl obal will be used. Hence, the twoai n functions could communicate with
each other through the tuple spageobal by specifying 1 as the first parameter within the Linda
primitives.

There appears to be a restriction that a spawned processsimarst the same parent tuple
space as the process which creates the spawned processndadPolylith system has a number
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of other restrictions in order to aid compile time analysibjch are of no interest here.

Linda-Polylith uses the addition ekplicitinformation to aid in the placement of tuple spaces.
Atuple space is managed by a single process, which can biglecg as a node in a tree. Processes
cannot dynamically create tuple spaces, and handles flerdppces cannot be passed between pro-
cesses. The explicit information required is complex ara$tantial, and requires the programmer
to envisage the structure of the kernel in order to passdupleugh it. Such an explicit approach
could not be used within open implementations as the streicifithe tuple spaces is not known
either at compile time, or when the kernel starts. The nurob&uple spaces, and the processes
which use them will change dynamically over time in a kereeldn open implementation.

In closed implementations[CG90b, CG91a] it is possiblertalgse the tuples and the tem-
plates, and to create a similar structure to the one LindgitPocreates. Instead of expecting
the programmer to perform the partitioning and organisifithe tuple spaces, the global tuple
space is partitioned automatically, and distributed oegegal processes. This compile-time anal-
ysis implicitly gathers much of the information which is pided in a Linda-Polylith program
explicitly.

Linda-Polylith is interesting because it uses informatadout tuple spaces. However, the very
explicit nature of the approach taken means that it is ngt coinplex for a programmer but also
restricted to closed implementations. An interesting epids the storing of tuple spaces within a
kernel with their position dictating who can access thenve@that the implementation is a closed
implementation it is likely that messages for higher levelghe tree will be sent directly to the
relevant kernel process, rather than passing them up theThés then makes the kernel, from an
implementors point of view, flat. In Chapter 7 the concepelua the York Kernel Il are extended
to create a truly hierarchical kernel, which is based on #&meesconcept of a tree, although instead
of each node storing a single tuple space, the nodes starefgaple spaces, and the tuple spaces
migrate up the tree.

5.5.2 MTS-Linda

MTS-Linda[NS93, NS94] is an implementation based on thekwbdensen[Jen93]. MTS-Linda
allows the user to tag a tuple space as a particular type l&f syggace. The implementation supports
only local tuple spaces and shared tuple spaces, but Nietsg&l{NS94] suggest other types of
tuple spaces could be used, such as replicated tuple spaces.

MTS-Linda uses both a hierarchical and a flat tuple spacetstai for tuple spaces. The
hierarchical structure is created because processestexaside a tuple space, and then the tuple
spaces they create exist “within the process”. The tupleespawhich the process resides can be
considered as the parent tuple space of the process. Twgiessphat are created within another
process can beopiedto the parent tuple space, dt movedo the parent tuple space. The tuple
spaces used to create the hierarchical tuple spaces aré loalhl tuple spaces. A local tuple space
can only be accessed by the process that created it, and lagwypsbcesses that have the tuple
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space as their parent tuple space. Therefore, it is commbav® several processes accessing a
“local” tuple space.

Shared tuple spaces are tuple spaces which are created pmaeygs can access them provided
that the processes has the tuple space handle. The tupketspadies can be passed using tuples
in other tuple spaces.

MTS-Linda uses explicit tagging of tuple spaces to providearinformation about the tuple
spaces. However, MTS-Linda treats the underlying impldateam of the tuple spaces as the
same, regardless of whether they are shared tuple spacesabituple spaces. The fact that a
tuple space is known to be a local tuple space, and subséguantbe accessed by a subset of
all the processes provides information that could be usédirwihe implementation to manage
tuple spaces and control where spawned processes areazketndeed, the hierarchical kernel
described in Chapter 7 provides an ideal match for such araigy of tuple spaces. The suitability
of hierarchical tuple spaces as embodied in local tupleespappears unclear, because of the
apparent need to provide a flat tuple space structure as well.

5.6 A naive approach to implementing the bulk primitives

Having considered a brief overview of current implementatiechnigues, a naive implementa-
tion of thecopy- col | ect primitive is considered, with respect to open implemeaotati A
better implementation, based on using the classificaticiimé spaces is presented later in this
chapter and used in the York Kernel Il. Because of the closgioaship between theol | ect
andcopy- col | ect primitives the implementation of both these primitivesamsidered in this
section.

In open implementations which use distributed hashingethes two approaches to implement-
ing the bulk primitives. The first approach is for where thenk process chosen to store a tuple
is based solely on the fields within the tuple and is not infbaeinby the tuple space name. Thus
a tuple will always reside on the same kernel process rezgadlf the tuple space to which it be-
longs. As neither aopy- col | ect noracol | ect primitive alter the fields of a tuple, the tuples
will remain resident on the same kernel process afteolal ect or copy- col | ect primitive
has been performed. The implementation requires all kemaelesses on which a matching tuple
could reside to be contacted. Each kernel process checksples it stores to find any matching
tuples. Each matching tuple is either re-tagged as belgngirthe destination tuple space, if a
col | ect primitive is performed, or duplicatéand then re-tagged if@opy- col | ect primi-
tive is performed. Each contacted kernel process returosiat of the number of tuples copied or
moved, and all these are summed at the user process ancerbigthe result of theol | ect or
copy- col | ect primitive.

If the kernel process on which a tuple resides is dependetfitedtuple space name (and poten-

“The physical duplication of tuplemaynot be necessary under some tuple storage schemes.
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tially the tuple) then both theol | ect andcopy- col | ect primitives may require the move-
ment of tuples from one kernel process to another. The gelmglkamovement of tuples around a
kernel is an expensive process which occupies communichdodwidth and processing power.
This generally leads to poor performance of the kernel. Hewen the right circumstances mak-
ing the col | ect and copy- col | ect primitives bulk move tuples can lead to a performance
increase. This will be discussed in detail later in this ¢ba@mnd is utilised in the York Kernel 1.

E(ernel process] ﬁ(ernel process]

Copy-collect
from ts1 to ts2
template: ?int

Copy-—collect
from ts1 to ts2
template: ?int

[ A
User Proces

preprocess_copyceitt();
send_request(KP1);
send_request(KP2);
count :=0;

count += get_replyP1);
count += get_replyP2);
return count;

J

copy—collect(ts1,92, ?int);

Figure 5.2: A naive approach to implementing trepy- col | ect primitive.

The first approach described is used in the first York Kerri®WR95, RW96a]. Even though
the tuples that match the template can (and should be)itséd over several kernel processes,
the approach does not require any global synchronisatibmeles the different kernel processes
managing the tuples. Figure 5.2 shows a distributed keritkltwo kernel processes, and a single
user process. The programmer usan@y- col | ect primitive to move all tuples containing
a single integer from tuple spa¢es1 to tuple spacd s2. Thecopy-col | ect primitive is
implemented as a library routine which encodes the tupld, dispatches the command to the
appropriate kernel processes. In this case both kernekgses can potentially contain tuples
of single integers. The user process then blocks waitingeteive replies from all the kernel
processes contacted. Each kernel process contactedsretwmunter indicating the number of
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tuples duplicated. When all the contacted kernel procdsaes returned their counters, they are
summed by the user process’spy- col | ect library routine to produce the number of tuples
actually duplicated by the entire kernel. The individualria processes do not communicate with
each other, and no tuples are moved within the kernel.

The duplication of tuples may not necessarily involve a fafseplication of the tuples within
the physical memory of the kernel processes. It should ksifiesto provide a data structure which
allows for a tuple to be present in many tuple spaces butdiorte physical memory only once.
Therefore, logically the tuple appears in several tuplespabut in reality it is physically only
stored once. This has not been adopted in the York Kernel Il.

The naive way of implementing theopy- col | ect andcol | ect primitives when the
kernel uses distributed hashing has been described. T@einentation when a centralised kernel
is used is easier, as the command is sent to the single keowelgs, which performs the operation
and then returns a count of the number of tuples either camiedoved. When either uniform
distribution or intermediate uniform distribution is usth@ cost of performing either@ol | ect
or acopy-col | ect primitive is expensive. This is because the duplicationuplds occurs
in the kernel processes in tloeit-set When tuples are either moved or duplicated all the kernel
processes in than-setmust be updated. Every kernel process iniraset has the potential to
have tuples that match a given template, and evesetandout-setmust have at least one kernel
process in common, so in the worst caserykernel process has to be updated.

Having considered the implementation, especially in theexi of distributed hashing which is
the most popular method for open implementation, it is ggéng to consider how, by altering the
semantics of theopy- col | ect andcol | ect primitives the need foglobal synchronisation
is introduced into a distributed kernel.

How thecopy- col | ect andcol | ect primitives interleave with other primitives is im-
portant. The rules as given in Chapter 4 state thatdfcol | ect primitives® occur concurrently
using the same template and source tuple space, then thesnafrtbples moved from the source
tuple space is the number that match the template, but theetumoved to each of the destination
tuple spaces is between zero and the maximum number of ayddable that match the template.
The sum of the results of the tvawl | ect primitives will be the number of tuples removed from
the source tuple space.

In Chapter 4 a suggestion to use traces to help define the temahthecopy- col | ect
primitive was discussed. The effect of using the traces imasie all the primitives atomic. In
order to show the consequences to the implementation ofrpake bulk primitive atomic let us
consider the case of twool | ect primitives being performed concurrently. Each uses theesam
source tuple space, different destination tuple spacabttensame template. If the primitives
were atomic then the result would be that one tuple spacednmeilempty and the other tuple
space would have all the matching tuples in it.

SAssuming that the semantics of thel | ect primitive are similar to theopy- col | ect primitive.
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If the bulk primitives were made atomic then this would requa global synchronisation
between all the kernel processes that are involved in theatipe to be performed. Consider
the example shown in Figure 5.2. If there are two user presefise first one performing a
collect(tsl, ts2, ?int) andthesecond performingal | ect (tsl, ts3, ?int)
concurrently there will be two messages arriving at eachekernel processes. The potential mes-
sage ordering for each of the two kernel processes is showalile 5.1 (where the abbreviation
col is used to mean a message containirgpél ect primitive request). This shows that the
messages can arrive in any order at each of the kernel pescessCase 1 tuple spates2 will
contain all 27 tuples (assuming the same tuple distribua®im Figure 5.2). In Case 4 tuple space
t s3 will contain all 27 tuples. These are the only cases whidfillfthe atomic semantics. In Case
2 tuple spacé s2 will contain 20 tuples and tuple spate 3 will contain 7 tuples, and vice-versa
in Case 3. Therefore, if atomic semantics are used the twmekprocesses have to synchronise in
order to ensure they perform tie®l | ect commands in theame order Whereas, without the
atomic semantics Cases 1 and 3 are quite acceptablecegidbal synchronisation is required.

‘ CaseH Kernel process 1 H Kernel process 2 ‘
1 col(tsl, ts2, ?int) col(tsl, ts3, ?int)| col(tsl, ts2, ?int) col(tsl, ts3, ?int)
2 col(tsl, ts2, ?int) col(tsl, ts3, ?int)| col(tsl, ts3, ?int) col(tsl, ts2, ?int)
3 col(tsl, ts3, ?int) col(tsl, ts2, ?int)| col(tsl, ts2, ?int) col(tsl, ts3, ?int)
4 col(tsl, ts3, ?int) col(tsl, ts2, ?int)| col(tsl, ts3, ?int) col(tsl, ts2, ?int)

Table 5.1: Table showing how tleal | ect primitive messages arrive at the two kernel processes.

The implementation difficulties of a particular set of setiamis not necessarily a valid reason
to avoid using them. But, the semantics chosen in Chaptet @ntyp appear natural within Linda
where there is competition for tuples already between tffierdnt primitives, but also remove the
necessity for a distributed kernel to perform a global syoeisation whenever aol | ect or
copy- col | ect primitive is used. Thglobal synchronisation of the kernel (or even just a subset
of all the kernel processes which can contain the tuples) exaensive operation, and should be
avoided if possible.

5.7 Classification of tuple spaces

A more intelligent approach to implementing both tt@ | ect andcopy- col | ect primitives

is based on the premiss that they both provide informatimuthere a tuple (or set of tuples)
is likely to be used. The York Kernel Il is able to use such infation to provide an increase in
performance over using the methods described so far. Thshieved by using a simple classifi-
cation of tuple spaces, which the kernel is able to perfaithoutthe use of any pragmas or other
explicit information added to a Linda program. A Linda pragr written for C-Linda using the
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York Kernel | could use the York Kernel Il without being akel; and providing theol | ect or
copy- col | ect primitives are used a performance increase should be aaserv

The fundamental difference between the York Kernel 1l atebist is its ability to dynamically
alter where tuple spaces are being stored and consequeokly toples around en-mass. This is
achieved bydynamicallywatching where tuple space handles are, and subsequeydingeevery
tuple space in the system accordingly. Tuple spaces aredageither &cal tuple spacefl TS)
or aremote tuple spacgfRTS) relative to a user process. The definitions are:

Local tuple space For a given user process a tuple space is said tobeahtuple spacéLTS) if
that process created the tuple space and a tuple contaim@rigandle of that tuple space has
neither been placed in a remote tuple space nor been passedaagument to a spawned
process.

Remote tuple spaceFor a given user process a tuple space is said to feenate tuple space
(RTS) if the process did not create it or if the process diditerét and a tuple containing
the tuple space handle has either been placed in another RS sed as an argument to a
spawned process.

There are three important points about the classificatidnpé spaces:

e Firstly, not all user processes know about all tuple spathe.assumption is that the clas-
sification of a tuple space relative to a user process musthiewved using only knowledge
about the tuple space handles that are currently in scope inser process and their history
relative to the user process. Therefore, there is no neetlimioal” repositories of tuple
space classifications.

e Secondly, if a tuple space is classified as a RTS relative teea process then that tuple
space will not be classified as a LTS relative to any other pismress. This can be justified
by considering how tuple space handles are passed betweeprosesses. If proced3
creates a tuple spacg, the only way proces# can also know aboul; is if P has
retrieved a tuple from a RTS (for example frdd'S) that contains the tuple space handle
of T4 or if processP; spawns procesB, and passes the tuple space handle as an argument.
If the tuple space handle is passed through a tuple spacelihamust be classified as a
RTS relative to proces®, because procesd has placed a tuple in a RTS containing the
tuple space handle f@r;, andT; must be classified as a RTS relative to prod@sbecause
processP, has not created tuple spaée. If processP; passes the tuple space handle of
T to processP, as an argument of the process then tuple sfiaceill be classified as a
RTS relative to procesB; because procedd has passed tuple spafeas an argument to
a spawned process, afidwill be classified as a RTS relative to procd%sbecause process
P, has not created tuple spage. Therefore, it should be impossible for a tuple space to
be classifies as a RTS relative to one user process whilstifgiag it as a LTS relative to
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another user process. The assumption is made that eactspgge name is unique, so it is
not possible for two user processes to create the same paaie.s

e Thirdly, the tuple spaces are classified by kieene| notthe programmer. From a program-
mers point of view there is no difference between a tuple spdassified as a RTS and a
LTS, they are both simply tuple spaces which are created sed in exactly the same way.

The underlying idea is that an LTS should be stored “as clegmasible” to the user process
which knows it as a LTS. A RTS should be stored in such a wayttigatost of retrieving tuples
from an RTS is minimised over all the user processes that czesa it.

The classification of tuple spaces produces a better way pieimenting thecol | ect and
copy- col | ect primitives. These bulk primitives are used to move or copldas from one
tuple space to another. Tuple spaces are stored in the kesingllocality information. The imple-
mentations of theol | ect andcopy- col | ect primitives implicitly harness this information
about tuple spaces because the primitives move or copystbglsveen tuple spaces. The aim is
that the access costs of a moved or copied tuple should béhksshat cost would have been if
the tuples had not been moved or copied.

The dynamic classification of tuple spaces is the main tegctenbehind the kernel implemen-
tation described in this chapter. The classification dbedrhere and used in the kernel is simple
yet effective as the results in Chapter 6 show. In Chaptere7ctimcepts of tuple classification
are extended to produce a more graduated classificatiomgchie the next section the general
structure of the kernel is considered.

5.8 The York Kernel Il

In this section a two layer hierarchical kernel, known asYbek Kernel Il, is described which
supports the classification of tuple spaces. The kernefitbeschere is an open implementation,
supporting persistence and allowing processes to join eavelfreely. The kernel requires no
information provided by either special compilers or pregassors and does not make any as-
sumptions about the host languages being used. The clatisifiof a tuple space is achieved by
dynamicallyusing only information gathered since the user procesgbthe Linda kernel. A
process is said to have joined the kernel when the first Limaiaitve is performed.

The architecture of the kernel is modelled around the cdrafdpcal and remote tuple spaces,
creating a two layer hierarchy. An outline of the kernel #eaghure is shown in Figure 5.3. The
kernel has two distinct sections, ttuple space serveand a number dbcal tuple space managers

Tuple Space ServerA Tuple Space Server (TSS) is a dedicatgdtenthat exists to store and
manage RTSs. The TSS can be a single process (a dedicated serit can be a set of
processes. If the TSS is distributed then the distributibtuples will be performed in a
similar way to traditional implementations. In the York iKef Il the TSS is distributed. The
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Figure 5.3: The York Kernel Il architecture.

processes that create the TSS are referred to as TSS pocEsed of the TSS processes
cancommunicatevith other TSS processes and with all local tuple space narag

Local Tuple Space Manager A Local Tuple Space Manger (LTSM) is attached to each user pro
cess. Each LTSM is distinct from the TSS but is aware of it,fdhé TSS is distributed
the LTSM is aware of all the TSS processes. However, the T@8tiexplicitly aware of
the LTSMs. This allows LTSMs to join and leave the kernel withaffecting the kernel.
Unlike the TSS the LTSM does not service remote requestgrogiuces the requests and
accepts replies from requestanade. The LTSM also initiates all the movement of tuple
spaces and packets of tuples within the kernel. The LTSMssed to store LTSs and if a
tuple space is a LTS then it is stored on a single LTSM. The L$Sgl not communicate
with each other and do not share information in any way. EacBML is able to calculate
dynamicallythe classification for a tuple space it is presented withisimdplemented as a
set of library routines which the user process calls.

A LTS can never reside on the TSS and a RTS can never resideTi§ e LTuples that belong
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to a LTS, in general, cannot reside on a TSS and tuples thanhdpeb a RTS cannot reside in
the LTSM. The only exception to this is when the transfer @lé¢s occurs, when a tuple space
changes from being a LTS to a RTS or a number of tuples are nfoveda LTS to a RTS then
tuples belonging to a LTS may briefly reside on a TSS and viasar This will be discussed in
detail later in Section 5.16.

When a user process performs a Linda primitive it calls alfiproutine in the LTSM. The
LTSM decides, using the tuple space handle, whether it csfys¢he request locally, or if a
message has to be sent to the TSS. With primitives that delalsiigle tuplesdqut, in, rd
primitives) this is simple because there is only a singléetgpace being used, and the tuple space
either resides locally or on the TSS.

However, with the primitives that deal with more than oneld¢uppace ¢ol | ect and
copy- col | ect primitives) the LTSM has to decide where the operations khbe performed,
which is dependent upon the classification of the source astindtion tuple spaces. If the tuple
spaces are not both classified as the same (LTS or RTS) thdnples being copied or moved
will move from a LTSM to the TSS or vice-versa. Whenever a $etples is to be moved from
the TSS to a LTSM or vice-versa, the LTSM initiates the moveimé&able 5.2 shows where the
operations are performed with respect to the classificatidooth the source and destination tuple
spaces.

Source tuple space
Local ‘ Remote
Local LTSM TSS(s)
Destination (Result to LTSM)
tuple spacel Remote LTSM TSS(s)
(Resultto TSS)

Table 5.2: Table showing where tio®l | ect andcopy- col | ect primitives are performed
based on the classification of their source and destinatiole spaces.

The York Kernel Il has been implemented on top of PVYM[SDGM®&arallel Virtual Ma-
chine), which provides a mechanism to control the creatimh subsequent communication be-
tween “processes”. PVM uses a message passing paradigmranides an interface to TCP/IP
communication between workstations on a LAN. PVM has beed ss that the kernel can easily
be ported, and used with a LAN of heterogenous workstatitmshe following sections a more
detailed account of some of the general methods used in thelkand how the bulk movement
of tuples is used is presented.
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5.9 Tuple Distribution within the kernel

The tuple distribution strategy within the kernel uses a stage hashing method which is per-
formed within the LTSM. The first stage uses the tuple spanédlkand produces a result of either
LTSM or TSS. If the result is LTSM then the tuple is insertetbithe local tuple storage data
structure within the LTSM performing the hashing. If theuktss TSS then a second hashing
stage is used which is based on the technique of distribuasHtitg. Normally, when using this

approach the hashing algorithm would produce a single T8&eps for a tuple, and a non-empty
set of TSS processes for a template (which could contairojustTSS process). However, in this
implementation, only field type information is used, and tiashing algorithm always returns a
set of TSS processes regardless of whether a tuple or teniplased. The LTSM then picks one
of the TSS processes represented in the set at random, aadictliss the tuple to it.

Within the TSS there is the possibility that individual teplmove from one TSS process to
another TSS process because of the way that tuples are fcugmam n primitive is performed,
and this is discussed in Section 5.13. There is no bulk momenfduples from one TSS process
to another TSS process.

5.10 Tuples and tuple storage within the kernel

The tuples are encoded as a sequence of bytes at run-timia withlanguage interface of the
LTSM (see Section 5.11). The first byte represents the nuwitfeglds present within the tuple,
the second byte is used to indicate if there are any tupleedpaudles present within the tuple and
then each tuple field is represented in the encoded tupleh tate field is composed of a byte
representing the type of the field, which is unique for eagle tyollowed by two bytes containing
the number of bytes needed to store the field value, and tleaarcthal field value in as many bytes
as required. A template is created in a similar manner, éxebpnever a formal is used in the
template, the field length for that field is set to zero, anddipée field value is omitted.

Using such an encoding for tuples and templates means ththeahformation required to
perform the match in the kernel is present in the tuple anglaten The matching algorithm is
completely independent of the types used. Therefore, ddmguage interfaces can be created,
and as new types are needed, because the types that thegarsyymgoorts are more varied than
the current types being used, there is no need to alter amy btst language embeddings. If a
particular language does not support a data type suppoytethbr languages then that language
will not be able to consume tuples which contain fields of thenown type. Some care has to be
taken to ensure the same type in two different langifabas the same type identifier, so the two
languages can communicate values of that type throughstupléhough the matching algorithm
is independent of the types used, the kernel is not indepermdehe types used, because it must

Sor, indeed, in two embeddings of Linda in different impleragions of thesamelanguage.
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be able to “track” tuple space handles in tuples. The onlg fgentifier the kernel is aware of is
the type identifier for tuple space handles, which is fixedctiBe 5.15 details how tuple space
handles are tracked. If a pre-compiler was used then thedwpid templates could be partially
encoded at compile time.

A graphical representation of the tuple storage data strei¢hat is used in both the LTSM
and the TSS processes is shown in Figure 5.4. The “tuple spaepresented by a record which
contains the tuple space name, and a number of pointerd¢gd@fituples. Each pointer represents
a list of tuples of a particular number of fields, with the fipainter pointing to a list of all tuples
that do not belong to any of the other lists. It should be noted there is a number associated
with each list of tuples. This number represents the numbieiptes missingfrom that list. This is
used in order to maintain treut ordering when bulk tuple space operations are performetk tu
spaces moved or individual tuples migrated. This is explin detail in Section 5.16.

Tuple Space Namé&S1
JEQENEOEOED

Fields:2 | Type:l NTEGER | - Type:CHAR
TS? No|Length:2:Value: 10|Length:1:Value: A

Fields:2 Type:l NTEGER Type:CHAR

TS? No|Length:2:Value: 10|Length:1:Value: A

Figure 5.4: The tuple storage data structure used within@r8&sses and the LTSM.

5.11 The Local Tuple Space Manager

The LTSM is the part of the kernel that is “included” in useogesses. This means that the LTSM
needs to be flexible enough to be included in different hasguages. In order to do this two
interfaces to the LTSM are used; called thaguage interface moduland theLTSM interface
module Thelanguage interface moduleontains all the routines that the user processes call, and
contains all the routines for the management of encodingdaedding of tuples to and from a
form that the host language is capable of using. If tupledieseclass objects in the language, as
in ISETL, then the Linda primitives may return tuples. If yhere not first class objects then the
values within the encoded tuple have to be transfered ta gtr@bles, as in C-Linda.

The LTSM interface modulprovides routines for each of the Linda primitives. All thour
tines expect two strings, representing a tuple space nach¢hanencoded tuple or template as
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appropriate. These representations should be indepeafidrd host language used, as the same
tuple specified in two different host languages will be emtbuhto the same string. Therefore, to
embed the Linda primitives using the York Kernel Il into a neest language, only a new language
interface module has to be developed. A C language interfexiel has been developed.

One of the problems facing an implementor of a distributeterogeneousystem is represen-
tation of data types[ZG96]. This can vary from the orderisgdito store bytes (eg. big endian
and little endian) to the internal representations of “ctaxptypes in different languages or com-
pilers. For example, one language or compiler may use aeliffecharacter to terminate a string
compared with another language or compiler. The advanthte &kernel not depending on the
types and their representations is that the kernel is netieffl by the representation chosen by the
language or compiler. It treats tuples and templates asng stf bytes. The only byte-ordering in
tuples or templates of importance is the bytes which reptake length of the field (which are as-
sumed to be stored as big-endinprThe structuring of fields is controlled by the languagetiface
module. Whenever a new type identifier is added its repratentis specified by the language
interface implementor who adds it, and then future languaigeface modules must respect this.
If a technique such as “receiver makes right’[ZG96] is addphis could be incorporated within
the language interface module.

The LTSM is also able, under some circumstances, to detest @tprocess deadlocks. Both
thei n andr d primitives block when there are no tuples available whidsgathe template used.
When there is1evera tuple that will satisfy the request, the user process dixecthei n orrd
primitive will block forever. In closed systems using cotegime analysis it is often possible to
detect some of the primitives that will block forever andguroe appropriate warning messages.
If a user process is blocked, waiting for a tuple in a LTS, th&M can detect this. The LTSM
knows that no other process can place tuples into a LTS, s@ftB& can terminate the user
process, and produce an appropriate message. Currentclgb2n96] is examining ways of
detecting deadlocks and more generally how to perform garballection within distributed open
implementations.

5.12 Implementing theout primitive

When anout primitive is performed the LTSM checks the tuple space, imkich the tuple is
being inserted, to see if itis a LTS. If the tuple space is a tt the tuple is placed into the local
tuple storage data structure. If the tuple space is not a h€B & set of possible TSS processes
are calculated using the second stage hashing. One of thidatad TSS processes is chosen at
random and the tuple is dispatched to that TSS process. &1 twcknsure thabut ordering is
maintained the TSS process issues an acknowledgement thikiti SM must receiveeforethe
next tuple is inserted into a tuple space (or befomohl ect or copy- col | ect primitive is

"The most significant byte in the lowest numeric byte addré#setwo.
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performed). The management of the acknowledgement mesisagensidered in Section 5.17.

5.13 Implementing thei n andr d primitives

When either an n or r d primitive is performed the LTSM checks the tuple space, fwhich a
tuple is required, to see ifitis a LTS. If it is then the locaple storage data structure is checked.
If the tuple space is a RTS then the tuple will reside on a T®8q%s. The second stage hashing
is used and provides a set of possible TSS processes on whigheahat matches the template
couldreside. A matching tuple may reside on either all of these pi®8esses, on some, or on
none of them. Therefore, if a matching tuple exists it needsetfound.

There are several ways in which this could be achieved. T$tddia broadcast from the LTSM
to all the possible TSS processes. The LTSM would then atieaarbitrator, potentially receiving
a number of tuples and then picking one, and returning thdaadhe appropriate TSS processes.
An alternative approach is to pick one of the TSS processemdbm and then allow that one to
arbitrate, which is the method adopted in the York Kerneldsatibed in this chapter because it
requires less communication and control.

5.14 Implementing the bulk primitives

When either &ol | ect orcopy- col | ect primitive is performed the LTSM checks the source
and destination tuple spaces being used. If they are botk tHe® the LTSM performs the oper-
ation locally. If the source tuple space is a LTS and the dastin tuple space is a RTS then the
duplication occurs locally and the copied or moved tuplesdispatched to the TSS processes, in
packets ofnultiple tuples.

If the source tuple space is a RTS then the operation will lolpeed on the TSS. The TSS
processes which could contain matching tuples are askeztfiorm the operation by the LTSM. If
the destination tuple space is a LTS then each of the codta&8 processes creates a tuple space.
The TSS processes perform the operation placing the tupthe destination tuple space they have
created, and returns a count of the number of tuples plactgituple space to the LTSM. Once
the counts have been received then the bulk movement of plestis initiated by the LTSM from
the TSS processes to itself. This is achieved by the LTSMeasting from each TSS process the
destination tuple space. Each TSS process packs the tuphagte destination tuple space into
packets, then removes the tuple space and sends the tughesLibSM which issued the request.
If both the source and destination tuple spaces are RTSstlkesame operations are performed
as when the destination tuple space is a LTS, except thestaptenot moved to the LTSM.

It appears more efficient if the TSS automatically packs dsplatches the tuples to a LTSM
if the destination tuple space is a LTS. This was originaligd but was found to provide poor
performance. The LTSMasto receive all the counts before the primitive can compléte time
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taken to unpack the tuples is significant. Therefore, toivecall the packs of tuples from the
TSS processes, unpack the tuples, and insert them into pleedata structure takes a relatively
long time, compared with unpacking a number of single integessages and summing them. An
optimisation was applied which is described in Section 5uiffich required each TSS process
to send two messages, one containing the count and the ah&irding the tuples. However,
the packet containing the tuples often arrived before aldbunt messages had arrived, which
significantly reduced the effectiveness of the optimisatidhis was overcome by requesting the
tuples to be sent once all the counts had been received.

5.15 Tracking tuple space handles

In the descriptions of how the primitives are implementéds stated that the LTSM checks the
tuple space handle to see ifitis a LTS or a RTS. How does a LT&dWkvhether a tuple space is
a LTS or a RTS? The LTSM tuple space classification is achibyesgach LTSM monitoring two
events; the creation of tuple spaces and the movement & ggaice handles in tuples goiagt
of the LTSM to the TSS.

From the definition of an LTS, given earlier, a tuple spaceady be a LTS if the handle for
the tuple space has neither been placed in a RTS nor passediggiaent to a process, and the
user process to which the LTSM is attached created the tpples The classification is performed
by checking the local tuple storage data structure to seae éndry for the tuple space exists, and
if it does the tuple space is a LTS, otherwise itis a RTS.

Whenever a tuple space is created it has to be a LTS. Therefben the procedure which
initialises a tuple spaced §c primitive routine) in the LTSM interface module is calledl,ailso
creates an empty entry in the local tuple space data steudtuprder to detect when a tuple space
handle is leaving the LTSM checking is performed at two poirfirstly, when a tuple is being
encoded (within the language interface module) and segomdén a bulk movement of tuples
occurs. The LTSM interface module provides a routine whighen given a destination tuple
space handle and a tuple space handle that appears in actigt&s to see if the destination tuple
space is a RTS, and so converts the tuple space represemibediple to a RTS, ifitisa LTS.

Tuple encoding Whenever aout primitive is performed the routine for treut primitive in the
language interface module encodes the tuple. As each fiefttmded it checks to see if the
field is a tuple space handle, and if so the routine in the LT8tdrface module is called
with the destination tuple space handle and the tuple spaudidnin the field.

This ensures that if a tuple is inserted into a RTS, all théetgpaces that are represented

within the tuple become RTSs.

Bulk movement Whenever a tuple space or a set of tuples is being moved frerilt8M to the
TSS each tuple has to be checked to see if it contains a tupte dpandle. If any of the
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tuples contain handles to a LTS these tuple spaces needraniséered to the TSS, and they
then become RTSs. Figure 5.5 shows why this is necessarntupleespacaJTS is a RTS,
and both the tuple spades0 and the tuple spac€Sl are LTSs. The tuple space handle
for tuple spacel'S1 is embedded within a tuple contained in tuple sp&88. A tuple is
placed in tuple spaddTS which contains the handle for tuple spat®0. At this point both

the tuple spac&S0 andthe tuple spac&S1 become RTSs. This is because the handle for
the tuple spac&@S1 now resides in a RTS, so the tuple space handlg &fY is present in a
tuple in a RTS, so it must become a RTS.

When a tuple is inserted into a packet of tuples the tupleésiatd. If a tuple has any tuple
space handles within it, they are treated as though the wasebeing encoded. The LTSM
interface module routine is called, and initiates any tgplace movement that is necessary.

TSS / LTSM

/
/ Tsi

Figure 5.5: Tuple space handles embedded within tuple space

Initial experiments showed that there are significant cimstslved in checking each tuple
to see if it contains tuple space handles when the bulk montofauples occurs. This,
in conjunction with the fact that in most cases no tuplesaioed tuple space handles, led
to the addition of a flag within the encoded tuple structurentlicate if one or more tuple
space handles are present within the encoded tuple (seéerSgc0). Checking this flag
means that the tuple can be quickly and efficiently checkedufile space handles. Ifitis
set then each field in the tuple can be checked.

In the original definitions of a LTS and a RTS indicated that ifiple space handle was passed
as an argument to a spawned process then the tuple space eodlassified a RTS. The York
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Kernel Il does not support the passing of arguments to a pghdberefore does not need to check
for tuple space handles within the arguments. Howevereiptissing of parameters was supported,
they would need to be checked for tuple space handleseV¥hé servers as proposed by Hupfer
et al.[HKCG91] provide the passing of arguments to a spawuaedtion via tuple spaces, and
therefore the checking used in the encoding of the tuple aviindl the tuple space handle if it as
passed as an argument, and convert the tuple space to a Rfce#sary. If tuple spaces were not
used, then in the same way that thet primitive routine in the LTSM interface module checks the
tuple being created, theval primitive routine would have to check the arguments beirgspd.
Because the tuple space handle is passed to the spawnedsprtheeprocess does not create the
tuple space, so it should not be present in the tuple stor@gesttucture, and therefore the spawned
process considers it a RTS.

The scheme adopted makes the introduction of “special’ajlniple spaces easy. For example,
the universal tuple spac&J(S) is predefined in the Linda header files. The tuple space is not
created by the user process so the LTSM does not insert iitéritacal tuple storage data structure
and hence automatically treats it as a RTS. Because the T#88g3es do not need a tuple space
initialised within their tuple storage data structure, &S processes do not need to be informed
of global tuple spaces. The tuple space handle name is niyaghaken, and the tuple space name
mustnot be one that the LTSM can generate. Pragmatically, this iplsito ensure due to the
format of LTSM generated tuple space names.

5.16 The bulk movement of tuples

The need foiout ordering has been reiterated in several places within iesedation. How is
theout ordering of tuples affected by the bulk movement of tuplesRevtuples are in transit
they are neither in the TSS nor a LTSM and this has serioudaatfns if not managed properly.
Consider the program fragment shown in Program 5.3, wheseagsumed that tuple spaice?2

is a LTS forprocess one, ts3 is a LTS forprocess_two, andt sl is a RTS which is
known to onlypr ocess_one andpr ocess_t wo. It is also assumed that both functions are
executing concurrently. The functiops ocess_one andpr ocess_t wo synchronise using the
tuple (“DONE” 4-ing), and ifout ordering is preserved the expected outcome is that theblaria
n in both of the functions will be the same value.

Because the functiopr ocess_one performs acol | ect primitive from a LTS to a RTS,
the LTSM attached t@r ocess_one will perform the operation and then dispatch the moved
tuples to the TSS. If theut primitive “overtakes” the tuples whilst they are moving t@{TSS
processes, there is the chance thiabcess _t wo becomes “unblocked” and then performs the
col | ect primitive beforethe tuples have arrived at the TSS. The same problem exisiglés
are moved from RTSs to LTSs, and when whole tuple spaces aredfimm a LTSM to the TSS.

8The passing of arguments is achieved by passing them inatluugh a shared tuple space, such/Es.
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Program 5.3 Example ofout ordering and the bulk movement of tuples.
i nt process_one(void)

{

n = collect(ts2, tsl, ?int, ?int);
out(tsl, "DONE");

in(tsl, "DONE");
n = collect(tsl, ts3, ?int, ?int);

Two mechanisms are used to ensure that the problem does et d&/hen tuples are be-
ing transfered from the TSS to a LTSM a counter is used to atdid tuples are expected. In
Section 5.10 the data structure used to store tuples wagsgisd, and each list of tuples has a
number associated with it, which is a counter used to inditta# number of tuplesiissingfrom
the structure. Therefore, in Figure 5.4 one tuple contgihivo fields is missing. If @ol | ect or
copy- col | ect primitive is performed with a template with two fields, thé@tLTSM process
will perform the operation on the tuples that reside in th@dspace, andait for the remainder
to arrive. If ani n primitive or ar d primitive is performed and a tuple that has already arrived
matches the template then that tuple is retrieved, and #repuscess continues. Tuples are only
moved from a TSS to a LTSM aftereol | ect orcopy- col | ect primitive, which provides
the number of tuples copied or moved, and is the same numipeplet that the LTSM expects to
receive, and is used to set the counter.

The second mechanism is used when tuples are transfere@&ftdi®M to a TSS, either after
a bulk primitive or a tuple space movement. Th& ordering is guaranteed in the same manner
as theout primitive, by using acknowledgement messages. Each p#ukeis dispatched to the
TSS requires an acknowledgement before any operationrbett$ tuples is performed on any
tuple space.
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5.17 Optimising the York Kernel Il

There are two particularly interesting optimisations thag used to increase the performance of
the York Kernel Il. These are the optimisation of thet primitive and the tuple insertion in a
LTSM.

5.17.1 out optimisation

In Chapter 2out ordering was described. In order to achieve this each primitive to a RTS
requires an acknowledgement before the next tuple insesfieration to a RTS (or bulk movement
to the TSS) is performed. A naive approach is to translatewn primitive to a RTS into a
simple send message followed by a wait for an acknowledgemessage from the TSS process.
However, such an approach leadsotat primitives taking nearly as long to execute asian
primitive.

In the York Kernel 1l theout primitive to a RTS sends the message, sets a flag to indicate
that an acknowledgement message is expected, and thensr&uhe user’s program. When an
out primitive (orcol | ect or copy-col | ect primitive) is performed all the packing of the
message is completed so the message is ready for sendingarticaulpr TSS process, before
the acknowledgement flag is checked. If an acknowledgemessage is required and has not
arrived the system waits until one arrives. Even if theretaxeout primitives performed one
after another there is an improvement in performance beddeassecondut primitive performs
all its preparation of the message before checking the adkdgement flag. The bulk movement
of tuples from the LTSM to the TSS also requires an acknovdetmt, and the same flag (and
hence optimisations) are used for these acknowledgements.

5.17.2 LTSM tuple insertion optimisation

Whenever multiple tuples are moved around the system, tteeynaved in packets containing
many tuples. When either a LTSM or a TSS receives a packediodamj many tuples the obvious
approach is to unpack them and insert them into the tuplagtodata structure.

The LTSM does not do this, it attempts to lazily unpack thekpaof tuples as and when the
tuples are needed. It is often the case that the templatenidedcopy- col | ect orcol | ect
primitive is used with subsequent primitives. Hence, that firple unpacked from the packet will
match the template used in the primitive. Therefore, imst#aalways inserting the packet when
a tuple is requested the LTSM checks to see if a packet ofguplavailable for a particular tuple
space. If so, the LTSM takes a tuple from the packet and matithveith the template. If they
match, then no further tuples are unpacked and the usergaocontinues. If the tuple does
not match then it is inserted in the tuple storage data strecnd the next tuple in the packet is
checked. If another Linda primitive is used which requirgaessage to be returned from a TSS
process, then all the tuples in the packet are inserted itughe storage data structure.
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This approach is never slower than inserting the tuplestjranto the tuple storage data struc-
ture when the packet of tuples arrives, and as will be seerhapter 6, can provide a significant
speed increase.

5.18 Why classify tuple spaces?

Why does the ability to make a simple classification of théetigpaces lead to an increase in the
performance of the kernel? The ability to classify a tuplecgpas a LTS or RTS provides no speed
increase in a parallel program using primitives for simghechironisation with “single” tuples, as
the bulk movement of tuples does not occur. The advantagesrieapparent as data structures
are stored as tuples in tuple spaces where the bulk moveriteples is used implicitly. Individual
tuples are still used to provide control in the programshsagto indicate that worker processes
have completed, but collections of tuples are required focgssing.

The bulk movement of tuples may initially appear an expensiperation, but there are two
attributes which make the bulk movement of tuples and tupdeas advantageous: the control of
packet size and less communication.

Control over packet size

The first advantage is the ability to control the packet siben a set of tuples are being moved
from a TSS to a LTSM or vice-versa it is possible to control hoany tuples are packed into a
single packet (or indeed how many bytes are packed into &egiagket). With many communica-

tion mechanisms the time taken to send a packet is not linglarespect to the packet size. When
considering an Ethernet based LAN the sending of small packaoss it is a more expensive
operation than sending larger packets. Therefore, thiyatuilbulk move tuples is cheaper than
moving a set of tuples one at a time.

In order to show the advantages of controlling the packet #iiee characteristics of the Ethernet
used at the University of York are considered. The charsties measured are derived using test
programs written in PVM[SDGM94], which the York Kernel llesfor communication. The mea-
surements were produced by passing messages between ivem &laphics Indy workstations,
connected using a 10 Megabit per second non-dedicatedrigther
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Figure 5.6: Latency for messages up to 1024 bytes in sizg EBiM.

Figure 5.6 shows the time taken to send messages of betwegie®dnd 1024 bytes, and
Figure 5.7 shows the time taken to send a message of betw&ebyfds and 100 Kilobytes in
size between the two workstations. Figure 5.8 shows thevbidiidin megabytes per second that
is achievable for messages of sizes between 0 bytes and 182l bnd Figure 5.9 shows the
bandwidth for messages of between 128 bytes and 100 Kilshgtgize. These charts clearly
show that as the message size increases the bandwidthsesyesa more data can be transfered
per second across the network as the message size incrAgsasket size of about 30 Kilobytes
provides the best bandwidth.
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Figure 5.10 shows the time taken for a single byte to be temedfgiven a particular message
size between 1 byte and 1024 bytes, and Figure 5.11 showstdkea for a single byte to be
transfered given a particular message size between 128 agite 100 Kilobytes in size. These
graphs show that the cost of sending a byte is reduced signifcas more bytes are packed into
a single message.
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Figure 5.10: The time taken to send a single byte for messigesip to 1024 bytes.

In many Linda programs the size of individual tuples can balkmontaining just a few fields
occupying less than 50 byfesThe actual message dispatched through the network wiliineq
certain other information, such as the destination tupéesr the source tuple space. Even with
this information the entire message will be less than 10@dyfTherefore the cost of sending
these little tuples is very large compared with the cost jpacthem into packets and then sending
them. Therefore, the ability to pack several tuples (or éudseveral hundred tuples) into a single
message allows the message sizes to be increased achiettimgdommunication performance.
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Figure 5.11: The time taken to send a single byte for messagesip to 100 Kilobytes.

%A tuple containing seven integers would require approxilya50 bytes.
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The advantage gained is dependent on the network used.nétiverk characteristics are such
that the cost of sending a single byte is virtually indepemdéthe packet size, the bulk movement
of tuples is still favorable because less communicatiordgsiired.

Less communication

The second advantage is that less communication is requiréaples are moved to where they
are to be used the amount of communication necessary isegdHEweryi n primitive performed

on a RTS requireat leasttwo messages. The first message sends the template to thedceSp
and then a second message is required to return the tuple ¢talting user process. There may be
further communication required between the TSS procesdewdta matching tuple. Therefore, if
N tuples are required from a RTS, there will be at |€agt N messages between the user process
and the TSS. If the tuples are moved to a LTSM (say, usingcthyy- col | ect primitive),

and then read from a LTS, the number of messages requiredevill times the number of TSS
processes on which the tuples may reside. The first messag#oseach TSS process will be
the request to perform the operation, then the second nmegsfigm each TSS process returning
a count of the number of tuples duplicated. Then the LTSM sélhd a message requesting the
tuples and finally the TSS processes send a message cogtalhthe tuples. When the actual

i n primitives are performed there will b communication with any other process, as the tuples
are stored in the LTSM. Thien primitives call a function that will search a local data sture
stored within the LTSM which is part of the process. TherefaivenT TSS processes, th¥
tuples would require only x T messages. This could potentially be reducefl 10T messages

if the message containing the count of the tuples copied eeth@and the message containing the
tuples is compressed into one message, saving a messagieeanaould be no need for a request
message for the tuple space.

A similar reduction in communication is observed if a tugéniserted into a LTS rather than a
RTS. The insertion of a tuple in a RTS requires two messagesnessage to the TSS process and
the acknowledgement message. Botuples to be inserte?l x N messages are required to insert
them inaLTS. If the tuples are inserted in a LTS, at n2osfl’ messages are required, the message
with tuples in it and an acknowledgement message from ea8pf&ess sent a packet. An empty
packet is never sent, so if only one tuple is inserted into & Which then becomes a RTS, there
will be only 2 messages: a packet containing one tuple andkaroaledgement message from the
TSS process receiving the packet. The reduction in the nuaflmessages is shown in Table 5.3.

In systems where the cost of sending a byte in a message @eindent of the message size
there will still be an improvement in performance becauss mmunication between processes
is needed, and the total number of bytes in all the messagagfaticular operation when they are
bulked moved will be less than if they were moved as individuples'®. Only if a communication
system has characteristics which make the cost of sendipig arba packet cheaper than accessing

provided the tuples are used.
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LTSM ‘ N i n primitives ‘ N out primitives ‘
Enabled 4xT 2xT (worst case)
(inc. copy- col | ect primitive) 2 (best case)

Disabled 2x N 2x N

Table 5.3: Table summarising the reduction in communiocatben using the LTSM (wher€ is
the number of TSS processes).

local memory will the bulk movement of tuples not provide amprovement in performance.

5.19 Conclusions

In this chapter the novel techniques used within the Yorkniketl have been described. The
kernel uses an efficient method of deciding where tuple spsioeuld be stored, based on implicit
information gathered at run time, requiring no expliciimhation to be added to a Linda program.
The ability to classify tuple spaces allows the effectivgpliementation of the bulk primitives of
col | ect andcopy-col |l ect.

One issue not addressed so far is what happens if a processondt have sufficient physical
memory to store an entire LTS? For example, when the numbteiptds being transfered from a
RTS to a LTS makes the LTS too large to be stored by the LTSM.YDhle Kernel || assumes this
cannot happen, and as the workstations being used suppaglvnemory this has not proved a
problem. However, if a device with less memory was attacbdtd kernel it could be a problem.
A LTS can be seen as a special case of a RTS. Any tuple spads $hBT Scouldbe converted to
a RTS, which is potentially distributed over many procesegsn if only one process can access
it. Therefore, if a tuple is being inserted into a LTS usingban primitive and there is insufficient
memory, the LTS can be made into a RTS, and then the tupldedsas though it was a RTS. The
col | ect andcopy- col | ect primitive implementations could be altered to return ttae sif
the copied or moved tuples as well as the number copied ordrtapées. The LTSM can therefore
decide if it has enough space to store a LTS, or whether thesh®8ld be transfered to a RTS.

York Kernel Il has been built on top of PVM[SDGM94]. In the nehapter the performance
of the York Kernel Il is evaluated. In Chapter 7 the shortamysi of the current York Kernel I
are described and the technique of classifying tuple spac@dended to overcome some of the
shortcomings of the York Kernel Il.



Chapter 6

Performance of the York Kernel Il

6.1 Introduction

This chapter evaluates the performance gains that arevachiiy the kernel outlined in the previ-
ous chapter. A number of simple experiments are used to dhewarformance advantages that
the bulk movement of tuples can achieve by comparing thepaence of a number of common
coordination patterns using the York Kernel 1l with the LTSMabled and disabled. When the
LTSM is disabled the kernel degenerates into a traditiangléementation with all the tuple spaces
being stored on the TSS and no bulk movement of tuples, sitailthe York Kernel [DWR95]
and other such implementations.

The performance of a “real world” example, the Hough trammafavith the LTSM enabled and
disabled is also shown. The Hough transform is a common imegeessing algorithm. Using
this example the performance of the York Kernel Il is also pared with the performance of SCA
C-Linda, a commerciatlosedimplementation which uses compile-time analysis.

6.2 Experiments

All the experiments are conducted using a number of Silicoap@ics Indy workstations using
a 10 Megabit per second non-dedicated Ethernet conneclioa.York kernel Il is initialised so
that all the tuples are distributed across all the worlatatiused. Unless otherwise stated, all
experiments used tuples containing a single integer sohimatthe template|D;,0ger|). AlSO
the test processes are the only processes using the kedhall #me execution times stated in this
chapter are given in seconds and represent “wall clockniysu

The Ethernet used is non-dedicated and subsequently cthier effect the time it takes to send
messages over it so the experimental results were all gatlgerring the early hours of the morning
when the Ethernet load should be minimal. Six experimergsiaed to show the performance of
the York Kernel Il. The C-Linda source code for the experitséa given in Appendix B. These
six experiments are:

117
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Experiment one This experiment shows that when a tuple space is a RTS thefilse bTSM
doesnot effect the execution times. In order to show this 1000 tuptesplaced in the RTS
UTS using theout primitive, and then all 1000 are retrieved from tb&S in any order
using thel n primitive.

Experiment two This experiment shows that when a tuple space is a LTS thefube €TSM
provides faster access to the tuples within the tuple spac@der to show this 1000 tuples
are placed in a LTS using theut primitive and then all 1000 tuples are retrieved from
the LTS in any order using then primitive. This experiment is similar to experiment one,
except that the tuple space is a LTS rather than a RTS.

Experiments one and two are designed to show that the LT SBImlateprovide an overhead
for the access of RTS, and that the speed of LTS access isvuetbby using the LTSM. The
next four experiments show that the bulk movement of tupdesl tuple spaces) between
the LTSM and the TSS is effective.

Experiment three This experiment shows that the movement of entifgde spacedetween the
LTSM and the TSS provides better performance than not mdtigg. In order to show this
1000 tuples are placed into a LTS using thet primitive. A tuple containing the handle
of this LTS is then placed into a RTETS) using theout primitive. The movement of the
entire tuple space occurs when the tuple space changes &iog tlassified as a LTS to a
RTS. Subsequently, all 1000 tuples are retrieved from thketspace (which has become a
RTS), into which they were placed, using the primitive.

Experiment four This experiment shows that the movement of multiplplesfrom a LTSM
to the TSS provides better performance than not moving thémorder to show this
1000 tuples are placed into a LTS using thet primitive, and are then copied using the
copy- col | ect primitive from this tuple space to a RTHIS). Then all 1000 tuples are
retrieved from the RTS, into which they were copied, usirgi th primitive.

Experiment five This experiment shows that the movement of multiplplesfrom the TSS to
a LTSM provides better performance than not moving them. rtfeioto show this 1000
tuples are placed into a RTHTS) using theout primitive, these are then copied using the
copy- col | ect primitive from this RTSto a LTS. All 1000 tuples are then keted from
the LTS, into which they were copied, using the primitive.

Experiments three, four and five are designed to show thdiulemovement of tuples and
tuple spaces provides a performance increase. The finalieqr is designed to show the
performance achievable when multiple block movements gietiare performed one after
another.

Experiment six This experiment shows that bulk movement of tuples can biermeed one after
another, moving multiple tuples from a LTSM to the TSS andkizacthe LTSM. In order
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to show this 1000 tuples are placed into a LTS usingahe primitive, and they are then
moved using theol | ect primitive from this tuple space to a RTHTS). The tuples are
then copied using theopy- col | ect primitive back from the RTS to a LTS and finally all
1000 tuples are retrieved from the LTS into which they werged, using the n primitive.

In all the experiment descriptions whether a tuple spac®BRor a LTS is explicitly stated.
There is no distinction as far as the programmer is concefBadh tuple space is simply a
tuple space (see source code in Appendix B).

6.2.1 Experimental results

Experiment one

Table 6.1 shows the execution times taken to perform the fwavations: the insertion of the
tuples, and the removal of the tuples. The experiment isopadd with both the LTSM enabled
and disabled using a number of different workstation coméitions. In each case the number of
workstations used indicates the number of machines overhwthie tuples stored in a RTS are
distributed. Figure 6.1 shows a graphical summary of theselts.
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Number of workstations over which the TSS is distributed.

Figure 6.1: Summary of the results of experiment one.
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| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Fourworkstations‘ Eight Workstations‘

10000ut 2970 | 3.026 | 3.062 | 3.049 | 3.191 | 3.013
1000i n 3.243 | 3.275 | 3.384 | 3.379 | 3.538 | 3.526
Total 6.213 | 6.301 | 6.446 | 6.428 | 6.729 | 6.539

Table 6.1: Experiment 1 - Accessing a RTS with the LTSM erdbled disabled.

Experiment two

Table 6.2 shows the execution times taken to perform the tpevations: the insertion of the

tuples, and the removal of the tuples. The experiment iopadd with both the LTSM enabled

and disabled using a number of different workstation coméitions. Figure 6.2 shows a graphical
summary of these results.

| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Fourworkstations‘ Eight workstations‘

10000ut 2975 | 0.018 | 2908 | 0.019 | 2.975 | 0.019
1000i n 3.270 | 0.019 | 3.380 | 0.018 | 3.513 | 0.019
Total 6.245 | 0.037 | 6.288 | 0.037 | 6.488 | 0.038

Table 6.2: Experiment 2 - Accessing a LTS with the LTSM enalaled disabled.
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Figure 6.2: Summary of the results of experiment two.
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Experiment three

Table 6.3 shows the execution times taken to perform thee thperations: the insertion of the
tuples, the placing of the tuple intdTS, and the removal of the tuples. Figure 6.3 shows a
graphical summary of these results.

| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Fourworkstations‘ Eight workstations‘

10000ut 2889 | 0.019 | 2816 | 0.018 | 2.940 | 0.019
lout 0.003 | 0.044 | 0.003 | 0.056 | 0.003 | 0.081
1000i n 3.265 | 3.912 | 3.400 | 3.639 | 3.524 | 3.827
Total 6.157 | 3.975 | 6.219 | 3.713 | 6.467 | 3.927

Table 6.3: Experiment 3 - Changing a tuple spaces classifichkbm a LTS to a RTS.
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Figure 6.3: Summary of the results of experiment three.

Experiment four

Table 6.4 shows the execution times taken to perform thee tbperations: the insertion of the
tuples, their duplication, and the retrieval of the copiagdlés. Figure 6.4 shows a graphical
summary of these results.
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| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Four Workstations‘ Eight Workstations‘

10000ut 2797 | 0.018 | 2818 | 0.019 | 2.919 | 0.018
copy-col | ect 0.015 | 0.054 | 0.011 | 0.064 | 0.010 | 0.093
1000i n 3.248 | 3.921 | 3.286 | 3.752 | 3.382 | 3.755
Total 6.060 | 3.993 | 6.115 | 3.835 | 6.311 | 3.866

Table 6.4: Experiment 4 - Moving tuples from a LTS to a RTS gshrecopy- col | ect primi-
tive.

8 T T T

LTSM enabled—
LTSM disabled -

Time in seconds.
D

2 4 8
Number of workstations over which the TSS is distributed.

Figure 6.4: Summary of the results of experiment four.

Experiment five

Table 6.5 shows the execution times taken to perform thes thperations: the insertion of the
tuples, their duplication, and then retrieval from the LF®jure 6.5 shows a graphical summary
of these results.
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| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Fourworkstations‘ Eight Workstations‘
10000ut 2.870 2.924 2.864 2.885 2.911 2.902
copy-collect | 0.014 | 0.014 | 0.011 | 0.012 | 0.010 | 0.013
1000i n 3.297 0.068 3.407 0.067 3.538 0.058
Total 6.181 3.006 6.271 2.964 6.459 2.973
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Table 6.5: Experiment 5 - Moving tuples from a RTS to a LTS gslrecopy- col | ect primi-

tive.

8
7
6

%)

g 5

o

o

&

£ 4

[0}

£

[ 3
2
1
0

Experiment six

LTSM enabled——
LTSM disabled

2

4

8

Number of workstations over which the TSS is distributed.

Figure 6.5: Summary of the results of experiment five.

Table 6.6 shows the execution times taken to perform the dperations: the insertion of the

tuples, their movement, duplication and their retrievaguFe 6.6 shows a graphical summary of

these results.
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| LTSM | Disabled| Enabled| Disabled| Enabled| Disabled| Enabled|

‘ ‘ Two workstations‘ Four Workstations‘ Eight Workstations‘

10000ut 2967 | 0.019 | 2884 | 0.018 | 2.952 | 0.019
col | ect 0.003 | 0.052 | 0.003 | 0.070 | 0.003 | 0.085
copy-col | ect 0.007 | 0.705 | 0.007 | 0.361 | 0.008 | 0.285
1000i n 3.345 | 0.063 | 3.441 | 0.057 | 3.576 | 0.058
Total 6.322 | 0.839 | 6.335 | 0.506 | 6.539 | 0.447

Table 6.6: Experiment 6 - Moving tuples from a LTS to a RTS drahtback to a LTS.
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Figure 6.6: Summary of the results of experiment six.

6.2.2 Experimental conclusions
Experiments one to six - combined results

Figure 6.6 shows a graphical summary of all the results fpearments one to six.

Experiment one

The results show that when the LTSM is enabled it has no effedhe time taken to perform

operations on a RTS. The time to perform the 100@ primitives is almost constant regardless
of the number of workstations over which the RTS is disteloitout the time taken to perform the
1000i n primitives increases as the number of workstations ovechvtiie TSS and consequently
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Figure 6.7: Summary of the results of all six experiments.

the RTSs are distributed is increased. This is as expecteglbe every time aaut primitive

is performed it selects a single TSS process and sends adgedd® it. Whether there are two
TSS processes or eight TSS processes the time taken to sente#isage is the same, but the
time taken for an n primitive is dependent on the number of TSS processes ortwehigatching
tuple can reside. This is because when a tuple is not availilein other TSS processes, that
could potentially contain a matching tuple, are contacteskk if they have a matching tuple. The
more potential TSS processes that could store a matchitegthgohigher the communication costs
required to find a tuple. For more details on how anprimitive works see Section 5.13.

Experiment two

The results when the LTSMis disabled are similar to the tesildtained in experiment one. Thisis
as expected because when the LTSM is disabled all the tugetaed on the TSS, and there is no
distinction between a LTS and a RTS in terms of accessing,theitie execution times should be
the same as in experiment one. Again, as the number of wtidtstancreases the time to perform
the 1000out primitives remains constant and the time taken to perforenl®00i n primitives
increases slightly. When the LTSM is enabled the execuiima for both the 1000@ut primitives
and the 1000 n primitives is independent of the number of workstations TS is distributed
over and is many times faster than when the LTSM is disabldds iE because the operations
are local to the process and require ho communication wigro#tmer process, either on the same
workstation or on other workstations. The speedup provimethe LTSM is approximately 165
times than when the LTSM is disabled.
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Experiments one and two show both the speedup achievablsiity the LTSM for accessing
tuples stored in LTSs and that the LTSM does not reduce thesadanes for tuples stored on the
TSSin RTSs. The fast insertion and retrieval of tuples frddi & stored in the LTSM shown does
not show how such an approach improves the performance fomemicating processes. The
results for the next four experiments show that the bulk muaa of tuples (and tuple spaces)
between the LTSM and the TSS is effective, which is requif@iddcesses are to communicate.

Experiment three

All the results when the LTSM is disabled are similar to theuits for experiments one and two
when the LTSM is disabled. This is because the single @dtaprimitive, which places the tuple
containing the handle for the tuple space in UTS, takeg litthe (less than 0.003 seconds), and
therefore the operation is comparable to performing 1000 primitives to a tuple space stored
on the TSS, and then retrieved from the TSS. When the LTSMs@btkd there will beno bulk
movement of tuples from the LTSM, and there is no bulk movanoértuples between different
TSS processes.

When the LTSM is enabled the total execution time of the temgam is approximately a third
faster than when the LTSM is disabled. This is because tHedwgwe placed into a LTS which is
stored in the LTSM, and then the entire tuple space is bulkat@n to the TSS when the handle
for the LTS is placed in a RTS®(t (uts, ts) is performed). The times taken to execute this
out primitive and the subsequent 1000 primitives show that the singleut primitive takes
longer than when the LTSM is disabled, and the time increasdlse number of workstations that
the TSS is distributed over increases. This is becausertteetéiken for the singleut primitive
is the time taken to send tlmut message to the appropriate TSS process (as when the LTSM is
disabled)andto pack the all the tuples in the tuple space and dispatch théhne appropriate TSS
processes.

The time theout primitive takes is dependent on the number of TSS processemube the
more TSS processes there are, the more messages need tpdreghend dispatched, and the time
cost of creating the messages and initialising the sendingpoe messages takes longer. The time
taken to unpack the tuples within the TSS processes doedfect the time of theout primitive
because the LTSM does not “pause” until all the acknowledgemfrom the TSS processes are
received (see Section 5.3 for more details of the acknoweledmts required). The extra time taken
in performing the 1000 n primitives is attributable to thérsti n primitive performed, as thien
primitive cannot be performed until all the acknowledgetadrom the TSS processes despatched
packets of tuples have been received. A TSS process digsachacknowledgmeheforeplacing
the tuples in its tuple storage data structure. Once theomdkdgements are received by the LTSM
it is able to send the template for the first primitive to an appropriate TSS to perform the tuple
retrieval. This request for a tuple is only serviced by th&PBocess when it has finished inserting
the tuples into its data structure.
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In theory a trade off could be used here, the more TSS praedissesmaller the number of
tuples dispatched to each of them, and the larger the coneattioni costs because, as the Ethernet
performance charts (in Chapter 5) show, as the package sizeabes the effective bandwidth
available decreases. But, the fewer tuples in a packet $iseulepacking is required by the TSS
process receiving the packet, and the TSS processes whlbémeservice the next request sooner.
Pragmatically it is difficult to determine exactly what tiroests are attributed to each operation at
such alevel. Itis plausible that in this experiment the pestormance is achieved when the tuple
space is transferred to the four TSS processes. In this gaaekat size of about 2.2 Kilobytes
is sent to each of the TSS processes containing 250 tupledtini taken to dispatch and unpack
the tuples is less than sending a single packet of 9 Kilobsteksunpacking 1000 tuples or eight
packets of 1.1 Kilobytes containing just 125 tuples.

The important point is that the results show that the bulk @neent of a tuple space does not
impede the performance of the kernel, and indeed provideeedsup of at least 1.5 times over
using only the TSS to store all the tuples.

Experiment four

Regardless of whether the LTSM is enabled or disabled theuéire times in each case are similar
to the execution times for the same case in experiment tAewith the last experiment when the
LTSM is disabled there is no bulk movement of tuples betwberLTSM and TSS processes, and
between TSS processes.

The similarities between these results and those of expetitiree are expected as funda-
mentally the same operations are being performed, excapftrtbtead of the 1000 tuples being
moved as a “tuple space” they are moved as a 1000 tuples. Asewiteriment three the time
taken to perform the operation that initiates tuple moverftbecopy- col | ect primitive) and
the 1000 n primitives is larger where the LTSM is enabled than wheniilds The reason for this
is the same as in experiment three whendbé primitive and the first n primitive took longer.
However, the time taken to perform thepy- col | ect primitive is always slightly longer than
the time taken to perform theut in experiment three. The difference is accounted for byithe t
cost of performing the match between the template and evesyilpe tuple in the tuple space.
When a LTS handle is placed in RTS the entire LTS is moved ame tis no matching of tuples.
When acol | ect orcopy-col | ect primitive is used matching of each potential tuple has to
be performed.

Experiment five

The execution times when the LTSM is disabled are comparabthose in experiment four.
This is as expected because when the LTSM is disabled thegonogsed in this experiment and

A single tuple containing just an integer will be coded intstructure about 9 bytes long. Therefore, 1000 tuples
at 9 bytes is 9000 bytes divided evenly between the four T8&gsses being used.
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experiment four are the same because regardless of whetilygleaspace is a RTS or a LTS, itis
stored on the TSS.

When the LTSM is enabled the placing of the tuples into a RkBsdhe same time as when
the LTSM is disabled. When considering the movement of tiflem a LTSM to the TSS there
are two identifiable operations incurring extra time ovadsedue to the bulk movement. These are
the instructions that initiate the movement of the tuplesthe firsti n primitive performed on the
moved tuples. The time cost of performing thepy- col | ect primitive appears significantly
less than the time cost of performing thet orcopy- col | ect primitives in experiments three
and four. The reason for this is that duplication of the tapteperformed in the TSS processes
concurrently and the count returned. The user process emadbntinue after requesting that
the tuples be sent (see Section 5.17 for more details) whidstuples are being packaged and
transmitted to the LTSM by the TSS processes.

The 100G n primitives take only approximately 0.04 seconds longen tih& equivalent oper-
ations in experiment one. When the tuples are moved from aLil8he TSS (experiment three
and four) the difference between the LTSM enabled and dislatiines to perform the 10G0n
primitives is approximately 0.4 seconds. This would imigitta bulk movement of tuples takes
approximately 0.4 seconds. If the time taken to perform @01 n primitives when the LTSM is
enabled in this experiment is compared with the same operatiexperiment two, the difference
is only approximately 0.04 seconds. This implies that ogads of bulk moving tuples between
the TSS and LTSM is only 0.04 seconds. Why does the bulk moneaid¢uples from the TSS to
the LTSM appear to be have lower overheads for the same nuhhgales, particularly consider-
ing the time to perform theopy- col | ect primitive is less than to perform the equivalent tuple
movement initiating primitive in experiment three and fedrhere are two factors that justify this,
firstly the LTSM does not wait until all the tuple packets froine TSS processes are received, as
the first packet received has a matching tuple. Secondlyrgtéuple removed from the first packet
matches the template. Therefore the tuples are nevereadsiatb the tuple storage data structure
(as described in Section 5.17). The time the 1D@0primitives take drops when the number of
TSS processes increases because the more TSS proces$ess thples are stored on each one,
so the time taken for the TSS processes to pack the tuplessis Tdus the first packet of tuples
will arrive at the LTSM sooner, so a match can be found sooner.

This experiment is of particular interest as it containsaberdination pattern that is performed
when solving the multiple d problem using thecopy- col | ect primitive. The use of the
copy- col | ect primitive to get a copy of all the required tuples followed thyy consumption
of all of them using the n primitive with the same template as used in thepy- col | ect
primitive.

These experiments show the basic performance of the Yorkdkdr when multiple tuples
are moved. The LTSM has been shown to improve the performahtee kernel. The sixth
experiment shows the performance achievable when mulilptk movements are performed one
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after another.

Experiment six

When the LTSM is disabled the results are very similar to ttheoexperimental results involv-
ing the placement and removal of 1000 tuples from a tupleespadch is stored on the TSS.
The difference between the time taken to perform c¢loé | ect primitive and to perform the
copy-col | ect primitive shows time overheads associated with dupligathre tuples rather
than just altering the tuple space to which they belong. Whples are duplicated memory has to
be assigned and the tuple physically duplicated (see €b1f).

When the LTSM is enabled the execution times display a numitiateresting characteristics.
The time taken to perform theopy- col | ect primitive is significantly longer than in experiment
five where acopy- col | ect primitive is performed involving the bulk movement of tupeom
the TSS to a LTSM. This is because thepy- col | ect primitive requires a message from each
of the TSS processes which could contain tuples that magctethplate (in this case all of them).
Therefore, the time taken by te®py- col | ect primitive represents the time taken for the tuples
to reach the TSS process (initiated by tta | ect primitive), to be unpacked, duplicated and
the count of tuples duplicated and return the count to theMLT/A&s the number of TSS processes
which store the tuples increases, thepy- col | ect primitive takes less time, because as the
number of the TSS processes increases, the number of tijalesach receives decreases. The
time spent by the TSS processes inserting them into the datéestructures, matching them and
duplicating them also decreases. As with experiment fivee dransfer to the LTSM has been
initiated by thecopy- col | ect primitive the 1000 n primitives take a comparable time to the
same operation in experiment five, which would be expected.

Concluding remarks

The experimental results show the performance of the Yorn&dl with respect to its ability
to move multiple tuples in a single operation. The experitheme specifically designaubt to
test the template and tuple matching, or the underlyingetspbrage data structures. Although
the kernel is designed to be efficient, the more efficient vediyserforming these operations using
pre-compiler support have not been considered. The kesng¢signed to show how the bulk
movement of tuples can be used to improve performance. Teriexental results show that the
use of the LTSM does not degrade the performance of the ketmeh using RTSs and increases
the performance of the kernel when using LTSs. The expetsr&row sets of operations which,
from experience, appear common in Linda programs, whichnugiple tuple spaces and the
col | ect andcopy- col | ect primitives.

The experiments compare the performance of the kernel wiehTiSM is enabled and dis-
abled, but do not consider the performance against othdeimgntations. Even when the LTSM
is disabled the performance is better than the York KermBMR95, RDW95]. Although many of
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the underlying implementation decisions were based onadsthsed in the York Kernel I: York
Kernel | uses a two stage hashing algorithm for the placemgtiples rather than a one stage
hashing algorithm. The format of the tuples used in the Yoekr€l Il are far simplérthan the
format used in York Kernel I, so the matching of templatesiraauples is faster and a better
tuple storage data structure is used in the York Kernel Itk¥ernel 1l also gains performance by
using PVM efficiently, but the LAN version of the York Kerneid a portfRDW95] of an existing
implementation developed for a Transputer based systetns@it does not use PVM to the full.
An example of the performance of the York Kernel | is given able 6.7 which shows the results
for experiment one. The results should be compared withekelts for experiment one for the
York Kernel Il (Table 6.1). The time taken to perform the 1@0a primitives is significantly less
than for the York Kernel Il, because the PVM port of the YorkK& | does not fully supporut
ordering and so does not use acknowledgementfar primitives as does the York Kernel 1I
implementation. This means that only a single message usresbffor everyout primitive rather
than the two messages required in the York Kernel Il.

‘ Using a TSS distributed over two workstatiohs

10000ut 1.654
1000i n 8.391
Total 10.045

Table 6.7: The performance of York Kernel | when placing ésgh a RTS or a LTS.

Comparison between York Kernel Il and other implementatithat are open systems is diffi-
cult for several reasons. There are few kernels publiclylabla and those kernels that are not pub-
licly available quote results using different workstasand networks. This makes the comparison
of results impossible. The public versions available arm&4[Je096, JS94] and Glenda[SAB94],
but both implementations use a centralised TSS rather théstributed TSS as used by the York
Kernel Il, so any comparison is biased in favour of the Yorkn& Il. PLinda is designed to show
fault tolerant techniques which degrades performancidutiy requiring it to regularly take snap-
shots of the tuple spaces. The performance the York Kerrigldétter than Glenda and should
be better than PLinda, even with the LTSM disabled becawseubke centralised TSSs. In order
to show this the execution timings for Glenda to place a 10@les into a RTS using theut
primitive and then retrieve them using tha primitive (experiment one) is given in Table 6.8.

The results show the performance of the single TSS procdssdmothe same workstation
that the test program is being executed, and on a differerikstation. Table 6.8 shows that the
performance of the Glenda performing thet primitives exceeds that of the York Kernel Il. This

2York Kernel | allowed embedded data structures within tsptherefore tuples can contain sets, tuples, bags, etc;
and matching can be performed on any field either within tpeetar the data structure within the tuple.

3The Mieko CS-1 provided synchronous communication, wisefdM provides asynchronous communication.
Out ordering is guaranteed if synchronous communicati@mieéls are provided.
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TSS resident on
same Workstatioﬁ different workstation

10000ut 1.541 1.084
1000i n 6.088 12.763
Total 7.629 13.847

Table 6.8: The performance of Glenda when placing tuplesRm&or a LTS.

is because Glenda uses a centralised TSS, and PVM whichnge@samessage ordering between
two processes. Therefore, an acknowledgment messagedooa& primitive is not required,
because the message for @amt primitive is guaranteed to arrive at the centralised T&fre
the next message sent from a process. Hence, as long as traiset TSS process services the
messages in the order they arrive at the ©88 ordering is guaranteed. The time taken to perform
the 1000i n primitives is greater than the time taken using the York kéthbecause the tuple
storage mechanism and the matching of tuples with tempikatesfficient. Glenda is also built on
top of PVM and, as with the York Kernel I, it is not used in an@éint manner.

Owing to the lack of suitable open implementations, in thd section, the performance of the
York Kernel 1l is compared with the performance of SCA C-Land his is a commercial C-Linda
produced using the techniques developed at Yale. It is piglthe best implementation currently
available, primarily because it is a closed implementatind uses compile time analysis to gain
performance. SCA C-Linda does not supportdiod | ect andcopy- col | ect primitives, and
does not have multiple tuple spaces. So to compare the pefme of the two systems a “real
world” case study is used. This is a commonly used method th@nimage processing field, the
Hough transform.

6.3 The Hough transform

The Hough transform[DH72] is an image processing algorjttand is referred to as an
intermediate-level vision operation[WMM2]. The Hough transform is used to detect straight
lines (and other shapes such as circles) in binary imagegird-6.8 shows its role in a general
image processing system. The initial image (top-right) igrey-scale image of an aeroplane
in flight. The grey scale image is then processed, using ahblging algorithm[SSWC88], to
produce a binary image from the grey-scale one. The thrdistgpprocess attempts to distinguish
the sky and the aeroplane, by making the aeroplane pixeBnsiethe sky pixels unset. This is
represented as the next image in Figure 6.8. The next stagadetect the outline of the plane.
This can be achieved using a number of techniques, includf®gonnectedness[DF86]. These
stages are all described as low-level image processinghelberoplane is to be detected as an
aeroplane, some sort of object matching (a high-level dgipeahas to be performed. The image
is transformed to the Hough space (or Parameter space)hhani tused to determine straight
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lines in the image. The last two images in Figure 6.8 showetlséeges. This final stage is further
processed and used as the input to an object matching predash will identify the image as an
aeroplane (hopefully).

Figure 6.8: Processing an aeroplane image.

The work described here focuses on the basic Hough tran$twrdetecting straight lines and
a more formal overview of it is now given. The Hough transfomaps a binary image pixel,
(z,y), in thecoordinate spacéthe binary image) to a sinusoidal curve in fr@ameter spacéor
Hough spack This sinusoidal curve is ‘plotted’ as a set of coordindtethe parameter space.
The version of the Hough transform which is used is to deteaight lines in images is described
by Equation 6.1, wherép, 0) pairs represent solutions of the equation given a speaifig).

xcosf +ysinf =p (6.1)

Therefore, for each pixdl, y) in the coordinate space the set(pf#) pairs define a sinusoidal
curve in the parameter space. The rangeieft-90° and the range gf is the rangeD to — D where
D is defined in Equation 6.2. The granularity of the paramgtacs is controlled by controlling the
guantisation of), and throughout all the experiments a granularitytdf is assumed. Therefore
for every pixel in the coordinate space the Equation 6.1yred 180 p, 0) pairs.
2 2
D = maxz, y, %fc + %y) (6.2)

Given two points in coordinate space, the equation of thejtdming them is determined by
the point of intersection of their corresponding curves amameter space. The, 6) value at
the intersection is substituted into Equation 6.1 creatirfgnction that describes a straight line
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in the coordinate space. In order to detect the straighs linexan image, the parameter space is
examined for intersections, and the number of curves thatsect at a particular point is equal
to the number of image pixels in the coordinate space lyinghahline in the coordinate space.
The Hough transform therefore consists of two stages: #mstormation from coordinate space to
parameter space; and the subsequent processing of thegparamace. Only the transformation
stage will be considered. Figure 6.9(b) shows the resufiBmgameter space for the simple image
shown in Figure 6.9(a). A more detailed description of thaugtotransform can be found in

[GWS87].
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Figure 6.9: A simple image and its Parameter space after thigitransform has been applied.
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6.4 Parallel decomposition of the Hough transform.

Much work has already been done on the parallel decompogitising a data parallelism style) of
the Hough transform[WMM 92, YA85]. The method adopted here is the data parallel @gbro
proposed by Yalamanchili et al.[YA85]. There are two prign&rays of implementing a data
parallel Hough transform. The first is to divide the coortinapace into segments then have a
worker process for each segment. The worker takes eachipixeé segment it is responsible
for and calculates the entire curve it produces in the patemspace. The second is to divide the
parameter space into segments and then have a worker pfocessh of those segments. Every
pixel within the coordinate space is processed by every @rottbut only the part of the curve
which bisects the segment of the parameter space which tHekarocess is responsible for, is
calculated.

Segmenting the coordinate space creates two problems. rEherfbblem is load balancing.
The pixels within an image are not always distributed evegr all the segments and in most
cases they are unlikely to be. The execution time of each evgrkocess is proportional to the
number of pixels within the segment of the image for whicls itedsponsible. Therefore, there is
the possibility that some workers will have no work to pemipivhilst others will have significantly
more than the average. The second problem is that all theersovkant to update the parameter
space. During the execution of the Hough transform manyeptbsitions within the parameter
space are updated by many different workers, causing diorieproblems. The implementation
within a Linda context produces no particular difficultiewing to the nature of the blocking
primitives, but the load balancing problems are significaithin a Linda context.

Segmenting the parameter space means that each workespmug updates a small segment
of the parameter space, to which it will have exclusive asdast every process has to read every
pixel in the coordinate space in order to create its segmiethiteoparameter space. Figure 6.10
shows the parallel decomposition of the problem within adaicontext. The image tuple space
contains the image, in the form of triples; — coordinate;pieger, y — coordinate;pieger, pizel —
valueinieger). The image is a binary image, so therel-value will always be either one or zero.
The image could be stored using just paits,— coordinateinieger,y — coordinateipteger) With
the assumption that if the tuple is present the pixel is sdtifaih is not set then the pixel is not
presentfRW95]. It is assumed here that the all the pixelgepeesented in the tuple space. In
general this approach is better because the producer ofhtimgeituple space may not know which
processes are going to use it. Some processes may want tie pith zero values, which is
costly to determine if only the tuples which represent sgletsiare present. In Figure 6.10 there is
a second tuple space which is used to store the parameter apddour worker processes. Each
worker is required toead all the image tuples with pixel-valueof one, and update the quarter
segment of the parameter space for which it is responsitite.rélading of the tuples by all four
processes produces thaultipler d problem Therefore, each process takes a copy of the tuples
representing the tuples which are set and then destryctieetoves them from the copy it has
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taken and updates its segment of the parameter space agtprdi

Image tuple spac

Parameter tuple spa

Worker Worker Worker Worker
Proces: Proces: Proces: Proces:

9138 1 4

Figure 6.10: The parallel decomposition of the Hough tramsf

In the implementation, the parameter space quarters aa¢edreising local data structures
within the worker process, and then transfered to the paentgple space after all the image
pixels have been processed. Processing of the parameiespgte cannot start before a segment
has been fully completed so this is an appropriate approfthin the parameter tuple space the
parameter space is stored as a sparse data structure. Withiaghe parameter space are triples of
the form(pinteger, Ointeger, cOUNtETinteqger). If the counter is to be zero for a particuldp, ) pair
then the tuple is not present. The parameter space is peat@ssuch a way to detect “peaks”,
as they represent the lines with the most pixels on. Thezefowints with a zero count are not
normally required in further processing.

The SCA C-Linda implementation has been implemented $jiglifferently, because it does
not support theol | ect andcopy- col | ect primitives or multiple tuple spaces. The different
tuples spaces are emulated by tagging the tuples with g $trirepresent the tuple space to which
they belong. The SCA C-Linda uses the stream approach teawerthemultipler d problem
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6.4.1 Experimental results

The experimental results show two things. One is the efféasimg the bulk movement of tu-
ples for performance gains. The other is to reinforce rihdtiple r d problem and how the
copy- col | ect primitive overcomes it.

The first set of results show the effect of using bulk moverséniples. In this case every pixel
in the image is set to one. In Chapter 4 the time cost (in tefhpsimitives) of using the stream
method and theopy- col | ect method for overcoming the multipked problem are compared.
This showed that the number of primitives required by thesstr method iV x rd (Equation 4.1).
The number of primitives required for tl®py- col | ect method iscopy-collect +n X in
(Equation 4.4). When all the tuples in the tuple space angired| (which is when all the pixels are
set),n = N. Therefore, the stream approach should be slightly moreiexit, requiring one less
primitive. The other question is the cost of performingi anprimitive and ar d primitive simi-
lar? The difference is that the amount of tuple template hiaggis less in the&opy- col | ect
method because then primitive matches all the tuples copied by thepy- col | ect primitive.
Therefore, every tuple retrieved requires only one tupteptate matching operation, but when-
ever ar d primitive is used, potentially many tuples have to be madcgainst a template before
a suitable match is found. In the SCA C-Linda very efficierghiag algorithms are used (created
at compile time) which means that the number of tuples dgtalecked when ad primitive
is performed should be very small. Combining this with thditgito place tuples based on the
compile time analysis should make the cost of performing therimitive as efficient (if not more
efficient) than the York Kernel Il performing am primitive on a tuple space stored on the TSS.
By comparing the time taken when all the pixels are set pes/@h acceptable way of comparing
the performance of the York Kernel Il and the SCA C-Linda.

Table 6.9 shows the execution times in seconds for the Haagisform using four Silicon
Graphics Indy workstations connected by a 10 Megabit pesraboon-dedicated Ethernet when
all the pixels are set in a 256x256 binary image. The exegtitioes represent the time to create the
image tuple space; perform the Hough transformation ofitt groduce a tuple space containing
the parameter space. The time cost of spawning the workeegses is not included because of
the difficulties in determining this for the SCA C-LirtiaFor all the parallel versions four workers
are used, one placed on each of the four Silicon Graphicswuligstations. For the York Kernel
Il the TSS is distributed over the four workstations as wElle table shows the time taken for the
SCA C-Linda, York Kernel Il with the LTSM enabled and disahlend two sequential versions
using York Kernel 11.

The sequential version using setup one uses a single mdahitiee kernel and the program.
The sequential version using setup two has the kernelluiséd over four workstations and the
program running on one of those. The sequential versioreidtichl to the parallel version except
no workers are spawned, the function that is spawned in tfalg@laversions is instead just called

“In the case of the York Kernel Il the time to spawn four proesss under 5 seconds.
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in the sequential versions. The execution times of the se@li@ersions are very similar. With a
single process accessing the tuple space, the speed ghiadmg the tuple space distributed over
four workstations is lost in the communication overheadeofding packets around the system.

SCA | York Kernel Il with LTSM | Sequential versior]
C-Linda | disabled enabled Setup 1| Setup 2

256x256 image
100% pixels sef 523.20 | 670.48 56.32 68.70 | 72.02
(65536 pixels)

Table 6.9: Comparing the performance of the bulk movemetupés with traditional techniques.

The difference in execution times between the SCA C-LindhlarsM disabled kernel repre-
sents the performance improvement SCA C-Linda achievesidiir using compile time analysis
(about 28% speed increase). Also both the SCA C-Linda and Ti$#M disabled kernel take
considerably longer to execute than the sequential vessidrhen the LTSM is enabled the per-
formance of the kernel improves significantly, providingeoa 900% speed improvement over the
best of the other parallel versions. It also produces anutisectime that is less than both the
sequential versions. Table 6.10 shows the speed up of th®l&rabled version over the other
versions.

York Kernel 1l with LTSM enabled speedup against
SCA C-Linda| LTSM disabled Sequential
Setup 1| Setup 2

256x256 image
100% pixels set 9.3 11.9 1.2 1.3
(65536 pixels)

Table 6.10: Speedup over other implementations when ubimyark Kernel 1l with the LTSM
enabled for the parallel Hough transform when all pixelsrinraage are set.

The maximum performance increase achievable for thislpheddjorithm, as more processors
are added, is linear speedup, therefore the speedup of wheviirker parallel version over the
sequential versions, in the best case, should have beetirfes. There are several reasons why
this does not occur. Primarily, all the worker processegartorming the same operations on the
tuple space at the same time. All the primitives want to chygynhatching tuples at approximately
the same time. Each of the TSS processes receives sewggt col | ect messages almost
simultaneously, and as it can only service one at a time dehettk occurs for a small period.
Secondly, the costs of communication increases as the murfipeocesses increase. Thirdly, the
algorithm is fine grained and not ideally suited to a netwdrkvorkstations. The computation
costs are small compared with the communication costs. \ghsignificant is the speedup of
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the York Kernel Il with LTSM enabled over it with the LTSM disizd and the SCA C-Linda
implementations.

Further experimental results

As already stated the parallel implementation suffers filoenmultipler d problem. In Chapters 3
and 4 the parallel composition of binary relations was useshbw the performance differences
between the different approaches to overcome the multigl@roblem. The Hough transform
provides another opportunity to show the effectivenessott thecopy- col | ect primitive as

a means of overcoming the multiplel problem and the LTSM.

SCA | York Kernel Il with LTSM | Sequential versior
C-Linda | disabled enabled Setup 1| Setup 2

256x256 image
100% pixels sef 523.20 | 670.48 56.32 68.70 | 72.02
(65536 pixels)
256x256 image
75% pixels set| 523.37 | 559.03 42.61 53.31 | 57.66
(49152 pixels)
256x256 image
50% pixels set| 510.92 | 447.14 26.39 37.88 | 41.06
(32768 pixels)
256x256 image
25% pixels set| 514.47 | 337.91 15.19 22.67 | 25.53
(16384 pixels)
256x256 image
0% pixels set | 520.59 | 182.15 7.46 5.18 6.85
(0 pixels)

Table 6.11: The advantages of using ttepy- col | ect method for the multiple d problem.

Table 6.11 shows the results when different numbers of pixed set within the image. For all
the versions except the SCA C-Linda the execution time letinto the number of pixels set to
one in the image, regardless of whether the LTSM is enabletisabled. Even when the LTSM
is disabled using theopy- col | ect method provides better performance than using the SCA
C-Linda (and the stream method) when about 60% of the tuple®sent a set pixel in the test
image. The actual speedups of the LTSM enabled kernel oeeottier versions are shown in
Figure 6.13.

The results show that the performance of the SCA C-Lindaamis practically independent
of the number of pixels set. This appears logical becausevtrision uses the stream method to
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overcome the multiple d problem. Subsequently, regardless of how many image taglkeslly
represent a set pixel, all the pixel tuples are read. Howelreramount of computation and the
number of tuples placed into the parameter spgdependent on the number of pixels set. For the
test images used Table 6.12 shows the number of tuples thatlwe placed into the parameter
tuple space. This implies that the execution time shouldedese as the number of set pixels within
the image decreases.

Pixels setf Number of | Number of non-zero elements
tuples in image| in the parameter space
100% 65536 58484
75% 49152 51210
50% 32768 43881
25% 16384 36558
0% 0 0

Table 6.12: Number of non-zero elements in Parameter spatest images used.

York Kernel 1l with LTSM enabled speedup against
SCA C-Linda| LTSM disabled| Sequential 1‘ Sequential 2

256x256 image
100% pixels set 9.3 11.9 1.2 1.3

(65536 pixels)
256x256 image
75% pixels set 12.3 13.1 1.3 14

(49152 pixels)
256x256 image
50% pixels set 194 16.9 1.4 1.6

(32768 pixels)
256x256 image
25% pixels set 33.9 22.2 15 1.7
(16384 pixels)
256x256 image
0% pixels set 69.8 24.4 0.7 0.9
(O pixels)

Table 6.13: Speedup of the parallel Hough transform.

The reason why the execution time for the SCA C-Linda verssonot less (it would be
expected to be approximately 490 seconds) when there ar&els pet in the test image could
be due to the optimisations that the pre-compiler perfofros.example, when a program creates
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1000 tuples containing a single integer, and then consumedsiples in any order (using a template
(|Dinteger|)) the program takes 22.93 seconds to execute. If the prograftered to remove the
tuples in the same order in which they are inserted the pnogaiies 3.89 seconds to execute. As
the order in which they are retrieved in the altered programa valid ordering for the tuples to
be returned in the first program it would be expected that ¥eewion time of the first program
should be no longer than the execution time for the secongtana.

The execution times for all the other versions show a depwyden the number of tu-
ples within the image tuple space. This is to be expected lathalother versions use the
copy- col | ect method to overcome the multipled problem, so the number of tuples read
and processed depends on the number of tuples represesitipigeds in the image.

The Hough transform is by its nature fine grained. The implgatéon strategies adopted
have tried to mirror this. Therefore, there is a significamoant of communication compared
to computation. The Hough transform is chosen to show thectifeness of the LTSM in such
situations. The fact that there is little speed increase inesequential version when four worker
processes are being used, although not desirable, inglitaethe algorithm with such a small
image is not suited to distribution over networks of workistas. What the results do show is that
without using the LTSM there is no point in performing the Igburansform in parallel. It should
be noted that all of the sequential execution timings hawen lmbtained with the LTSM enabled.
The results for the sequential version with the kernel ithisted over four workstations and the
LTSM disabled is given in Table 6.14.

256x256 image
100% pixels set
(65536 pixels)

256x256 image
75% pixels set
(49152 pixels)

256x256 image
50% pixels set
(32768 pixels)

256x256 image
25% pixels set
(16384 pixels)

256x256 imag
0% pixels set
(O pixels)

625.94

537.42

455.03

363.89

19153 |

Table 6.14: Execution timings for the sequential versiagisgisetup two with the LTSM disabled.

6.4.2 Conclusions

The experimental results show that the performance of thie Kernel Il increases when the LTSM
is being used. The performance of the York Kernel Il has besnpared with the commercial
SCA C-Linda which uses compile time analysis allowing it fficeently place and store tuples.
Normally, the performance of open implementations andedasplementations are not compared
because of the advantages provided by using compile timgsimavithin closed implementations.
By showing the performance gains, when using an image withixals set, it is possible to fairly
compare the performance of the York Kernel Il with the SCAiG@da. When the LTSM is disabled
the expected results of an open implementation are progdbcedvhen the LTSM is enabled the
results show that an open implementation using the tecksigeed in the York Kernel Il is many
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times faster than the closed implementation.

The multiple rd problem effects “real world” problems and the results show tthe
copy-col | ect primitive can be used to efficiently solve the problem.

In many parallel algorithms and programs the use ofdbél ect andcopy- col | ect
primitives are inappropriate. In these cases the compite tnalysis that SCA C-Linda uses
will normally provide better performance. The aim is to shivat appropriate use of the
copy-col | ect andcol | ect primitives can improve performance and that improvement ca
be enhanced by using the implementational techniques dduutk movement of tuples as used in
the York Kernel II.

6.5 Conclusion

In Chapter 5 a description of how a two layer kernel can betedethat uses locality information
provided by multiple tuple spaces to create efficient im@etation of the bulk primitives of
col | ect andcopy- col | ect. In this chapter the performance of the York Kernel Il, a lekrn
implementation which uses the concepts described in Chapteas been shown. A number of
common Linda coordination operations have been used to #mwpeed increase that efficient
implementation of the bulk primitives can provide.

The performance of the York Kernel Il, an open implementatiosas been compared to the
performance of the SCA C-Linda closed implementation. breotto be able to compare the two
effectively the Hough Transform (an image processing #lgor was used.

The results in this chapter support the claim that the pregasethod is more efficient
than a naive approach, and adds further experimental sekulsupport the inclusion of the
copy- col | ect primitive within Linda to overcome the multipled problem.

The performance gains observed are only possible if maltigble spaces are used within a
program, and the bulk primitives are used. Algorithms ttsat Linda to simply pass messages (or
data structures) between processes will not observe aegspeising the York Kernel Il. However,
the speeds achievable mean that in many cases data stsutiatrenight be passed as a single tuple
can be stored in tuple spaces as a collection of tuples,gingva more natural programming style.
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Chapter 7

Generalising tuple space classification

7.1 Introduction

The bulk movement of tuples has been shown to be effectiveoitiyging a performance increase
in the York Kernel 1l. However the York Kernel Il, described Chapter 5, has three shortcomings
which are: eagerness in the movement of tuple spaces; thiitwégo move RTSs to LTSs; and
the kernel does not support a large number of workstations.

Initially, these shortcomings are considered in more fetad then a more graduated approach
to the classification of tuple spaces is presented whiclidwih the ideas in Chapter 5. This more
generalised classification of tuple spaces overcomes tidgons of eagerness of tuple movement
and scalability. It does not address the problem of RTSsreaplLTSs.

A kernel supporting the approach outlined in this chapter @ been implemented. Before
such a kernel can be realised there are many other problensdéd to be overcome. However a
simple simulator has been created, which is described artti®f this chapter.

7.2 [Eagerness in tuple space movement

The movement of a tuple space occurs the moment that anatheegs can potentially access
that tuple space. Consider the example procedure showrogrdn 7.1. Using the York Kernel
Il the tuple space s1 will be changed from being a LTS to become a RTS when the hdodle
t slis placed inUTS (a RTS). This means that all the primitives will be performed on a RTS,
regardless of whether any other processes can actuallgsacse.

The example given in Program 7.1 is rather contrived, buei@nple in Program 7.2 shows
the same problem in a more practical way using the mastetératyle of parallelism. The two
functionspr oducer 1 and pr oducer 2 both create a tuple space, and place 100 tuples into
that tuple space. Howevasy oducer 1 places the handle of the tuple space &S after the
tuples have been placed into the tuple space paratiucer 2 places the tuple space handle into
UTS beforethe tuples have been placed in the tuple space. The functoisuner removes a

143
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Program 7.1 An example showing the eagerness of the York Kernel II.
voi d deno_eager (voi d)
{

int j;

TS tsl;

tsl = tsc();

for(j = 0; j < 100; j++)
out(tsl, j);

out(uts, tsl); [* TS1 noved */

for (j =0; j <100; j+)
in(tsl, j);

tuple containing a tuple space handle frefS and removes a 100 tuples from that tuple space.
Assume that in a system, to®@nsuner function and either one or other of the producer functions
are executing concurrently. The end result will be the sagandless of which of the two producer
functions is used, but which will provide the best perforaee® The answer is it depends on the
amount of computation performed in both the producer anaddimsumer. If the consumer takes
longer to process an individual tuple than it takes the predto create it, then making the tuple
space a RTS before the producer starts should yield the bdstrimance. If the producer takes
very little time then the conversion of the tuple space to & Riice the tuples have been inserted
may provide better performance. This is because evetyprimitive performed on a RTS requires
two messages to be sent.

This extra communication affects the time taken to perfoatheé n primitive because it re-
duces the bandwidth of the Ethernet and causes the TSS pescesperform more work (pro-
cessing theut primitives) thus potentially having to queue the consumieri primitives. This
places an onus on the program writer to decide which will give best performance. A lazier
kernel would result in the tuple space being moved only wharas required. The movement of
entire tuple spaces could be relaxed so that the movemeamtsoeither when a tuple containing the
tuple space handle is actuallgmovedirom a RTS by another process, or when another process
actually accesses the tuple space for the first time.
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Program 7.2 A second example showing the eagerness of the York Kernel Il.
i nt producer1(void)

{
int j;
TS tsl;
tsl = tsc();
for(j = 0; j < 100; j++)
out (tsl, j);
out (uts, tsl); /[* TS1 LTS -> RTS */
return 1;
}
i nt producer?2(void)
{
int j;
TS tsl;
tsl = tsc();
out (uts, tsl); /[* TS1 LTS -> RTS */
for(j = 0; j < 100; j++)
out (tsl, j);
return 1;
}
i nt consuner (voi d)
{
int j;
TS tsl;

in(uts, ?tsl);

for (j =0; j <100; j+)
in(tsl, j);

return 1;
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There are three reasons why a lazier approach to the moverieipies is not adopted in the
York Kernel Il. The first reason is the increased communicatiosts that would be imposed. As
the TSS is distributed every TSS process would have to betaldthe tuple space resides on a
particular LTSM, and if they receive an operation to be penfed on the tuple space, then the tuple
space must be moved from the LTSM to the TSS. The communicatets of ensuring that all
tuple spaces are aware of where the LTSM is, followed by tinengonication necessary to inform
the TSS process that the tuple space has now moved, wouldyéiga. Secondly, adopting a
lazier approach to the movement of tuple spaces would redqoé LTSM to “interrupt” the user
process in order to service the request for the tuple spamenwoved. Thirdly, the LTSM is linked
into the user process. When the user process terminated 8id terminates, and subsequently
all the tuples stored within are lost. If a lazier approachdepted then tuples which belong to a
RTS can reside on a LTSM. Therefore, if tuples are residing @hSM which belong to a RTS,
and the user process terminates, the tuples stored in thigl GFf&lost. These three factors make
the lazier movement of tuple spaces unattractive for udeervork Kernel Il.

7.3 Reclassification of a RTS to LTSs

A looser definition of a LTS would be: a tuple space is a LTS awifen one process has the tuple
space handle in scope and the tuple space handle is notttyimeamy tuples present within a RTS.
The current definition is: a tuple space is a LTS if it is crdatg the process and the tuple space
handle has not been placed in a tuple in a RTS. When the culeéinition is used, there are only a
few situations where a tuple space is classified as a RTS, ivbenld be classified as a LTS under
the looser definition. Consider the program shown in Progfé&8n Functiort est calls function
one which creates a tuple space (referred t@'gds and places its handle in a tupleUfi'S. When
the tuple space is created it is a LTS. When the tuple is platedJTS the created tuple space
becomes a RTS. The functidrest then evaluates functiadnwo concurrently. Functiohwo gets

a tuple fromUTS which contains a tuple space handle. Assuming that the tgi&ining the
handle forT is the only tuple inUTS that matches the template used by threprimitive within
functiont wo, this will be returnedT’} can nowonly be used by functiohwo and could therefore
be stored “as close as possible” to functtomo, and considered a LTS.

Another situation where a tuple space is classified as a RitBwaen it could be classified
as a LTS under the looser definition, is when spawned progetiee If a program uses the mas-
ter/worker style of parallelism a master process may credple space, and create a number of
worker processes that use the tuple space. When the tugle ispereated it is a LTS. When the
worker processes start using it the tuple space has to be a&i&h all the worker processes die,
the tuple space, under the looser definition, may become abab.

Within the context of the York Kernel Il, the communicationsts associated with using a
definition of a LTS that allows a RTS to become a LTS is too higttlie few occasions when this
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Program 7.3 Example showing when a RTS could be a LTS.
voi d one(void)

{
TS ts_handl e;

ts _handle = tsc(); /* Create a tuple space */
out(uts, ts_handle); /* Place the handle in a tuple space */

char *two(voi d)

{
TS ts_handl e;

in(uts, ?ts_handle); /* Read a tuple space handle from UTS */
return "TERM NATED';

voi d test(void)

{
one();
eval (two());

occurs. It would be necessary to create a graph of all thepuseesses which have the handle to
each tuple space, and whenever a tuple space handle godssoape within a process the graph
would need updating. The graph would also have to contaihalinformation about which tuple
spaces have tuples with the tuple space handles in them.

Early work by Menezes et al.[Men96] suggests that the magmtee of such a graph may have
other uses, such as in the garbage collection of unacoedsible spaces. If these graphs were
found to be necessary to provide other facilities within enké then their use to enable tuple
spaces to move from being RTSs to LTSs would be acceptaldeharooser definition of a LTS
could be used.

7.4 Scalability

The York Kernel Il, like many other Linda implementationgshbeen developed for use with a
Local Area Network (LAN) and a relatively small number of \stations (approximately thirty
workstations). Linda is ideally suited for use in distribditcomputing because it supports asyn-
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chronous processes that communicate despite being tellgpamd spatially separated. Within
the foreseeable future there will be kernels developed $erwith Wide Area Networks (WAN).

These kernels are going to be required to support thousarelsen millions of workstations and
computing devices. The technique of bulk moving tuples it kernel, as used in the York
Kernel 11, is scalable provided the classification of tugtaaes is made less rigid.

In the next section the generalisation of the classificatidnple spaces is considered to enable
multi-layer or N-layer hierarchical kernels which can patally support many geographically dis-
tributed workstations to be created, although before gheshieved there are many other problems
that need to be answered!

7.5 N-layer hierarchical kernel

In the York Kernel Il a tuple space is either a RTS or a LTS. A li§ Stored in a LTSM and a RTS
is stored on the TSS. Therefore the classification of a typhees can be represented by the layer
on which it resides. In the N-layer hierarchical kernel deigpace will not be classified by either
user processes or individual processes within the kernebywhich layer within a hierarchy it
is stored.

The N-layer hierarchical kernel can be considered as a fr&é&®8s, as shown in Figure 7.1.
Each node of the tree represents a TSS, and is referred to &S andde. User processes are
connected to the leaf nodes of the tree. An arc between negessents a communications link,
which could be: a socket between process on the same compugecket over a LAN; a dedi-
cated virtual communication channel in a parallel computiesocket over a WAN; a radio link
to an orbiting satellite; etc.. A user process can commumiagth only one of the TSSs, and the
communications link between the TSS and the user procestkarone of many forms, but the
most likely are either an interface to a set of library roetina socket between processes on the
same computer; a socket over a LAN or a dedicated virtual comication channel in a parallel
computer. Figure 7.1 shows an example of a five layer hiei@atkernel where each of the TSS
nodes has been given a letter to allow easy identificatiothidescriptions that follow later in
the chapter. A user process “chooses” a leaf TSS node to benitact with the kernel.

A TSS is defined in Chapter 5 as: “A Tuple Space Server (TSS)élecatedsystenthat exists
to store and manage RTSs. The TSS could be a single procesdi¢ateéd server) or it can be a set
of processes”. In this chapter the definition of a TSS is chdralightly to: A Tuple Space Server
(TSS) is a dedicateslystenthat exists to store and manage tuple spaces. A TSS is cosdide a
single process, but it could potentially be a set of processe

The work in this chapter assumes that each TSS is a singlegsoddistribution of tuples
throughout a kernel occurs because different tuple spaeest@ed on different TSSs. Using the
analogy used by Douglas[DWR95], if tuple spaces are coreidas layers of a cake then in the
distributed TSS as used in Chapter 5 each TSS process has afdlhe cake. In the hierarchical
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Figure 7.1: An example five layer hierarchical kernel.

kernel described in this chapter each TSS node has a numieyen§ of the cake, but not the
whole cake.

In this kernel the TSS nodes not only manage the tuple spbaedgecide when tuple spaces
should be moved up the tree, and control the retrieval oetifiom tuple spaces higher up the
tree. Each TSS node can only communicate with its parentskittten. The TSS node does not
need to know if it is communicating with another TSS node oserprocess. Each TSS node
knows nothing about the depth or breadth of the tree.

The nearer the root TSS node of the tree that a tuple spaagésisthe more global the tuple
space. Th&JTS will be stored on the root node because all processes capsaitd tuple space.
A user process can only access a tuple space if the TSS nedetiched to is a descendent of the
TSS node on which the tuple space is stored. When a user proages a new tuple space it is
stored on the TSS node to which the user process is connéadore processes become able to
access the tuple space, it moves up the tree.

As already discussed, in the York Kernel Il the movement pligspaces is eager. The moment
atuple space becomes a RTS it is moved on to the TSS. Such rraappannotbe adopted in the
N-layer hierarchical kernel because such an approach vieadtito all tuple spaces either moving
to the root TSS node of the tree or remaining on the TSS nodehahwhey were created. This is
because in order for two unrelated processes to swap a pgie sandle it must be passed through
a tuple space. Consider two user processes using the NHagrarchical kernel. When the two
user processes commence the only tuple space they have maomUTS which must reside
on the root of the tree as it is accessible by all processethe Iprocesses wish to share a tuple
space that one of the processes has created, a tuple musised pathe other process through the
tuple spacdJTS. As soon as a tuple containing a tuple space handle is platedTS the tuple
space will migrate to the same layer as the tuple space inwvthéetuple was placed, which is the
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root TSS node. The migration to the root TSS node occurs Bed#e tuple containing the tuple
space handle is placed in a tuple space which all user pexess access. Therefore, the tuple
space must move to a level at which all user processes cassatc€his is unsatisfactory because
all tuple spaces either reside on the leaf TSS nodes or oth& 6S node creating a two layer
hierarchical kernel, similar to the York Kernel II.

To overcome this the N-layer hierarchical kertelsto be less eager about moving tuple
spaces. Although this leads to an increase in communicét®movement of tuple spaces can
still be achieved dynamically and implicitiloextra information is required from the programmer
and the same program used with the York Kernel Il will be ableige the N-layer hierarchical
kernel without alterations.

7.6 The TSS node structure

Each TSS node is only aware of its parent hode and child naedesgcan only communicate with
these TSS nodes. The TSS nodes receive messages and degwice There are ten possible
messages that a TSS node can receive. Each message type desmibed and the pseudo-
code for the operations a TSS node must perform when the gessaeceived is given. It is
assumed that: the communication system preserves theain&ssages sent from one TSS node
to another TSS node; that a single TSS node can only serveemensage at a time; and it services
the messages from a particular source (either a user procassther TSS node) in the order they
are received. Before the messages are considered the natnends clarified.

The kernel usetagsto help it control the placement of tuples and the flow of mgssavithin
it. There are two types of tags, a message tag and a tuple tsgacEhere is, at most, one message
tag associated with a message. They are used to provideniafion about either the destination
of a message, or the path that the message has followed thtloei@ SS node tree. A tuple space
tag is attached to a tuple space handle, and is used to stormation about where a tuple space
resides within the kernel. Usually, the tag will indicateest the tuple space resides. However,
as the tuple spaces move up the tree the tag becomes out ofrdateler to overcome this each
TSS node maintains a table of all the tuple spaces that pamsgytihit. This ensures that if a tuple
space has moved above the TSS node in the tree, and the TS8amtdiis a tuple space which
contains a tuple which has a field that refers to that tupleesghe tuple space tag can be detected
as incorrect. The possible messages that a TSS node carerapeti out message; in message; rd
message; reply message; request message; packet mesfiagemessage; copy-collect message;
packet down message; c-reply message and a create meskage.afe now described in detail.

out message

This message representsa@ut primitive. The message takes the form;

[OUtidentifiera deStinationtuple space tuple]
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whereout;gensifier 1S a field which allows the TSS node to recognise that the ngesisaan out
messagedestination,ple space 1S the tuple space into which the tuple is to be placed, tapée
is the tuple. The pseudo-code for an out message is showgme-r.2.

if is_local(destinationyp|e space) then
insert(tuple, destinationtyp|e space)

el se

for all tuple spaces handles in tuple do

ts = get_next_ts(tuple)
if is_local(ts) then
create_ts_tag(ts)
end if
if exists_ts_tag(ts) then
add_TSS identifier_to_tag_tail(ts)
end if

end for
pass_nessage( par ent _TSS)
end if

Figure 7.2: The pseudo-code for managing an out messag®witSS node in the N-layer
hierarchical kernel.

The aim of the pseudo code is to give a high level overview of Ad’'SS node processes the
message. The functionality of the functions used in the gs@ode are:

is_local checks to see if the specified tuple space is stored locally.
insertinserts a tuple in the specified tuple space (assuming ibiedtiocally).
getnexttsfinds the next tuple space handle in the tuple.

createts_tag creates an empty tag for the specified tuple space handletaf B already
associated with the tuple space it is cleared.

existsts_tag checks to see if there is an initialised tuple space tag fersgrecified tuple
space handle.

add. TSSidentifierto_tag tail adds the current TSS node name (that the connected TSS
nodes know) to the tail of the specified tuple space.

passmessagsends the updated message to a specified connected TSS node.

When the TSS receives an out message it attempts to seerifseceice it locally. If it cannot,
it checks to see if any tuple space handles are present amdiipdates them appropriately. When
the tuple is inserted into the destination tuple space thediement of any tuple space tag is the
TSS node on which the tuple space was last seen. If the tupteegpg does not exist then the
tuple space must reside higher up the tree.
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in message

This message representsiamprimitive. The message takes the form:

[iNidenti fier» SOUTCeLyple space, template] : message tag

wherein;qensi fier 1S @ field which allows the TSS node to recognise that the nyesiaan in
messagesourceuple space 1S the tuple space from which a tuple is to be fetched, @neplate is

the template to be used for matching the tuple. The message im@ssage tag. The pseudo-code
for an in message is shown in Figure 7.3.

if is_local (sourcetyp|e space) then
tuple = find_match(sourcetyp| e space: tenplate)

for all tuple space handles in tuple do
ts = get_next_ts(tuple)
if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts)then
if get_ts_tag tail(ts) <> get_nsg_tag_tail() then

create_ts_local (ts)
mar k_t s_t upl es_pendi ng(ts)
send_request (get_ts_tag_ tail(ts), ts, renpve_ts_tag_tail (ts))
clear_ts_tag(ts)

el se
ts = renpve_ts_tail _tag(ts)
end if
end if
end for
send_reply(get_msg_tag_ tail (), tuple, remve_nsg_tag tail())

el se
add_TSS identifier_msg_tag()
pass_nessage( parent _TSS)

end if

Figure 7.3: The pseudo-code for managing an in (and rd) rgessihin a TSS node in the N-layer
hierarchical kernel.

The functionality of the new functions used in the pseuddecare:

¢ find matchsearches the specified tuple space for a tuple that matahéentiplate. If a tuple
is not available the function will queue the request untila@ching tuple is inserted within
the tuple space.

¢ in_passtable checks the local table of tuple spaces that have passedythtbe TSS node
to see if the specified tuple space has passed through.

e getts_tag tail returns the tail element of the specified tuple space tag.
e getmsgtail _tagreturns the tail element of the message tag.

e createlocal_tscreates the specified tuple space locally within the TSS.node
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e markts tuplespendingmarks the specified tuple space to indicate that there iskepat
tuples expected.

e sendrequestproduces a request message with the destination TSS ndae fast value (it
must be either the parent or a child of the TSS node), the spgdee which is required as
the second field and the message tag to be attached to thegmessihe third field.

e removets tag tail removes the tail element from a tuple space handle tag.
e clear_ts_tag removes the tag associated with the specified tuple spacdehan

e sendreplysends a reply message to the child TSS node specified, withgdleeand message
tag also specified.

e removemsgtag tail removes the tail element from a message tag.
¢ add TSSidentifiermsgtag adds the TSS node identifier to the tail of the message tag.

When an in message is received by the TSS node it checks t6 theetiuple space resides
locally. If it does then it finds a tuple that matches the teatgol The matched tuple is then checked
for tuple space handles. If a tuples space handle is fourtjfdinhas no tag or is listed in the
passed through table, then the tuple space must resider higha the tree. If the tuple space
resides higher up the tree or locally on the TSS node then thero need to move the tuple space.
If a tuple space handle with a tag which has not moved up tiedsriound, then if the TSS node
that the matched tuple is to be sent to next, and the tail eleofe¢he tuple space tag are the same
then there is no need to move the tuple space to this TSS nalderviise the tuple space must be
moved to this TSS node. In order to achieve this the requirplk tspace is created locally, and
marked as missing tuples. A request is then dispatcheddbtuple space to be moved, using the
tuple space tag as the message tag. The result tuple is gpatahied to the original sourcing TSS
node, using the message tag of the in message as the mespafjthtareply message, so that the
reply message retraces the path of the in message througartied.

If the source tuple space specified within the in messagemttagside locally, the TSS node
identifier is added to the message tag and the message itctisgpdo the parent of the TSS node.
The name of the TSS node is added to the message tag, so thathehsource tuple space is
found the matching tuple can be returned back down the kernel

rd message

This message represents @ primitive. The message takes the form:

(rdidenti fier> SOUTCCLuple space, template] : message tag

whererd;genti fier 1S @ field which allows the TSS node to recognise that the rgessaa rd
messagesourcepple space 1S the tuple space from which a tuple is to be fetched, @ntplate is



154 CHAPTER 7. GENERALISING TUPLE SPACE CLASSIFICATION

the template to be used for matching the tuple. The message in@ssage tag. The pseudo-code
for the rd message is the same as for an in message, excettefiatl matchfunction does not
remove the matching tuple.

reply message

This message is used for passing a result tuple down the trer a/tuple is returned from an in
or rd message. The message takes the form:

[replyidentifier, tuple] : message tag

wherereply;genti rier 1S a field which allows the TSS node to recognise that the ngessaa reply
messageiuple is the tuple which is being returned as a result of an in or rdsage. The message
has a tag which represents the path down the tree that thegeeissto take. The pseudo-code for
a reply message is shown in Figure 7.4.

for all tuple space handles in tuple do
ts = get_next_ts(tuple)
if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
if get_ts_tag_ tail(ts) <> get_msg_tag_tail() then
create_ts_local (ts)
mark_ts_t upl es_pendi ng(ts)
send_request(get _ts_tag tail(ts), ts, remove_ts_tag_ tail(ts))
clear_ts_tag(ts)
el se
ts = remove_ts_tail _tag(ts)
end if
end if
end for
if exists_nsg_tag() and (get_nsg_tag_tail() <> nmy_user_process) then
dest = get_nsg_tag_tail ()
renove_nsg_tail _tag()
pass_nessage(dest)
el se
pass(tupl e, user_process)
end if

Figure 7.4: The pseudo-code for managing a reply messadinvetTSS node in the N-layer
hierarchical kernel.

The functionality of the new functions used in the pseuddecare:

e passsends a tuple to a user process.

e existsmsgtag checks to see if there is an initiated message tag assouidtethe message.

When the TSS node receives the reply message, it checke &éligle space handles in the tuple
to see if any of them need to be moved up the tree in a similaidado the checks performed
when the TSS node receives an in message and finds a tupleatetes. Once any necessary
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tuple space movements have been organised, the TSS nodshteks to see if it is the recipient.
This can occur if either the message tag is empty, implyimgust have sourced it, or if the tail
element is arecognised user process that it manages. i this case the result tuple is dispatched
to the user process. If the reply message is not for one of 8t rfodes user processes, then it
sends the reply message to the next TSS node, and remov@satode from the message tag
which is passed with the message.

request message

This message is a request for a tuple space and is used whple space is to be moved. The
destination TSS node produces the request and it is sent timvnee. The message takes the
form:

[requestidenti fier, SOUTCeruple space] : MeESSage tag

whererequest;qentifier 1S @ field which allows the TSS node to recognise that the rgesisaa
request message anehirceyple space IS the tuple space which is required to be moved up the tree.
The message has a tag which represents the path down thiedtéleet message is to take to reach
the TSS node which has the tuple space. The message mayciotliaTSS node if a TSS node
the message travels through first, contains the tuple spaegpseudo-code for a request message
is shown in Figure 7.5.

if is_local (sourcetyple space) then
tuples = close_tuple_space(sourcetyple space)

for all tuple in tuples
for all tuple spaces handles in tuple do
ts = get_next_ts(tuple)
if is_local (ts) then
create_ts_tag(ts)
end if
if in_pass_table(ts) then
clear_ts_tag(ts)
end if
if exists_ts_tag(ts) then
add_TSS identifier_to_tag tail (ts)
end if
end for
packet _nessage(tupl es)
el se
if exists_nsg_tag() then
dest = get_nsg_tag_tail ()
renove_nsg_tail _tag()
pass_nessage(dest)
end if
end if

Figure 7.5: The pseudo-code for managing a request messtge & TSS node in the N-layer
hierarchical kernel.

The functionality of the new functions used in the pseuddecare:
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e packetmessag@roduces a packet message containing all the specifiedstwpblieh is dis-
patched to the parent TSS node.

e closetuple spacereturns all the tuples that are in the specified tuple spadeaay state
associated with the tuple space, and removes the specifittidpace from the local TSS
node.

When the TSS node receives the request message it checlesitdhserequested tuple space
resides locally. If it does then the tuple space is packemarpacket message, and all the tuples
are checked for tuple space handles. If any exist they arategdppropriately. If there are any
tuples pending from a bulk tuple movement then this inforomefstate) is transfered with the tuple
space. If the tuple space does not reside locally then theagesds passed to another TSS node
by removing the next TSS node’s name from the message tagaasihp the request message to
that TSS node.

packet message

This message is a packet of many tuples used for moving Heuttiplesup the tree structure. The
message takes the form:

[paCketidentifiera deswnationtuple spaces tUpleS]

wherepacket;gentifier 1S @ field which allows the TSS node to recognise that the ngessaa
packet message@gestinationy,yie space 1S the tuple space into which the tuples are to be placed,
andtuples are the tuples that are being moved up the tree. The pseutdofaoa packet message
is shown in Figure 7.6.

if is_local (destinationgyple space) then
insert_tuples(tuples, destinationtup|e Space)
if is_tuple_space then
reset_ts_tupl es_pending(destinationtyp|e space)
end if
el se
for all tuple in tuples do
for all tuple space handles in tuple do
ts = get_next_ts(tuple)
if is_local (ts) then
create_ts_tag(ts)
end if
if exists_ts_tag(ts) then
add_TSS_ identifier_to_tag_tail(ts)
end if
end for
end for
add_ts_pass_t abl e(destinationgyp| e space)
pass_nessage( parent _TSS)
end if

Figure 7.6: The pseudo-code for managing a packet messége @&iTSS in the N-layer hierar-
chical kernel.

The functionality of the new functions used in the pseuddecare:
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insert tuplesinserts a number of tuples into the specified tuple space.

is_tuple_.spacechecks to see if the tuples represent an entire tuple spaeenemt or just a
number of tuples.

resetts tuplespendingalters a tuple space to indicate that the tuples pendingdraived.

add.ts_passtable adds the specified tuple space to the pass through table.

When the TSS node receives the packet message it checksitdrsmedestination tuple space
is local. If it is local, the tuples are inserted. If the tuplepresent a tuple space then the states
of the tuple space is altered to indicate that a reply fromgai@st message has arrived. A tuple
space can potentially be waiting the arrival of more than pmeket of tuples marked as a tuple
space (from different request messages). If the destmdtijple space is not local all the tuples
are checked and any tuple space handles detected are updatedingly. The destination tuple
space is placed in the pass-through table because the pagle kas passed through the TSS node.
This ensures that any references to the tuple space locatibim any tuple space tags stored on
the TSS node can be detected as being no longer valid.

collect message

This message representsal | ect primitive. The message takes the form:

[collect;dentifier, SOUTCCyuple space, BeSEINAtIONyple space, template] : message tag

where collect;qentifier 1S @ field which allows the TSS node to recognise that the rgesisa
a collect messagesourceypie space 1S the source tuple space used in & | ect primitive,
destinationypie space 1S the destination tuple space into which the tuples are tplaeed and
template is the template to be used to match the tuples. The messagenhessage tag to allow
a count of the number of tuples moved to be returned to theprseess. The pseudo-code for a
collect message is shown in Figure 7.7.

The functionality of the new functions used in the pseuddecare:

¢ find_matchingfinds all tuples within a tuple space that match the speciéetptate.

e sendpacketdowncauses a packet down message to be dispatched to the destings
node containing a number of tuples for the specified tupleespand the packet down mes-
sage is given the specified message tag.

e sendcreply dispatches a c-reply message to the specified TSS node ringt#ne value
specified by the second field and the c-reply message is diseméssage tag as specified
by the third field.
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if is_local (sourcetyp|e space) then
tuples = find_matching(sourcet upl e space: tenpl at e)
if is_local(destinationgyp|e space) then
insert_tuples(tuples, destinationiyp|e space)
el se
if not exists_ts_tag(destination; upl e space) t hen
for all tuple in tuples
for all tuple spaces handles in tuple do
ts = get_next_ts(tuple)
if is_local (ts) then
create_ts_tag(ts)
end if
if in_pass_table(ts) then
clear_ts_tag(ts)
end if
if exists_ts_tag(ts) then
add_TSS identifier_to_tag_ tail(ts)
end if

end for
for all
packet _nessage(destinationgyp|e space: tuples)

el se
for all tuple in tuples do

for all tuple space handles in tuple do
ts = get_next_ts(tuple)
if not is_local (ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
if get_ts tag tail(ts) <> get_nsg_tag_ tail() then
create_ts_local (ts)
mar k_ts_tupl es_pendi ng(ts)
send_request (get _ts_tag_tail(ts), ts, renove_ts_tag_tail (ts))
clear_ts_tag(ts)
el se
ts = remove_ts_tail _tag(ts)
end if
end if
end for
end for
dest = get_ts_tag_tail (destination;ype space)
nmsg_tag = renove_ts_tag_tail (destinationg upl e space)
send_packet _down(dest, destinationg upl e space: tupl es, nsg_tag)

end if
end if
send_creply(get_nsg_tag_ tail(), cardinality(tuples), renove_nsg_tag tail())
el se
if is_local(destinationiyp|e space) then

create_ts_tag(destinationgyp|e space)

end if
if exists_ts_tag(destinationtype space) then

add_TSS_identifier_to_tag_tail(destinationype space)
end if
add_TSS_ identifier_to_nmsg_tag()
pass_nessage( parent _TSS)
end if

Figure 7.7: The pseudo-code for managing a collect mességma TSS node in the N-layer

hierarchical kernel.

When the TSS node receives a collect message it checks falsesdurce tuple space is local.
If the source tuple space is local it retrieves all the tughes match the specified template from the
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source tuple space. If the destination tuple space is lbeal the tuples are inserted into it, and a
c-reply message is dispatched to the calling process. Helsénation tuple space does not reside
locally then all the matched tuples are checked for tuplespandles, and updated appropriately
depending on whether the destination tuple space is abdvelaw the current TSS node in the
tree. The position of the destination tuple space can berdieted by checking if the destination
tuple space has a tuple space tag associated with it. If sopleespace resides below the current
TSS node, if not the tuple space resides above the currenh@&sS If the destination tuple space
resides below the current TSS node the tuples are dispatchegacket down message. If the
destination tuple space resides above the TSS node the anglelispatched in a packet message,
which is marked to show that this ot an entire tuple space being moved (the destination tuple
space remains on this TSS node).

copy-collect message

This message represents@py- col | ect primitive. The message takes the form:

[copy-collectgenti fiers SOUTCeyple space, AESLINALION yple spaces template] : message tag

wherecopy-collect;gensi fier 1S @ field which allows the TSS node to recognise that the messa
collect messag@purcepie space IS the source tuple space used intlogpy- col | ect primitive,
destinationgypie space 1S the destination tuple space into which the tuples are tpléeed, and
template is the template to be used to match the tuples. The messagenhessage tag to allow
the counter of the number of tuples copied to be returneddaisier process. The pseudo-code
for the copy-collect message is the same as for a collectagesgxcept that thiind matching
function does not remove the matching tuples from the saungle space.

packet down message

This message is a packet of many tuples and is used for mowvitigpha tuplesdownthe tree
structure. The message takes the form:

[packet-downigenti fier, destinationuple space, tuples]

wherepacket-down;genti rier 1S a field which allows the TSS node to recognise that the ngessa
is a packet down messagesstination,pie space IS the tuple space used into which the tuples are
to be placed anduples are the tuples. The pseudo-code for a packet down messagans ¢
Figure 7.8.

When a TSS node receives a packet down message it checkdfttheagdestination tuple space
resides locally. If it does the TSS node inserts the tupfabeltuple space does not reside locally
all the tuples are checked for tuple space handles. Eacle dfiites is treated as though it was a
matched tuple in a reply message. Therefore, if the packen doessage is to be sent to a child
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if is_local(destinationgyp|e space) then
insert_tuples(tuples,destinationgyple space)
el se
for all tuple in tuples
for all tuple space handles in tuple do
ts = get_next_ts(tuple)
if not is_local (ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
if get_ts_tag tail(ts) <> get_nsg_tag_tail() then
create_ts_|local (ts)
mar k_ts_tupl es_pendi ng(ts)
send_request (get _ts_tag tail(ts), ts, remove_ts_tag tail(ts))
clear_ts_tag(ts)
el se
ts = remove_ts_tail _tag(ts)
end if
end if
end for
end for
if exists_nsg_tag() then
dest = get_nsg_tag_tail()
remove_nsg_tail _tag()
pass_nessage(dest)
end if
end if

Figure 7.8: The pseudo-code for managing a packet down gesgihin a TSS node in the
N-layer hierarchical kernel.

of the TSS node, and there are tuple space handles for tupbesgtored on, or as descendants
of, a different child TSS node, the tuple space is moved ® Ti8S node. Once any necessary
movement of tuple spaces has been initiated the packet da@seage is passed to the next TSS
node as specified by the message tag.

c-reply message

This message is used for returning the count of the numbeptdg either copied or moved by a
copy-col | ect orcol | ect primitive. The message takes the form:

[c-replYidenti fier, cOunt] : message tag

where c-replyidentsifier 1S @ field which allows the TSS node to recognise that the rgesisaa
collect or copy-collect reply messageunt is a count of the number of tuples that were copied
or moved. The message has a tag which represents the pathiueiae that the message is to
take to reach the user process which performea tid ect orcopy- col | ect primitive. The
pseudo-code for a reply message is shown in Figure 7.9.
When the TSS node receives a c-reply message it checks tbtheanessage was intended

for one of its user processes which occurs when either theagedag is empty or the tail element
of the tag represents a user process attached to the TSSlhthdemessage is for a user process
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if exists_msg_tag() and (get_nsg_tag_tail () <> my_user_process) then
dest = get_nsg_tag_tail()
renmove_nsg_tail _tag()
pass_nessage(dest)
el se
pass(integer, user_process)
end if

Figure 7.9: The pseudo-code for managing a c-reply messabmwa TSS node in the N-layer
hierarchical kernel.

attached to the TSS node, then the result focthkel ect orcopy- col | ect primitive is passed

to the user process. If the TSS node does not recognise thaf Hrelmessage tag as a user process
and the message tag is not empty, the TSS node passes thgetbesaSS node specified as the
tail element of the message tag, and removes it from theftdileomessage tag.

create message

This message is used to create a tuple space. The tuple spleakvays be created on the TSS
node to which user process is attached. The message takesrthe

[Create’identifier]

wherecreate;dentifier 1S a field which allows the TSS node to recognise that the ngessaa

create message. The TSS node creates a unique tuple spaedseantection 5.5 for details of

how unique tuple space names could be created), and reharihsubdle to the user process.
These are the only messages that a TSS node can receive oc@rod

7.7 Demonstration of the N-layer hierarchical kernel

In order to show how the concept of a N-layer hierarchicahkkeworks a simple example is used.
The example processes are shown in Program 7.4. It is asshatdtie kernel is configured as a
five layer hierarchy as in Figure 7.1. The user prodesst 1 which is attached to TSS nodg
creates a tuple space and then places a tuple containingtickehof that tuple space intdr'S.
The other user proces®st 2 which is attached to TSS node, then retrieves a tuple containing
a tuple space handle. The Figures 7.10 to 7.13 show the distiages that will occur and the
messages that flow around the kernel.

Figure 7.10 shows the first operation of the prodesst 1 which is the creation of a tuple
space. The tuple spatfS already exists as a shared universal tuple space whichasbiat it
resides on the root node of the tree. The user process coroatemiwith its host TSS nodeto
create a tuple space. The node TS&eates a tuple space which has a unique name for the entire
kernel. For the sake of clarity a token nameT&1l is used for this tuple space in this example.
The tuple space is stored on TSS ndtle
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Program 7.4Example processes for showing the inner workings of theytlaierarchical kernel.
test := func();

local ts result;

ts result := tsc();
out(uts,[ts_result]);

return O;
end func;

test2 := func();

in(uts,|[?ts]]);

return O;
end func;

Figure 7.11 shows the next operation, @unt primitive which places a tuple containing the
tuple space handle farS1 into tuple spac®JTS. TSS nodeL receives the out message. This TSS
node checks to see if the destination tuple sp&afes] resides locally. A2JTS does not reside
locally, the TSS node prepares to pass the message to itst.p&et before doing so it checks
the tuple to see whether there are any tuple space handienpseithin it. For each tuple space
handle the TSS node checks if the tuple space resides l@alyf the tuple space does, the TSS
node creates a tuple space tag containing the TSS nodes nhjran(l associates the tag with the
tuple space handle. If a tuple space tag existed previotu@ycleared. TSS nodé then sends
the out message to its parent, TSS nglle TSS node7 performs the same checks, as though
it had received the out message directly from a user prod&s®=n checking the tuple for tuple
space handles the handle for tuple spagé is found. As the tuple space does not reside locally,
TSS node7 checks for a tuple space tag associated with the tuple sgancheh and if it exists it
adds to the tail of the tag its TSS node name. TSS nBdken sends the message to TSS node
£, its parent. The message continues up the tree, with eacmd@&Sprocessing it, and finally
the message arrives at TSS nodlewhich recognises the tuple spdd€S as a tuple space which
resides locally. The tuple is then inserted in the localdgtbrage data structure. The tuple will at
this point contain the tuple space han@®&l with an associated tag olL. J. E. B. This indicates
the tuple spaces position from the TSS node on which the tsigt®red.

The second user process then performsd therimitive which is shown in Figure 7.12. TSS
nodeD receives an in message requesting a tuple from the tuple §F& It checks to see if
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ts_result := tsc()

Figure 7.10: Creating the tuple space.

the tuple spac&JTS resides locally. As it does not and a reply is needed (@primitive returns

a tuple) it adds a message tag to the message. The messag@ftdigel form. P1. D whereP1
represents the identifier for the user process that TSS Padlges. The addition of thiel to the
message tag is optional. For example, if the TSS node isdiitke the user process then there is

no need to have this field (théP1), as only one process can ever access the TSS node. Whenever
a result message arrives at the TSS node it has to be for thenesess which is linked into the
TSS node.

As with the out message, the in message is passed up the tilee T&S node recognises the
tuple space. This will again be TSS nodewhich recognises that the tuple spadES resides
locally and performs the search ldT'S which finds the tuple that has just been inserted.

Figure 7.13 shows the second stage of the in message, wieensatched tuple is returned
to the blocked user process. TSS nodleexamines the tag attached to the in message, which
will be . P1. D. B. The tail of the tag indicates the child TSS node to which th@et should be
sent. However, before the tuple is dispatched it is checeske if it contains any tuple space
handles. For each tuple space handle in the matched tupEend@&.4 examines the tuple space
tag attached to the tuple space handle. In this example e $pace tag attached to tuple space
TSlis.L.J.E. B.

As there is a tuple space handle with a tag in the tuple, TS8 Aathecks to see if the tuple
space resides locally and if so sets the tag to empty. It dleoks its table of tuple spaces that
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out(uts,fts_resul)]

Figure 7.11: Performing theut primitive.

have passed through, and if the tuple space name resides iatite the tag is also reset to empty.
This is because the tuple space may have moved above the T8Simeethe tuple was inserted.
If the tuple space has moved above the current TSS nadesthave passed through this current
TSS node. In this example it neither resides locally nor lzsed through so the tag is valid. The
TSS nodeA checks the tail elements of message taB1(. D. B) and the tuple space handle tag
(. L. J. E. B). As the tail element of both tags are the saBe TSS noded removes both the tail
elements from both tags and sends a reply message to TS®node

TSS nodeB receives the reply message (denotedabiyp Figure 7.13). TSS nod8 then
performs the same checks for tuple space handles as TSSAddénds the tuple space handle
and checks that it is neither stored locally nor is presettiémpass through table. After not finding
it, TSS nodeBB compares the message tag with the tuple space handle tagnddsage tag is
P1. Dand the tag associated with the tuple space handle.ig). E. TSS nodeB checks the tall
elements of the tags, which do differ indicating that a tigglace has to be moved. TSS ndgle
immediately creates a tuple space locally with the same rzeatiee tuple space in the tuplES1)
which is marked to indicate that a transfer of tuples intes iekpected resulting from a request
message. TSS nodethen creates a request message for a tuple space to be mtnededuest
message contains the tuple space name that is reqiiigdd and the request message is given the
message tag that was the tag associated with the tuple spacg)(with the tail element removed.
The tail element of the tuple space tag identifies to whickdch6S node the message should be



7.7. DEMONSTRATION OF THE N-LAYER HIERARCHICAL KERNEL 165

in(ijts,|[?ts_hand]§;

Figure 7.12: The first stage of performing the primitive.

sent (TSS nodé€). This is represented as messdmig Figure 7.13. TSS nodé receives the
message, checks to see if the tuple space has been movey kmaedlas it does not find the tuple
space, forwards the message to the TSS node specified bytledelament of the message tag, and
removes the tail element from the message tag. TSS Adageeives the message, and finds the
tuple space locally. TSS nodéthen dispatches the entire tuple space to its parent. Themtpar
checks to see if the tuple spaces exist locally, and if nalséme message to its pareBachtuple
moved must be checked for tuple space handles and theseed@taiordingly. The message for
the movement of the tuples is representea by Figure 7.13.

Concurrently with messagdsandc TSS nodes sends the reply message for the user process
to the next TSS node name in the message@dr¢m the reply message denoted dywith the
tail element of the message tag removed. The tuple spacdehiaugdfor the tuple spac€Sl is
removed from within the tuple being sent by TSS ndd&d' SS nodeD receives the reply message.
The only element left in the message tag is the name of thepuseess which requires the result
tuple (P1). TSS nodeD detects this and passes the tuple to the user process. Wheseihprocess
receives the result tuple it becomes unblocked and corgtiexecuting. The tuple space movement
can occur concurrently with the user process computatidrotimer tuple space accesses.
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Figure 7.13: The second stage of performingitheprimitive.

7.8 Conclusions

In this chapter the extension of the classification of tuglaces to allow the development of
hierarchical kernels which provide support for many waakisns which are geographically diverse
has been described. Before such a kernel could be implethdmee are many other questions
which need to be answered (see Chapter 8). In this chaptaaidedeproposal of how tuple space
movement would be used in such a kernel has been given. Tésfidation of a tuple space within
the hierarchical kernel is based on its position within tlegdrchical kernel rather than on how an
individual process perceives it. In the York Kernel 1l the3W was able to classify a tuple space
as either a LTS or RTS. In this kernel a TSS node only knows tfptet space resides locally or
not. If it does not reside locally it must reside on a TSS nddbedr up the kernel.

In order to test the concepts a simple simulator has beetedréaritten in ISETL[BDL89]).
The simulator allows a tree structure for the kernel to bendefi and for the operations to be
performed. It does not support the insertion and removaliples, but allows the insertion and
removal of tuple space handles into and from tuple spacessades can be inserted into TSS node
message queues, simulating user processes sending nsestyeTSS nodes. These messages
can be observed moving through the hierarchical kerneljugpid spaces are moved appropriately.
The aim of the simulator was to allow the basic concepts of Aodwhen tuple space movement
occurs to be examined and checked.



Chapter 8

Conclusions and Future research

8.1 Introduction
In Chapter 1 two issues were raised:

e The sufficiency or otherwise of the original set of Linda gtives (given multiple tuple
spaces), and

¢ how can the bulk primitives afol | ect andcopy- col | ect be implemented efficiently
within anopenLinda implementation?

The aim of this dissertation has been to address these .is$hesanswer to the first is that
there is the need for two extra primitives to be added to Liridwee first of these is theol | ect
primitive which was proposed and justified by Butcher etBAMA94] and was introduced when
the issue was first posed, the second primitive requireckisalpy- col | ect primitive which is
proposed and justified within this dissertation in Chap8asid 4.

The second issue is answered by the development of a Lindamersystem using a novel
technique to track and dynamically move tuples and tupleespaBecause of the close relationship
between theol | ect andcopy- col | ect primitives and multiple tuple spaces the technique
has allowed for the efficient implementation of these bulkjiives. The technique is described in
detail in Chapter 5. Chapter 6 presented the experimergaltseobtained using a Linda run-time
system (York Kernel Il) which uses the techniques. The parémce of the York Kernel Il was
shown to be better than the performance both of an open ingpltion which does not use the
technique and of a closed implementation. In both casesahvirerld” example was used.

Chapter 7 considered the shortcomings of the current imgadation and a proposal for a
more graduated approach to classifying tuple spaces hygbsition within a hierarchical kernel
was presented. The proposed kernel supports many moreagpbically diverse workstations (and
processes) than the York Kernel Il. In the proposed kerrelctist of accessing a tuple space is
linked to its position within the hierarchical kernel. Theposed kernel should provide similar
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performance for LAN based computing compared with the Yoekri€l I with the LTSM enabled,
and support WAN based computing which is something the YoeknKl Il does not. A direct
comparison of the proposed hierarchical kernel and the Kerkel Il is unfair due to the different
intended uses of the kernels, one is to provide support fod bAsed computing (York Kernel I1)
and the other (hierarchical kernel) is to provide suppar¥¥\N based computing.

The work described within this dissertation has shown thatdurrent Linda model is un-
able to perform a particular operation, called a multipkk, efficiently. The addition of the
copy- col | ect primitive has been shown through the use of experimentaltse overcome
the multipler d problem.

The ability of the implementation to track tuple spaces apdets, and then move them around
in single operations, has led to a large performance impnew over traditional implementation
techniques. The idea of moving tuples within a kernel isdgrgonsidered a bad approach by the
Linda community. However, by moving the multiple tuplesuard the system in single operations,
in a sensible and logical fashion the bulk movement of tuptesbeen shown to be advantageous.
This is achieved by ensuring that, for most of the time, tsiglee only moved within the kernel
when the cost of retrieving those tuples is reduced for atleae user process. The intelligent
movement of tuples can and will have to be used in future openets to ensure performance of
the kernels are to be comparable with the performance oédlosplementations.

The demand for geographically distributed computing, dermet computing, is driving the
need for systems that can handle thousands of workstatiodsshare information between them.
The hierarchical kernel proposed in the Chapter 7 is patiytble to support many more work-
stations than traditional kernels. Although not impleneein detailed proposal was presented.

8.2 Future research
The specific research problems that follow on from this diatien are:

¢ A formal semantics for theopy- col | ect primitive.

There are no widely accepted formal semantics of Linda, am$exquently there are no
formal semantics for theopy- col | ect primitive. There is a need for a formal frame-
work and a deeper understanding of the interactionogfy - col | ect primitive with other
primitives.

e The control of tuple space handle passing.

Throughout this dissertation the assumption has beenupbd space handles are passed
through tuple spaces. Is this a fair assumption? If a prosesds to pass a tuple space
handle to another process how can this be performed refidblppen systems the passing
of tuple space handles through a global tuple space (sudi@sis perhaps unacceptable.
Further work is required to answer these questions. Fatigwain from this should it be
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possible to control what the other processes do to that ggalee? Should it be possible to
make tuple spaces read only, write only, etc.?

e A bettereval mechanism.

In the York Kernel Il theeval primitive is mapped on to the spawn function of PVM.
A better eval mechanism could be developed, which uses the conceptsvaf
servers[HKCG91, RA95], but for open implementations rattten closed implemen-
tations.

e The N-layer hierarchical kernel poses many questions wigighire future research.

— TSS node distribution.

Can the TSS nodes in the hierarchical tree be distributeslthe ituple space server in
the York Kernel Il, and indeed is it desirable? The reason dikyributed kernels are
currently used is because the kernels become bottlenduksate unable to process
all the messages that they receive fast enough. The hiarar&ernel presents a new
way of distributing tuples, based on the tuple space in wiliely reside. If the TSS
nodes run on dedicated hardware and have high bandwidttorlet@nnections will
they be able to service all the requests without being Hdigied themselves?

— Caching and migration

If distributed TSS nodes are used within the hierarchicahéethen the movement of
tuples within the processes that combined make a single D88 may provide in-
creased performance. How to cache and migrate tuples afficigithin a TSS node
has not been investigated as it is pointless within the ebmtiea LAN implementa-
tion, but within the context of a WAN implementation it wilbkie to be considered, if
distributed TSS nodes are used.

— Fault tolerance

A hierarchical kernel with several thousand workstatiorsilt require some sort of
fault tolerance, at least for the kernel. Current work ofitfimlerance and Linda[Jeo96,
JS94] provides an insight into how this may be achieved, bamyrguestions still
remain unanswered.

8.2.1 A*“Linda” for distributed computing?

A more fundamental questioning of Linda and its suitabilily“open” systems is perhaps needed,
based on experiences gained from profiling the kernel aneradiions made whilst gathering the
experimental results. Linda can be considered as havingpams; a tuple space model and a set
of access primitives. Many of the desirable features of &iate associated within the tuple space
model. The spatial and temporal separation of processetharasynchronous nature of Linda is
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provided by the tuple space model rather than the acces#ipesto the tuple spaces. Are the
Linda primitives suitable for open implementations for awark of workstations?

To date Linda has primarily been used for small scale digtieith processing. A small number
of workstations connected by a local area network. The clexiatics of Linda are that processes
have asynchronous communication and are both spatiallyesmporally separated so this should
make it ideal for geographically distributed processingnoiitiprogramming.

In Chapter 1 it is stated that:

The only way that two processes can communicate is via a $pplee, and therefore
Linda provides asynchronous communications between ggese

This is correct as between user processes there is asypcdsrgommunication. A process
places a tuple in a tuple space and continues with the usexgsgn. Another process then reads
this tuple, and the two user processes have communicatadrasyously. However, the access to
the tuple space is not asynchronous (except faranprimitive if out ordering is not supported).

The descriptions of the Linda primitives state that the guulynitives that block are then and
r d primitivesif a tuple isnotavailable. This implies that a process which uses the Limitiaifives
should only block if either amn or ar d primitive is performed and the required tuple is not
available. Pragmatically, in any practical Linda systerpr@cess will always “wait” even if the
required tuples are available because of the overheadsiatesbwith finding the matching tuple
and, as far as the process is concermaiting andblockingare indistinguishable. Therefore, most
of the Linda primitives “block” unnecessarily. While theaugprocesses are blocked they cannot
perform computation, so the current Linda primitives pdavéynchronous tuple space access. To
overcome this, Linda should be split into two distinct seasi, the Linda primitives and the tuple
space model. The tuple space model represents the conceparad tuple spaces containing
tuples. The primitives which are used to interface to théetgpace model should be tailored to
requirements of the user and the environment. Thereforedistributed computing, where the
communication times can be large and subsequently the timeprimitives spend “waiting” can
be large, a new set of access primitives should be definel,asuthe BINITA primitives|RW97],
which embody the idea of asynchronous tuple space access.

8.3 Contributions

8.3.1 Multiple r d operation

A multipler d operation is where more than one process wishes to nonidegtly access a subset
of all the tuples in a tuple space which match the same templatChapter 3 an experimental
study of the multipler d operation was presented. The use of the “stream” approatiharuse

of semaphores (lock tuples) were shown to overcome the gmgldlthough not in a satisfactory
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manner. The semaphore approach was a sequential soluttbthestream approach required the
checking of all tuples in a tuples space, regardless of venetiey were actually required.

8.3.2 Proposal for the adoption of thecopy- col | ect primitive

In Chapter 4 a new primitive was proposed, which overcomesrthltipler d problem. Experi-
mental results, using a naive implementation ofdlo@y- col | ect primitive were given which
show that thecopy- col | ect primitive can be used to provide an efficient solution to thd-m
tiple r d problem. Some simple performance models of the differeptagehes to overcoming
the multipler d problem were presented, in order to show that in generabenfermance of the
method using theopy- col | ect primitive will be better.

8.3.3 A novel kernel for Linda

The York Kernel Il is presented which uses dynamic movemérntgles and tuple spaces to
improve performance. The kernel usasplicit information provided within Linda programs, rather
than expecting the user to provide explicit information. apter 6 shows that the performance
of the kernel, when using the multiple tuple spaces, andcthlel ect andcopy- col | ect
primitives to be better than a traditional implementatiéireal life” program was used to show
the performance gain over a commercial closed C-Linda imptaation.

8.3.4 Detailed description of a hierarchical kernel

In Chapter 7 the shortcomings of the York Kernel Il and a diedladescription of the structure of a
generalised hierarchical kernel which overcomes thedagmts was presented. The kernel should
support greater numbers of workstations than current impleations.

8.4 Closing remarks

The work in this dissertation represents the foundatioriufure work on distributed run-time sys-
tems providing shared tuple spaces for inter-process camuation and coordination that support
large numbers of workstations and computing devices.



172 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH



Appendix A

Overview of the Linda implementations

Feature York Kernel | | York Kernel Il | SCA C-Linda
Primitives

in * *
out * *
rd * *

i np * *
rdp * *
col | ect * *

copy-col | ect * *

Platform Meiko / LAN LAN LAN
Multiple tuple spaces * *

Open implementation * *

Closed implementation

Compile-time analysis

Distributed tuple storage * *

Bulk movement of tuples *

Bulk movement of tuple spaces *

out ordering *

Table A.1: A comparison of the three Linda implementatiossduwithin this dissertation.

Multiple tuple spaces

The original Linda model included only one tuple space,rrefitto as the Global Tuple Space
(GTS). More recent implementations allow multiple tuple spadésre information can be found
in Section 2.3.1.
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Open implementation

Implementations which are open allow processes and pragi@jnin and leave the system at will.

Open implementations embody the ideas of persistence evamee a tuple space is created it will
remain within the system. They also allow the notions of terapand spacial separation present
within Linda. A process can communicate with another pre¢psogram) that has not yet been
written before the first process terminates. More infororatian be found in Chapter 5.

Closed implementation

A closed implementation does not allow processes to joinleae freely. In its weakest form
information about all the processes that wish to commuaicatist be present when the system
starts. However, normally with closed implementations pibetime analysis (see next section) is
used, therefore all the source code for the processes wilsthtavcommunicate must be available
at compile/link time. More information can be found in Chexb.

Compile time analysis

Compile time analysis is used by some closed implemen&tiorgain information that allows
more efficient run-time support. In the simplest case thig bwatransforming recognisable coor-
dination structures into more efficient ones. Within theteghof closed implementations compile-
time analysis would be used to calculate the most efficigietdistribution strategies. In many
cases the use of tuples between different processes, cadieed to passing a message directly
between the two processes, rather than using tuple spaceee iMormation can be found in
Chapters 5.

Distributed tuple storage

In a run-time system using distributed tuple storage thietugre not stored on a single server, but
distributed over a number of processors (or workstatiohijs is done because a single server can
become a bottleneck. More information can be found in Chidpte

Bulk movement of tuples and Bulk movement of tuples spaces

This is where the implementation is able to dynamically ardliigently move blocks of tuples
and tuple spaces in order to achieve better performanceislfapproach is not adopted tuples
remain in the same physical position within the run-timetesysfrom insertion by a user process
until they are requested by another user process. Moreniaftion can be found in Chapters 5, 6
and 7.



Appendix B

Source code for experimental results

This appendix contains the C-Linda source code for eacheoéxiperiments one to six presented
in Chapter 6.

B.1 Experiment one

Program B.1 Program used for experiment one.
#i ncl ude <linda. h>

int main(int argc, char *argv[])

{
int Ip, tnp;
start _timer(); [* Initialise the tinmer */
for (Ip =0; Ip < 1000; | p++)
out (UTS, 1p); /* Place 1000 tuples into UTS */
timer_split("Done outs."); /* Note current tine */
for (Ip =0; Ip < 1000; | p++)
in(UTS, ?tnp); /* Retrieve 1000 from UTS */
timer_split("Finished."); /* Note current tinme */
print_times(); [* Print timngs */
return O;
}
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B.2 Experiment two

Program B.2 Program used for experiment two.
#i ncl ude <linda. h>

int main(int argc, char *argv[])
{

int Ip, tnp;
TS ts;

start _timer();

ts = tsc(); /* Create a LTS */
for (Ip =0; Ip < 1000; |p++)
out (ts, Ip); /* Place 1000 tuples into LTS */

timer_split("Done outs.");
for (Ip =0; Ip < 1000; | p++)
in(ts, ?tnmp); /* Retrieve 1000 fromLTS */
timer_split("Finished.");
print_tinmes();
return O;
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B.3 Experiment three

Program B.3 Program used for experiment three.
#i ncl ude <l inda. h>

int main(int argc, char *argv[])
{

int Ip, tnp;
TS ts;

start _timer();

ts = tsc(); /* Create a LTS */
for (Ip =0; Ip < 1000; | p++)
out (ts, Ip);
timer_split("Done outs.");
out (UTS, ts); /* LTS beconmes a RTS */

timer_split("Done out.");

for (Ip =0; Ip < 1000; |p++)
in(ts, ?tnp);

timer_split("Finished.");

print_tines();

return O;
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B.4 Experiment four

Program B.4 Program used for experiment four.
#i ncl ude <linda. h>

int main(int argc, char *argv[])
{

int Ip, tnp;
char *ts;

start _timer();
ts = tsc();
for (Ip =0; Ip < 1000; | p++)

out (ts, Ip);
timer_split("Done outs.");
copycol l ect(ts, UTS, ?int); [* LTS -> RTS */
timer_split("Done copy-collect.");
for (Ip =0; |p < 1000; |p++)

i n(UTS, ?tnp);
timer_split("Finished.");
print_tines();
return O;
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B.5 Experiment five

Program B.5 Program used for experiment five.
#i ncl ude <linda. h>

int main(int argc, char *argv[])
{

int Ip, tnp;
char *ts;

start _timer();
ts = tsc();
for (Ip =0; Ip < 1000; | p++)
out (UTS, Ip);
timer_split("Done outs.");
copycol l ect (UTS, ts, ?tnp); /[* RTS -> LTS */
timer_split("Done copy-collect.");
for (Ip =0; Ip < 1000; | p++)
in(ts, ?tnp);
timer_split("Finished.");
print_tinmes();
return O;
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B.6 Experiment six

Program B.6 Program used for experiment six.
#i ncl ude <linda. h>

int main(int argc, char *argv[])
{

int Ip, tnp;
char *ts;

start _timer();

ts = tsc();
for (Ip =0; Ip < 1000; | p++)
out (ts, Ip);
timer_split("Done outs.");
collect(ts, UTS, ?tnp); /[* LTS -> RTS */
timer_split("Done collect.");
copycol l ect (UTS, ts, ?tnp); [* RTS -> LTS */

timer_split("Done copy-collect.");

for (Ip =0; Ip < 1000; | p++)
in(ts, ?tnmp);

timer_split("Finished.");

print_times();

return O;
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