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Abstract

This thesis investigates techniques for the efficient implementation of the Linda parallel process

coordination model foropen, distributedcomputing systems.

The principal focus of the research is on the use of the bulk movement of tuples within open

systems which, contrary to intuition, can result in significant efficiency gains for a large class of

problems. The emphasis onopensystems — those in which future history of process creation and

deletion cannot be known at compile-time — is due to the current interest in extending the Linda

model to encompass widely distributed computing, as exemplified by the ‘Network Computer’

notion. However, such open systems place severe constraints on the types of optimisation available

relative to closed systems — in particular, the very powerful compile-time analysis techniques

previously used are no longer feasible.

Methods for the construction of efficient Linda kernels are introduced based on a novel method

of dynamicallyclassifying tuple spaces according to their locality, which allows the run-time move-

ment of tuple spaces’ locations within the distributed kernel. An important consequence of the

proposed technique is that it does not require any ‘global’ information — it works solely on in-

formation locally available to each component of the distributed kernel. Equally importantly, the

scheme is entirely transparent to the programmer, and therefore requires no user-supplied ‘hints’

or ‘pragmas’.

The implemented kernel is fully distributed, consequentlytuples within a particular tuple space

may be stored on several physical nodes. The kernel supportsstandard Linda with multiple tuple

spaces, thecollect primitive, and another primitive calledcopy-collect. The justification

for the addition ofcopy-collect is the multiplerd problem which is described in detail in

this dissertation. No acceptable way of overcoming the multiple rd problem without the use of

thecopy-collect primitive has been published.

The performance of the implemented kernel is shown to be significantly better than the perfor-

mance of a kernel that does not use the bulk movement of tuples, and through using a “real-world”

example the kernel is shown to provide, under some circumstances, better performance than the

best commercially available closed implementation which uses compile time analysis.

Finally, an extension of the concept of classifying tuple spaces is presented, which generalises

the concept leading to a detailed proposal for a multi-layerhierarchical kernel, which is more

scalable than current traditional implementations.
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Chapter 1

Introduction

Linda was developed during the mid eighties by David Gelernter[Gel85]. The underlying philoso-

phy is that a complete programming model for parallel programs is created by two separate parts,

a computation model and a coordination model[GC92]. The computation model is provided by

a sequential programming language. The coordination modelis needed to allow the sequential

computation sections to coordinate and communicate. Lindais a coordination language which

supplies a number of operations or primitives that provide the ability for sequential code segments

(processes) written in a sequential programming language to communicate. The Linda primitives

are normally embedded within the language to be used (thehostlanguage).

Linda uses a shared structure, called atuple space1 which is an unordered collection of tuples.

A tuple is an ordered collection of elements, with each element having a value and an associated

type. Processes insert tuples into the tuple spaces, and other processes can then retrieve those

tuples using an associative matching process. The only way that two processes can communicate

is via a tuple space, and Linda provides asynchronous communication between processes. A fuller

description of Linda is given in Chapter 2. Linda provides ashared associative memory, but

Gelernter[Gel85] states that:

Our new technique[Linda] is closest to message passing, but the difference between

the two are as significant as the similarities.

Gelernter argues that Linda and the use of tuple spaces leadsto a new paradigm for process

communication and coordination calledgenerative communication. Generative communication

has two characteristics:communication orthogonalityand free naming. Communication orthog-

onality means that the receiver of a message does not know which process created the message,

and the sender of a message does not know which process will receive the message. Free naming

refers to the concept that any field within a message (tuple) can be used to retrieve a message2.

1Also referred to as abagor multi-set.
2This is discussed in Chapter 2 in greater depth.

1
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Linda has a number of properties which make it attractive as acoordination language. The

property of communication orthogonality means that it supports processes that are spatially sep-

arated and temporally separated3. This means that two processes can communicate even if their

existence does not overlap (temporally separated), and twoprocesses can communicate without

knowing to which process they are communicating, or anything about the address space of the pro-

cess with which they are communicating (spatially separated). Linda is also a very simple coordi-

nation language, requiring only a few primitives to be addedto the host language and it is concep-

tually easy for people to use. These properties have led to the use of Linda in many environments,

for many different and varied tasks. The success of Linda hasled to the development of at least one

commercial version, which in turn has facilitated the use ofLinda by a diverse group of people from

academics to large Wall Street banks. The Linda primitives have been embedded into many dif-

ferent languages, including C[Car87, Nar89, Lei89], ISETL[DRW95, Has94], Gofer[DRRW96],

and Fortran[YFY96]. There are many parallel applications[CG93] that have used Linda, includ-

ing parallel ray tracing[MM91, BKS91], financial modeling[NB92, CCZ93, Cag93], real-time

data fusion[FGK+91], seismic applications[BS92], probabilistic fatigue analysis[SLSC92], and

many others. More recently, as open implementations of Linda have been produced, Linda has

been used in a number of applications in the domain of Computer Supported Cooperative Work

(CSCW), including using Linda to create shared distributedvirtual environments for virtual reality

systems[Ams95].

All implementations of systems that use the Linda primitives, or more generally shared tuple

spaces, fall into one of two categories:

Closed implementationsare ones which require information about all the processes which wish

to communicate via tuple spaces to be available when the system starts; and

Open implementations are ones which allow all processes to join and leave the system at will,

and do not require information about all processes which wish to communicate to be avail-

able when the system starts.

All current implementations that are considered closed implementations have a further require-

ment, that all the source code must be available at compile time. This is because compile time

analysis is used to control many aspects of the run-time system, including where processes are

placed and how tuples are distributed at run-time. Open implementations allow processes to join

and leave freely without requiring them all to be present at compile time. Therefore, the run-time

system has to manage the placement of tuples and processes without the aid of information that

can be calculated at compile time. In open implementations the communicating processes need not

even be written in the same language, and interpreted languages can be used as well as compiled

languages.

3Also referred to as space uncoupling and time uncoupling respectively.
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Closed implementations exist for many different platforms, ranging from high performance

parallel computers (such as the Cray T3D) to networks of heterogenous workstations. Closed

implementations which use compile-time analysis should provide better performance than open

implementations because of their ability to optimise the flow of tuples at run-time using informa-

tion about which processes can consume and generate tuples.The fundamental implementational

approach adopted for both the closed and open implementations has altered little over the years

despite the addition of new features to Linda.

Since its original inception Linda has evolved to include many extensions. One of the main

extensions has been the addition of multiple tuple spaces[Gel89]. The original model contained

a single tuple space, but most modern implementations support the use of multiple tuple spaces.

Multiple tuple spaces are important because they allow processes and groups of processes to hide

information from other processes. When all processes sharea single tuple space the process pro-

ducing the tuples has no control over which processes can usethe tuples (coordination orthog-

onality). This is not a problem in dedicated programs (typically produced using efficient closed

implementations). However, as the use of Linda is considered for more general parallel computing,

distributed programming and Internet computing, the ability to hide tuples from other processes

becomes necessary. The introduction of multiple tuple spaces has led to the question of whether

new primitives need to be added to the model.

In this dissertation the following two issues are addressed:

� The sufficiency or otherwise of the original set of Linda primitives (given multiple tuple

spaces), and

� how can the bulk primitives ofcollect andcopy-collect be implemented efficiently

within anopenLinda implementation?

When multiple tuple spaces were first proposed, only a tuple space creation primitive was

proposed[Gel89]. However, the addition of multiple tuple spaces to Linda has inevitably led to

proposals of new primitives which rely on multiple tuple spaces. Most appear to have been pro-

posed because they are either easy to implement or “appear obvious”.

The addition of new primitives to the Linda model needs careful consideration. There should

be a strong justification for the addition of any new primitives. A number of criteria should be

satisfied; one is to demonstrate that the primitive is required because the current primitives are

unable to perform an operation satisfactorily; and the second is to demonstrate that the proposed

primitive does not simply move the underlying reasons why the operation cannot be satisfactorily

performed into the implementation.

Other work at the University of York has shown the need for a new primitive called

collect[BWA94] which uses multiple tuple spaces. In this dissertation it is proposed that an-

other primitive,copy-collect, be added to Linda. Rather than just assume the need for such

a primitive, an identifiable operation that is difficult to perform using the current Linda primitives
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is described (the multiplerd problem). The proposed primitive is then shown to solve the prob-

lem. Both thecollect primitive and the proposedcopy-collect primitive are calledbulk

primitivesbecause they can manipulate more than one tuple in a single operation.

Having shown that the proposed primitive is required the obvious question is how is the pro-

posed primitive implemented? Due to the relationship betweencollect and the proposed prim-

itive, the techniques outlined for the implementation of the proposed primitive also work for the

collect primitive. Therefore, instead of asking, how is the proposed primitive implemented, the

more appropriate question is, how are both these bulk primitives implemented efficiently?

The implementation techniques used in Linda systems have changed little since the first im-

plementations despite the fact that new primitives (with orwithout justification) and multiple tuple

spaces have been added. Thus, when considering how the bulk primitives are implemented, a new

approach to tuple space implementation is proposed, which usesimplicit information provided by

the bulk primitives, and by the general use of tuple spaces within a Linda program to create an

efficient open implementation supporting the bulk primitives. An implementation for a network of

workstations using the implementation strategy outlined is presented with performance figures to

support the claim that the implementation strategy is better than traditional approaches.

1.1 Thesis Overview

Chapter 2 describes in detail the Linda model and its attributes. It describes some of the im-

portant extensions to Linda, including the addition of multiple tuple spaces and proposed

primitives. A review of related and auxiliary work is also presented.

Chapter 3 investigates themultiplerd problem. A multiple rd is an operation that Linda is un-

able to express acceptably. A small example program is used to show the multiplerd prob-

lem and show how current implementation strategies using the standard Linda primitives to

overcome it are unacceptable.

Chapter 4 describes a new primitive for Linda calledcopy-collect. The purpose of the

primitive is to overcome the multiplerd problem. The example used in Chapter 3 is again

used to show how the new primitive solves the problem.

Chapter 5 investigates how a Linda run-time system can be produced which takes full advantage

of the implicit information that the bulk primitives and multiple tuple spaces provide. A

naive approach to implementing the bulk primitives based ona simple extension of the

traditional implementation techniques is first discussed.A novel approach is then presented

which usesimplicit information to move tuples around the system in advance of their actual

use by a user process. An actual implementation for a networkof workstations is considered.

Chapter 6 the performance of the network implementation is shown using a number of simple

examples and an image processing case study. The performance is shown to be better than
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other implementations including one that uses compile timeanalysis (a closed implementa-

tion).

Chapter 7 is a discussion of how different programming styles can effect the performance of the

new approach, and how the generalisation of the techniques described in Chapter 5 can be

used to overcome these different programming styles and provide a more general run-time

system. A detailed proposal for a more general run-time system is able to cope with more

workstations which could be geographically separated (forWAN computing) is presented.

Chapter 8 presents a number of conclusions about the research described in this dissertation. A

number of future research questions which have arisen from the work described in this thesis

are also presented.

1.2 Contributions

The following contributions have been made in this dissertation:

� experimental study of the limitations of Linda to perform a multiple rd operation;

� the addition of a new primitive to Linda , with informal semantics (which can also be applied

to thecollect primitive) to overcome the limitation; and

� a novel run-time system for Linda, providing a number of innovative features:

– a scheme to manage and perform the dynamic movement of tuplesand tuple spaces

which is achieved by usingimplicit information provided from Linda programs to

achieve better performance; and

– a detailed description of the structure of a generalised hierarchical kernel, which is

scalable beyond the bounds of a local area network of workstations, which utilises

dynamic movement of tuples and tuple spaces.
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Chapter 2

Related and background work

2.1 Introduction

This chapter presents a detailed review of Linda, followed by a description of some of the proposed

(and adopted) extensions to Linda, including the addition of multiple tuple spaces.

A number of important characteristics of Linda are then considered in detail, including the

role of theinp andrdp primitives, out ordering, the role of theeval primitive, and non-

determinism. A detailed description of Linda implementations is given in Chapter 5. An overview

of the properties of the implementations used in this dissertation is given in Appendix A.

2.2 Linda

Linda[Gel85] is a process coordination language[GC92] which is based on the idea ofgenerative

communication. Linda as described here is based on Linda 2[CG89b] with multiple tuple spaces

added. The original Linda proposal[Gel85] (Linda 1) was slightly different, and is described in

Section 2.2.3.

The fundamental objects of all the versions of Linda are tuples, templates and tuple spaces:

Tuple A tuple is an ordered collection of fields. Each field has a typeand a value associated

with it. A field with both a value and a type is known as an actual. The same field can be

replicated many times within a tuple. The tuple:

h10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

i

is a tuple containing four fields with the type of the field shown as a subscript of the value.

The types of the fields are normally restricted by the language into which Linda is embedded.

Tuples are placed into tuple spaces and are removed from tuple spaces using an associative

matching process.

7
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Template A template is similar to a tuple except the fields do not need tohave values associated

with them, but all fields must have a type. A field that has only atype and no value is known

as a formal, and a template is a tuple which can have formals.

The templates:

hj10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

ji

and

hj10

integer

;2

string

;2

integer

; 1:0

float

ji

will match the tupleh10
integer

; “Hello World”
string

; 10

integer

; 1:0

float

i. In this dissertation

the symbol2 in a template is used to indicate that the field is a formal, so it has no value. A

template is sometimes referred to as ananti-tuple[Car87].

Tuple space A tuple space is alogical shared associative memorythat is used to store tuples. A

tuple space implements abag or multi-set, and the same tuple may be present more than

once and there is no ordering of the tuples in a tuple space. Originally, Linda 2 had only

a single tuple space known as theglobal tuple space(GTS), however in the proposal for

Linda 3[Gel89] multiple tuple spaces were introduced. Multiple tuple spaces are now widely

adopted, although in many different forms (see Section 2.3.1).

2.2.1 The Linda primitives

Gelernter[GC92] states that any parallel program can be divided into two sections: communica-

tion and computation. The communication section is provided by a coordination language, such

as Linda and the computation section is provided by ahostprogramming language into which the

Linda primitives are embedded. There have been many different languages from several program-

ming paradigms which have been used as host languages, including:

� C[Car87, Nar89, Lei89],

� C++,[CCH91],

� Pascal[YFY96],

� Fortran[YFY96],

� Lisp[YFY96],

� Prolog[Cia91, BW91],

� Eiffel[Jel90],
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� Scheme[Jag91],

� ISETL[DRW95, Has94], and

� Gofer[DRRW96].

This is not an exhaustive list, and there are many other embeddings using both the languages

listed and languages which are not listed.

Processes are written using the host language. Different host languages manage processes in

different ways. In some implementations processes are mapped onto functions and in others they

are mapped onto separate executable files. Regardless of howa process is created within the host

language the different processes can only communicate witheach other through tuple spaces using

tuples and the Linda primitives. The basic Linda primitives(which are embedded into the host

language) are:

out(ts, tuple) Theout primitive places a tuple (tuple) into the specified tuple space (ts).

in(ts, template) Thein primitive retrieves some tuple from the tuple space that matches the tem-

plate. If there is no tuple that matches the template then theprimitive blocks until a tuple

that does match the template is inserted into the tuple space. The matched tuple is removed

from the tuple space and returned to the user process.

rd( ts, template) Therd primitive is similar to thein primitive, except the matched tuple which

is returned to the user process isnot removed from the tuple space. As with thein primitive

when there is no matching tuple available therd primitive blocks until a matching tuple is

inserted into the tuple space.

eval(ts, active tuple) The eval primitive is included within Linda as a means of spawning pro-

cesses. Theeval primitive creates a special tuple called an active tuple, which is a tuple

which contains one or more fields containing functions that require evaluation in order to

provide a value. The functions are evaluated concurrently with the process which performed

theeval primitive. When a field’s function has been evaluated the result is inserted into the

active tuple. When all the fields in the active tuple that needevaluating have been evaluated

the tuple becomes a passive tuple (like any tuple inserted using theout primitive), which

can be accessed like any other tuple (see Section 5.3.2).

It should be noted that any primitive which blocks will causethe process which performs the

primitive to block.

There are two more primitives which have been proposed by Carriero[Car87]. These are the

inp andrdp primitives, which are non-blocking versions of thein andrd primitives respectively.

If a tuple is not available then instead of blocking, the primitive returns a value to indicate this.
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These primitives were not in the original Linda proposal[Gel85], and are often not supported for a

variety of reasons (see Section 2.4).

There are currently no widely accepted formal semantics of the Linda primitives, although

a number of proposals have been produced[But90, Jen93, CJY95, COW96, BJ96]. Most of the

proposals deal with providing a formal semantics for a particular part of Linda. However, with

Linda constantly evolving the production of widely accepted semantics is difficult.

2.2.2 Tuple matching

Templates are matched to tuples using an associative match.A tuple T and a templateM match

when:
 

](T ) = ](M)

!

^

 

8j 2 f1::](T )g :

�

t

j

(M) = t

j

(T )

�

^

�

(v

j

(M) = v

j

(T )) _ (v

j

(M) = 2)

�

!

is true, wheret
j

(I) is a function which returns the type of field numberj of tuple or templateI,

v

j

(I) is a function which returns the value of field numberj of tuple or templateI, and](I) is

the cardinality of tuple or templateI. So, for a match to occur the number of fields in the template

must be equal to the number of fields in the tuple, for every field in the tuple the type of the field

must match the corresponding field type in the template, and either the value of the fields must be

the same, or the template field must be a formal (have no value).

2.2.3 Linda 1

When Gelernter[Gel85] first described Linda, it was in a slightly different form from the Linda that

has been described so far in this chapter. The primitives that were proposed in Linda 1 were the

in, rd andout primitives. There were noeval, inp or rdp primitives. The other difference

was that tuples and templates used the concept of an identifier, which was a field attached to the

front of the tuple with a special type and was used as an identification tag. This was necessary

because atuplewas allowed to contain formals. Matching on formals in tuples was not allowed,

so it was potentially possible to insert tuples that could not be matched, unless at least one field

was guaranteed to be an actual within every tuple, hence the addition of a identification tag which

was always an actual.

The ability to use all actuals present, rather than just the identification tag, within a template

in the matching process was calledstructured naming. The properties thatstructured naming

provides are the basis of thefree namingproperty required forgenerative communication, which

was introduced in Chapter 1.

By the time the first implementations were produced by Carriero[Car87] Linda had become

Linda 2. The concept of being able to place tuples with formals into the tuple space had dis-

appeared, which meant there was no need for identifier tags, and subsequently these too were

removed.
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2.3 Linda extensions

Due to the nature of Linda there have been a number of proposals for alterations and additions

to it. This has involved the creation of many new coordination languages based on the concepts

of Linda, including Bauhaus Linda[CGZ95], Piranha[GJK93], MTS-Linda[Jen93], Laura[Tol95a]

and Melinda[Hup90]. There have also been numerous implementations of Linda which provide

extra primitives or features, including a special purpose Linda machine[KACG87, ACGK88]. The

major suggestions of relevance and interest are now reviewed.

2.3.1 Multiple tuple spaces

The concept of multiple tuple spaces was introduced by Gelernter as part of Linda 3[Gel89].

Linda 3 added a typets and a new primitivetsc to Linda 2 to allow for multiple tuple spaces.

The idea of adding multiple tuple spaces has led to many different proposals of how multiple tuple

spaces could be incorporated within Linda[Hup90, Jen93], and many implementations include

multiple tuple spaces in one form or another[DRW95, RDW95, Has94, NS93, Jeo96, Kie96].

Multiple tuple spaces were introduced as an effective way ofhiding information. Information

within a tuple space canonlybe accessed by those processes that know about the tuple space. As the

use of Linda has changed to incorporate different styles of distributed computing the need to hide

tuples has become increasingly important to ensure that other processes do not either maliciously

or accidently tamper with the tuples that other processes are using.

When multiple tuple spaces are added to Linda there are two important questions: are the tuple

spaces first class objects, and what is the relationship between the tuple spaces?

Tuple spaces as first class objects

Making tuple spaces first class objects has been proposed by anumber of researchers, including

Gelernter[Gel89], Hupfer[Hup90] and Jensen[Jen93]. However, few implementations support tu-

ple spaces as first class objects, although the MTS-Linda[NS94] implementation does and is based

on the work of Jensen[Jen93].

In general tuple spaces have not been widely adopted as first class objects[Ass96, DRW95,

RDW95, Has94, Jeo96, Kie96]. This is because the ability to manipulate entire tuple spaces as

first class objects raises many awkward questions, which have yet to be answered satisfactorily.

For example, what happens if a tuple space is removed by one process, whilst another process is

blocked on anin primitive waiting for a tuple to appear in that tuple space? What happens if a

process wishes to perform a tuple operation on a removed tuple space? Can the removed tuple

space be manipulated within the user process, and if so how? Gelernter[Gel89] introduces the idea

of freezing tuple spaces, and then converting them to other data structures within the user process,

which would imply new primitives would be added to enable theconversion to take place.



12 CHAPTER 2. RELATED AND BACKGROUND WORK

The relationship between the tuple spaces

In some proposals tuple spaces are hierarchical[Hup90, Gel89], in others they are flat structures

and in others a hybrid approach is used[NS94].

If the tuple spaces are first class, then this implies that there will probably be some relationship

between tuple spaces, because tuple spaces will subsequently be placeable inside tuples, and will

be inserted into other tuple spaces.

Melinda[Hup90] supports only a hierarchical system, wheretuple spaces are created within

other tuple spaces. In Melinda a tuple space is named by the user, creating the possibility that

many tuple spaces can be called the same thing. If this occurs, and anout primitive is performed

where more than one tuple space could be the destination tuple space, then one is chosen non-

deterministically. This has the disadvantage that a process can no longer ensure that tuples it is

producing are being received by the intended process, as there is the potential that two unrelated

processes both create a tuple space with the same name, and each process has no control over which

of the tuple spaces the tuples are being placed in. This can also lead to unintentional deadlocks. For

example, consider a process that creates a tuple space, places a tuple into the tuple space, and then

retrieves that tuple. If the tuple space it creates is not unique then the process can not guarantee

retrieving the tuple it inserted, and could therefore deadlock.

MTS-Linda[NS94] supports hierarchical tuple spaces and flat tuple spaces. The hierarchi-

cal tuple spaces are created by allowing processes to createtuple spaces which are considered

as belonging to a process. The process can spawn a process within these tuple spaces, and the

spawned process sees the tuple space as its parent tuple space. A tuple space which is local to a

process can beduplicatedin the parent tuple space, by placing a tuple within the parent contain-

ing the tuple space. The flat tuple spaces that MTS-Linda supports are similar to the flat tuple

spaces used by Douglas et al.[DRW95, RDW95], SCA Paradise[Ass96], ProSet-Linda[Has94],

and PLinda[Jeo96]. Within all these approaches a tuple space is created. A tuple space handle is

returned to the process which created the tuple space. The tuple spacehandlecan then be passed

to other processes in tuples, and if a process has a tuple space handle it is able to access the tuple

space. The tuple spaces are not first class objects, just the tuple space handles. Therefore, if two

tuple space handles are checked for equality, this checks that they refer to the same tuple space,

but does not compare thecontentsof the tuple spaces to which the handles refer. Some of the

implementations support the concept of a parent tuple spacefor a process. This can be seen as the

tuple space into which the active tuple which contains the function (process) is placed. If a flat

structure of tuple spaces is being used it is common to include one (or more) global tuple spaces.

Tuple spaces used within this dissertation

The work presented within this dissertation requires multiple tuple spaces, but is generally in-

dependent of the way in which multiple tuple spaces are related. A flat tuple space structure is

assumed, where a tuple space is unrelated to any other tuple space. If two processes are to share
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a tuple space, then the tuple space handle is passed between the processes through another shared

tuple space, or by one process passing the tuple space handleas an argument to the other process

when it is spawned. Tuple spaces are assumed not to be first class objects and tuple spacescannot

be copied into local data structures within a user processes, the tuple space handles can be seen

as pointers to a tuple space. Processes do not have a parent tuple space, but there is a single tuple

space which all processesalwayshave access to, called theUniversal Tuple Space(UTS). It is

assumed that tuple spaces are unique, and therefore, any tuple space handle can only refer to a

single tuple space at any one time.

A flat tuple space structure is used because of the issues thatwere raised in the last two sections,

concerning tuple spaces as first class objects and hierarchical tuple spaces.

In order to allow the creation of tuple spaces a primitive is added to the basic Linda primitives

(as presented in Section 2.2.1), and a type for tuple space handles is also added.

2.3.2 New primitives

New primitives are normally proposed either to provide better performance or extend the func-

tionality of Linda. An overview is now presented of some of the primitives which have been

proposed. They are divided into either primitives which provide more functionality or primitives

for performance.

Primitives to provide more functionality

Primitives are often added to Linda when multiple tuple spaces have been incorporated, because

the addition of multiple tuple spaces introduces the possibility of new coordination constructs. All

the primitives described in this section could be classifiedas bulk primitives which manipulate

more than one tuple at a time.

The first two primitives were added to the standard Linda primitives in MTS-Linda[Jen93,

NS93, NS94]. The original description of MTS-Linda[Jen93]does not include either of these

primitives, but the implementation[NS93, NS94] of MTS-Linda includes both of them.

� copy contents(ts1, ts2) This primitive copies allthe tuples present in tuple spacets1 to

tuple spacets2.

� move contents(ts1, ts2) This primitive moves allthe tuples present in tuple spacets1 to

tuple spacets2.

The next primitive was proposed at the University of York by Butcher et al.[BWA94] and was

first implemented in the York Kernel I by Douglas et al.[DRW95]. The primitive is seen by the

authors as a replacement for and generalisation of, both theinp andrdp primitives.

� n = collect(ts1, ts2, template) This primitive movesall the tuples that match the template

from tuple spacets1 to tuple spacets2, and a count of the number of tuples moved
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is returned. This primitive is similar to themove contents primitive except it uses a

template to match the tuples and returns a count of the numberof tuples moved. A more

detailed discussion of thecollect primitive is presented in Chapter 4.

The next primitives are all similar in function, and were proposed by Anderson et al.[AS91].

However, they have never been described as implemented in the published literature. Simi-

lar primitives have been considered by researchers at Yale University, which they refer to as

rd*/in*[Car95] andin-loops/rd-loops[Lei89].

� rd( template)all(function)

� in(template)all(function)

� rdp( template)all(function)

� inp(template)all(function)

These primitives iterate through all the tuples that match the template, and apply the func-

tion to each matched tuple. Whether the tuples are removed ornot depends on whether

the in()all or rd()all primitive is being used. The example given in Anderson et

al.[AS91] is:

/* sum the count field of all tuples matching

the tuple pattern */

int i, sum =0;

..

inp("example 8", "count", ?i)all {sum += i;};

which iterates through all the tuples which match the template hj“example 8”
string

;

“count”
string

; 2

integer

ji, summing the third field. When the primitive terminates the

variablesum will contain the result.

The next two primitives are suggested as part of Objective Linda[Kie96]. Although not directly

using multiple tuple spaces, the primitives can return morethan one tuple in a single operation,

hence making it a bulk primitive.

� rd(min, max, template, timeout)

� in(min, max, template, timeout)

These primitives are extensions of the traditional Lindain andrd primitives. The idea is

to extend the primitives to deal with multiple tuples, so instead of returning a single tuple a
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multi-set (tuple space) of tuples is returned. The fieldsmin andmax refer to the minimum

and maximum number of tuples the primitive is to return, therefore effectively providing a

way to bound the number of tuples matched. A traditionalin primitive would be emulated

by setting both the fields to one. Thetimeout field allows the time that the primitive

can block to be controlled. If this field is zero, and themin andmax fields are set to

one a traditionalinp primitive is emulated. The addition of timeouts to a primitive is not

necessarily desirable as it is unclear as to exactlywhat is being timed[RW97].

The primitives described in this section are of particular interest because of their potential for

overcoming the multiplerd problem introduced in Chapter 3. A description of the differences

between these primitives and the proposed primitive in Chapter 4 is given in Section 4.6.

Primitives for performance

These primitives have been proposed to increase the performance of Linda systems. In general,

it is possible to emulate them using the current Linda primitives. The motivation behind most of

these primitives is to allow implementations that do not usecompile-time analysis to use some of

the optimisation techniques achievable when compile-timeanalysis is used.

� wr

The motivation for this primitive comes from the use of tuplereplication in run-time systems

to achieve faster tuple access times, and is proposed by Wells et al.[WC95]. A Linda run-

time system must ensure that if a single tuple is placed in a tuple space, that tuple can only be

destructively removedonce. In implementations using compile-time analysis it ispossible to

check if a tuple is only non-destructively read (in other words only therd primitive is used to

access the tuple). If it is known that the tuple is only non-destructively read then the tuple can

be replicated as many times as the implementation wants, because the control of replicated

tuples is simple. This optimisation is only normally used inclosed implementations as all

the processes which communicate need to be present at compile time to determine which

processes can access the tuple and how they access it. In openimplementations the costs of

managing replication of tuples usually outweighs the advantages, because of the arbitration

needed to ensure only one process can destructively remove atuple[Faa91].

Wells et al.[WC95] suggest the addition of thewr primitive (or write primitive) which in-

dicates that the tuple will bemainlynon-destructively read. Semantically, anout primitive

and awr primitive are the same, both insert a tuple into a tuple space. The idea is that an

out/in pair is cheap and awr/rd pair is cheap. However, anout/rd is more expensive

than awr/rd and awr/in is more expensive than anout/in. Thewr primitive provides

a hint to the run-time system that the replication of a tuple is acceptable. If a tuple can be

replicated then possibly every store of tuples can contain the tuple. Hence, the finding of the
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tuple within a run-time system is cheapprovidedthe tuple does not need to be removed. If

the tuple has to be removed then there is significant control required, to ensure that a repli-

cated tuple is not destructively removed more than once. Hence awr/rd pair is cheap, but

awr/in pair is expensive. The onus is then placed upon the programmer to decide which

pairings to use to obtain the best performance. It should be noted that if the run-time system

decides not replicate the tuple (and treat the operation as an out primitive) the semantics

of the program will not be altered. Also, whenever anout primitive is used awr primitive

could be used and the semantics of the program will not be altered.

� add

This primitive was proposed by Carreira et al.[CSS94], and it enables a field within a tuple

to be updated in a single action, without the need to remove a tuple, update it and return it to

the tuple space. The motivation for this primitive is the observation that a tuple is often used

as a shared global counter. In order for a process to increment (or decrement) the global

counter, it has to destructively remove the tuple using anin primitive and then replace the

tuple with the updated counter value using anout primitive. Theadd primitive removes

the need for the tuple to be returned to the process by allowing a value to be specified which

is added to the appropriate field in the tuple. However, Carriero et al.[CG90b] states:

Optimising idioms.

Tuple space operations are often used in standard patterns which the pre-

compiler can detect and the partial-evaluator support withoptimised code. One

important pattern is the following:

in(fields);

out(f(fields));

That is: remove a tuple, change some of its fields and then re-insert it. A simple

case is the atomic update of a counter:

in(CounterName, ?value);

out(CouterName, ++value);

The premiss is that open implementations cannot perform compile-time analysis. However,

the compile-time analysis required to detect this doesnot require all user processes to be

present at compile time, or to be present when the run-time system starts executing. This

means that the optimisation using compile-time analysis could be incorporated within open

implementations effectively. The need to add explicit information to Linda programs by

Linda programmers should be avoided unless absolutely necessary.

� update
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This primitive was also proposed by Carreira et al.[CSS94] and is similar to theadd prim-

itive. The principle of this primitive is similar to theadd primitive except a new tuple to

replace the old one is specified rather than an increment for aparticular field.

The semantics of theupdate primitive are unclear, but as with theadd primitive the same

sort of compile-time analysis should make the optimisations that are suggested by Carriero

et al.[CG90b] applicable to this primitive.

In Chapter 5 a deeper discussion about the addition of explicit information to Linda programs

is presented.

Miscellaneous primitives

There are some proposals for primitives that are not really classifiable as either performance prim-

itives or primitives which provide extra functionality.

� cancelThis primitive was proposed by Banville[Ban96], and enables blockedin andrd

primitives to be “unblocked” by another process. The perceived need that justifies the ad-

dition of this primitive is for a process blocked on anin or rd primitive to be able to be

“unblocked” by another process. Therefore, if a process performs anin primitive using the

templatehj“work”
string

;2

integer

ji another process can perform acancel primitive using

the templatehj“work”
string

;2

integer

ji and the process blocked will become unblocked. The

in primitive returns a value to indicate that acancel primitive caused thein primitive to

become unblocked, not a matching tuple.

The need for such a primitive appears unclear. Most Linda programmers would use an

out primitive to place a tuple in the tuple space which matches the template. This is the

basis of “poison pill” programming style that is in common use in Linda programming (see

Section 4.7). The process that reads the tuple checks to see if the tuple contains a “poison

pill” and if so acts accordingly. Thecancel primitive seems to add nothing, except to be a

higher level construct compared to the “poison pill”. The process performing thecancel

primitive has to be aware of the template that the blocked primitive is using, and therefore

should be just as able to generate a tuple to match it as a template. After the use of the

cancel primitive the process which becomes unblocked has to check to see if a valid tuple

was found or if acancel primitive unblocked it. It could just as well check to see if

the “poison pill” was present within the tuple. The only argument for using thecancel

primitive is that the process which consumes the tuple containing the “poison pill” may have

to replace it in the tuple space, in case other processes are also blocked waiting for a similar

tuple, and with acancel primitive this does not have to be done.

The last three primitives (add, update andcancel) are examples of primitives that have

been proposed which are potentially unnecessary. It is important that the addition of new primitives

to Linda are added because there is a solid and sound justification for their addition.
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Within this dissertation thecollect primitive is used as one of the primitives in conjunction

with the primitives described in Section 2.2.1. In general theinp andrdp primitives are not used,

because thecollect primitive and the primitive proposed in Chapter 4 replace (and generalise)

theinp andrdp primitives.

2.3.3 Piranha and Bauhaus Linda

Two variants of Linda are of particular interest, Piranha and Bauhaus Linda, because they pro-

vide more than simply extra primitives and they support new styles of programming based on the

concept of shared tuple spaces. Both were developed at Yale University by Gelernter and Carriero.

Piranha

Piranha[GJK93, CGKW93, GK92, CFGK94, CFG93] is a variationof Linda, which uses the same

basic primitives as Linda, except theeval primitive has been removed. The concept behind

Piranha is that during any period the processors (or workstations on a LAN) which are not being

used change dynamically. When a user starts using a node he does not wish his node to be slowed

by other people’s computationally intensive tasks. Therefore, processes are made to migrate from

one node to another.

Piranha is designed to support this type of computing, and supports only a master-worker style

of parallelism. The user specifies a function that is the worker, and a function that is the master.

The user has no control over how many worker processes are executing as the run-time system

decides this based on the resources (nodes) available.

When a node becomes busy the worker is terminated. This involves executing a “retreat”

function within the worker process and then killing the process. By using the retreat function

within a worker process the user is able to ensure that when the worker process terminates nothing

is lost, which is normally achieved by placing the current tuple back into the tuple space. It is

possible that all the worker processes can be terminated if all the nodes are busy, and then restarted

as nodes become available. Piranha does not actually migrate worker processes but rather kills

them and then restarts them from the start of the worker function on another node.

Piranha has been successfully used, and is now a commercial product from SCA, who also

produce the commercial SCA C-Linda compiler.

Bauhaus Linda

Bauhaus Linda[CGZ95] is in an attempt to address the needs ofcollaborative working. It is specif-

ically designed for open computing, where agents (processes) will join and leave at will, leaving

information within a system to be retrieved later. Bauhaus Linda removes the distinction between

tuples and tuple spaces, by introducing the concept of nested multi-sets which are first class ob-

jects. It also removes the distinction between tuples and templates, using actuals given within a



2.4. THEINP AND RDP PRIMITIVES: THE NEED FOROUT ORDERING 19

multi-set as the matching criteria rather than a mixture of actuals and formals as in Linda. As

Bauhaus Linda uses only multi-sets the ordering of elementswithin a multi-set is arbitrary. It also

removes the distinctions between passive tuples and activetuples, by making processes first class,

and allowing them to move within the multi-set structure.

The initial work appears interesting, and represents the most radical move away from Linda

that still uses the same basic access primitives and concepts (shared tuples). However, there are a

number of issues that need considering. For example, they currently propose the addition to the

host language of operations to manipulate multi-sets whichhave been removed from the shared

multi-set structure. This creates a distinction in the access and use of multi-sets stored locally and

those which are shared, and also makes the use of Bauhaus Linda more complex. It also appears

simple for processes to remove another process by matching parts of the multi-set in which the

process resides. This may not be desirable in real life systems and access controls on nested

multi-sets may be required.

2.3.4 The Linda machine

The Linda machine[KACG87, ACGK88] is a parallel computer that was designed to support Linda

using specialist dedicated hardware. The machine was made up of a set ofLinda nodes, with

each node containing a general purpose processor (Motorola68020 processor), general purpose

memory, tuple storage memory and a Linda co-processor[KACG88]. The tuples are distributed

across the Linda nodes, using an intermediate uniform distribution (see Chapter 5, and Figure 5.1).

The Linda nodes are arranged as a two-dimensional mesh. Bus contention is used to control

replication of tuples within the Linda nodes, providing a neat solution to managing replicated

tuples when using an intermediate uniform distribution.

Predicted results indicated that the performance of the machine would be good, and it was

scalable to at least 1024 nodes. Unfortunately, the Linda machine was never completed.

2.3.5 Closing comments

There are many other proposals which have been made but are not related to the work described in

this dissertation. These include the proposals for the addition of timeouts on the primitives[Ban96,

Kie96], and the extension of the template tuple matching process[Ban96, AS91].

2.4 Theinp and rdp primitives: the need for out ordering

As mentioned in the Section 2.2.1, the two primitivesinp and rdp were proposed by

Carriero[Car87] and incorporated into the first implementations of Linda. However, theinp

andrdp primitives are not widely supported in other Linda implementations. There are a number

of perceived “semantic problems” associated with these primitives which are used as the primary

reason for their removal[Lei89], replacement[BWA94] or, when implemented, behaviour which
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can potentially lead to unintentional program behaviour[Ass95]. The problems associated with

these primitives can be considered asglobal synchronisationandout ordering. Both these mean

that the information the primitives return need not necessarily be useful.

2.4.1 Global synchronisation

Theglobal synchronisationproblem is that in order to determine the result of ardp primitive, a

global synchronisation is required[Lei89, BWA94], which is expensive, and should be avoided if

possible. Leichter [Lei89] states that:

The non-blocking operations[inp and rdp primitives], on the other hand, refer to the

complete spatial extent of tuple space:inp must return true if there is a matching

tuple anywhere in the tuple space, and it must return false ifthere is no matching

tuple. These are statements about a slice taken across all tuple space at a given time.

To state them at all requires a notion of simultaneous actionacross tuple space; but

given an ability to specify a moment in time, the correctnessof inp returning false

can be falsified by the observation of a matching tuple at thatmoment, anywhere in

tuple space.

The statement that:the correctness ofinp returning false can be falsified by the observation

of a matching tuple at that moment, anywhere in tuple space; is important. If a user process cannot

know that there is a tuple that could match the template used for theinp primitive, then theinp

primitive result is correct. The crux of the problem is, if a tuple space is distributed (over a number

of processors), not all sections of the tuple space can be searchedat the same timeunless there

is an expensive operation to lock the entire tuple space, perform the search, and then unlock the

tuple space, which requires global synchronisation. Why should all sections of the tuple space be

searched at the same time? Because one section of the tuple space can be searched, and then a tuple

inserted into that section of the tuple space which matches the template. After this has occurred

the search of another section of the tuple space is performed, and no matching tuple is found. The

inp primitive therefore returns false, when in fact during its “search time” a matching tuple was

inserted. However, this is not a problem due to the asynchronous nature of Linda. A process does

not know what another process has done, unless the processesexplicitly synchronise. Therefore,

if a process performs anout primitive placing the tupleh10
integer

i into a tuple space, and another

process performs aninp primitive using the templatehj10
integer

ji, the second process doesnot

know that the tuple exists, and therefore cannot predict theresult and so cannot falsify the result.

Hence, theinp primitive could return either true or false, and this would be perceived by the

process as correct. This would still be correct if the tuple was inserted before theinp primitive

commenced and theinp primitive returned false. However, Leichter notes this canbe falsified by

the process ifexplicit synchronisation between the processesoccurs. This leads to the need forout

ordering. If out ordering is used there is no need to perform a global synchronisation.
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2.4.2 out ordering

The example processes shown in Program 2.1 (which is based onthe example given by

Leichter[Lei89]) demonstrate how a process can falsify theresult of aninp primitive. Let

us assume that the tuple spacets1 is only accessible from the processes shown. Process one

places two tuples into the tuple spacets1. Process two performs anin primitive on one of the

tuples and then performs aninp primitive on the other. If theinp primitive returns false, the user

process can falsify the result because it knows that anotherprocess has placed a matching tuple

into the tuple space by virtue of the explicit synchronisation. Leichter argues that it is possible

(and correct) for theinp primitive to return false in this situation. This assumption effectively

makes theinp andrdp primitives useless in practice as they can, under such an assumption,

always return false regardless of whether a tuple exists. A number of implementations support the

inp andrdp primitives which, given the example program in Program 2.1,would allow theinp

primitive to return false, most notably SCA C-Linda[Ass95].

Program 2.1Out ordering example.

Process one Process two

out(ts1, [10]); in(ts1, |["DONE"]|);

out(ts1, ["DONE"])); x := inp(ts1, |[?int]|);

Leichter argues that the reason why theinp primitive can return false is because the length

of time a primitive takes is unknown. The basic argument is that the time taken to send messages

to places where tuples are stored is not necessarily equal from all processes. Therefore the tuple

which is inserted first could be travelling through the communication system whilst the other

tuple is inserted, and thein primitive and theinp primitive performed. However, this perceived

problem is an issue of implementation. Leichter also notes that the problem is further compounded

because explicit synchronisation that allows a process to know that a tuple exists can occur through

other processes.

The solution to the problem is to useout ordering[DWR95, Hup90], which ensures that asingle

process does not complete a subsequentout to a tuple space until the previous tuple the process

inserted is present and visible within the tuple space to other processes. It is not guaranteeingout

ordering across several processes – processes can independently insert tuples into a tuple space.

The ordering is only guaranteed for a single process. This isperfectly achievable using an acknowl-

edgement message between the run-time system which stores the tuple and the process performing

theout primitive. Anotherout primitive cannot be performed until the acknowledgement has

been received (see Chapter 5). If the system supportsout orderingthen the example in Program 2.1

has only one outcome: process two removes the tupleh\DONE"

string

i and then the variablex is

assigned the tupleh10
integer

i.

Is out orderingacceptable within Linda? Due to the informal nature of the semantics of Linda it
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is difficult to tell exactly what anout primitive does and when. It appears natural thatout ordering

should be preserved, because theout primitive is a non-blocking primitive that inserts a tuple into

a tuple space, implying that the tuple should be present within the tuple space when the primitive

has been performed. Carriero et al.[CG89b, CG90a] in the description of theout primitive state

that:out(t) causes tuple t to be added to tuple space; the executing process continues immediately.

This could support the first argument that the tuple is inserted during the primitive notafter the

primitive (and this is true of the early shared memory implementations created by Carriero[Car87]),

but the notion of “the executing process continues immediately” may imply that the tuple can be

inserted after the primitive has returned (and this interpretation is assumed by Hupfer[Hup90]).

Given the vague semantics attached to theout primitive it does not seem unreasonable to assume

that theout primitive doesinsert the tuple before completing, thus providingout ordering, and

this can be specified in the formal semantics. This can be supported by considering two issues.

Firstly, if a tuple is not inserted before theout primitive completes, whendoesa tuple have to be

inserted? It would appear in the informal semantics, ifout orderingis not used, to be a concept of

as soon as possible after the primitive has completed, but does this mean that there is no need for

an implementation to ever insert a tuple? Secondly, by considering the nature of tuple space access

within Linda. Linda provides asynchronous communicationbetweenprocesses but the primitives

of in andrd (andcollect) provide synchronised tuple space access. Once the primitive is

initiated a tuple space access occurs and completes before the primitive completes. By providing

out orderingeffectively theout primitive is being made synchronous, like the other tuple space

access primitives.

This leaves the question of whetherout orderingshould be over all tuple spaces or single tuple

spaces. Consider Program 2.2. Ifout ordering is guaranteed over all tuple spaces, rather than

just a single tuple space, then the outcome of the program is deterministic withn being assigned

one. However, if theout ordering is not guaranteed over all tuple spaces then the value ofn is

non-deterministic. Because the tupleh“DONE”
string

i can appear in tuple spacets2 beforethe

tupleh10
integer

; 10

integer

i can appear in tuple spacets1 thecollect primitive may or may not

find the tupleh10
integer

; 10

integer

i in tuple spacets1.

If out ordering is only guaranteed over single tuple spaces, then to make theprogram de-

terministic, the same tuple space would have to be used for both the h10
integer

; 10

integer

i and

h“DONE”
string

i tuples. Shouldout orderingbe guaranteed over all tuple spaces or just individual

tuple spaces? Ifout orderingis only guaranteed for a single tuple space, then this would imply that

the tuple isnot inserted before the primitive completes, raising the question again of when a tuple

is inserted, after the last tuple was inserted by the same process and before the next tuple is inserted

from the same process, but that is all. If theout primitive, whenout orderingis guaranteed, is

seen as a synchronous tuple space access primitive, thenout orderingshould be guaranteed over

all tuple spaces. This is because when a primitive completesthe tuple will be present in the tuple

space, henceout ordering is guaranteed over all tuple spaces. As a final point, ifout ordering
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Program 2.2Out orderingacross multiple tuple spaces.
int A(TS ts1, TS ts2)

{

out(ts1, 10, 10);

out(ts2, "DONE");

return 0;

}

void B(void)

{

int n;

TS ts1, ts2;

ts1 = tsc();

ts2 = tsc();

eval(ts1, A(ts1,ts2));

in(ts2, "DONE");

n = collect(ts1, ts2, 10, 10);

}

is used then there is no need to perform a global synchronisation for theinp or rdp primitives.

Each of the sections of the tuple space can be searched independently, without fear of a matching

tuple not being found that a process knows exists.

2.5 Host languages used in this dissertation

All examples in this dissertation are given using either ISETL-Linda[DRW95] or C-Linda. A brief

description of the syntax of the Linda primitives for each ofthe embeddings is now given.

2.5.1 ISETL-Linda syntax

ISETL (InteractiveSET Language)[BDL89] is a set based interpreted imperative language.

ISETL-Linda is a full implementation of Linda as outlined above, except that it supports only

a limitedeval primitive1. The ISETL-Linda used in this dissertation runs on a Meiko Computing

Surface 1 with 32 transputers, and uses the York Kernel I run-time system (see Appendix A).

1There is another implementation of Linda using ISETL as the host language called ProSet-Linda[Has94]. The main

difference between ISETL-Linda and ProSet-Linda is that the latter does not support theeval primitive, but provides

another mechanism for process spawning (based on futures).
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In ISETL-Linda the tuple

h10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

i

is written as

[10, "Hello World", 10, 1.0]

where the interpreter automatically types the fields for theuser. The templates

hj10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

ji

and

hj10

integer

;2

string

;2

integer

; 1:0

float

ji

are written as

|[10, "Hello World", 10, 1.0]|

and

|[10, ?str, ?int, 1.0]|

where, if a field is an actual it is typed automatically, and ifa field is a formal it is represented by

a “?” followed by a type descriptor. As tuples are first class objects in ISETL-Linda, all Linda

primitives that return results representing tuples returntuples. The following keywords are added

to ISETL:

� NewBag

This function2 creates a new tuple space:

ts := |{}|;

ts := NewBag;

where both functions create a new tuple space and assign the handle of the created tuple

space to the variablets. A tuple space has to be explicitly created before it can be used.

Tuple space handles can be passed within tuples, using the type descriptorbag.

� lout

This is theout primitive. It has the following syntax:

lout(tuple space, tuple);

wheretuple space is a valid tuple space handle andtuple is a tuple.

2The functionNewBag is overloaded with the functionjfgj. Thereforejfgj has the same effect asNewBag.
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� lin

This is thein primitive. It has the following syntax:

result := lin(tuple space, template);

wheretuple space is a valid tuple space handle andtemplate is a template. The tuple

returned is assigned toresult.

� lrd

This is therd primitive. It has the following syntax:

result := lrd(tuple space, template);

wheretuple space is a valid tuple space handle andtemplate is a template. The tuple

returned is assigned toresult.

� lcollect

This is thecollect primitive. It has the following syntax:

count := lcollect(tuple space1, tuple space2, template);

where tuple space1 and tuple space2 are both valid tuple space handles and

template is a template. The number of tuples moved fromtuple space1 to

tuple space2 is assigned tocount.

� leval

This is theeval primitive. It has the following syntax:

leval(tuple space, active tuple);

wheretuple space is a valid tuple space handle andactive tuple is an active tuple.

In the context of ISETL-Linda an active tuple is said to be thesame as a tuple exceptno

more than oneof its fields is a function to be evaluated concurrently. Whenthe function has

been evaluated a tuple is inserted into the tuple spacetuple space.

An example interactive session using ISETL-Linda is shown in Figure 2.1. First a new tuple

space is created, then a tuple is placed into that tuple space. The tuple is then retrieved, printed

and then the two elements of the tuple are printed independently. A more detailed explanation of

ISETL-Linda is presented in Douglas et al.[DRW95].

2.5.2 C-Linda syntax

Two versions of C-Linda have been used. One is a commercial version produced by Scientific

Computing Associates3 which will be referred to as SCA C-Linda[Ass95]. The productis based on

3Scientific Computing Associates, One Century Tower, 265 Church Street, New Haven, CT 06510-7010, USA.
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> ts := |{}|;

> lout(ts,[10,"HELLO"]);

> answer := lin(ts,|[?int,?str]|);

> answer;

[10,"HELLO"];

> answer(1);

10;

> answer(2);

"HELLO";

>

Figure 2.1: An example of an interactive session using ISETL-Linda.

the work completed at Yale University and is a closed implementation using compile time analysis.

The other is a C-Linda which uses the York Kernel II (described in Chapter 5) or the York Kernel

I[DWR95], which is an open implementation, and does not use compiler-time analysis. Throughout

this dissertation whenanyC-Linda code is being presented it will use a modified syntax of SCA

C-Linda4. In C-Linda the tuple:

h10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

i

is written as

(10, "Hello World", 10, 1.0)

where the compiler automatically types the fields for the user. The templates

hj10

integer

; “Hello World”
string

; 10

integer

; 1:0

float

ji

and

hj10

integer

;2

string

;2

integer

; 1:0

float

ji

are written as

(10, "Hello World", 10, 1.0)

and

(10, ?str, ?var name, 1.0)

4See Appendix A for an overview of the main features of each of the implementations/run-time systems.
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where, if a field is an actual it is typed automatically, and ifa field is a formal it is represented

by a “?” followed by either a type descriptor or a variable name where the compiler determines

the type. Tuples arenot first class objects in C-Linda, therefore if a type descriptor is used the

information is discarded. If the field is a formal and a variable is used then the result for that field

is placed into that variable. In the last example above, the second field of the tuple is discarded, but

the third field (an integer) is placed into a variable calledvar name. The first template appears

identical to a tuple; whether a collection of values is a tuple or a template is based upon the Linda

primitive with which they are associated. The embedding of Linda in C involves the addition of

the following functions/procedures to C:

� tsc

This function creates a new tuple space. The prototype for the function is:

TS tsc(void)

Therefore, the statement

ts = tsc();

creates a tuple space and assigns its handle to the variablets. The typeTS is added, and

variables of typeTS are used to store tuple space handles.

� out

This procedure is theout primitive. The prototype for the procedure is:

void out(TS, ...)

Therefore, the statement

out(ts, 10, "HELLO");

places a tupleh10
integer

; “HELLO”
string

i into tuple spacets. There are no limits on the

number of elements in the tuple.

� in

This procedure is thein primitive. The prototype for the procedure is:

void in(TS, ...)

Therefore, the statement

in(ts, ?my val, "HELLO");

retrieves a tuple in tuple spacets which matches the templatehj2
integer

; “HELLO”
string

ji.

When a tuple is found it is split into component fields. In the above example?my val is a

formal (of type integer) and the first field of the returned tuple will be assigned tomy val.
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� rd

This procedure is therd primitive. It has the same syntax as thein procedure above, except

it is calledrd.

� collect

This procedure is thecollect primitive. The prototype for the procedure is:

int collect(TS, TS, ...)

Therefore, the statement

count = collect(ts1, ts2, ?int, "HELLO");

moves all the tuples in tuple spacets1 which match the templatehj2
integer

;

“HELLO”
string

ji to tuple spacets2. A count of the number of tuples moved is as-

signed tocount.

� eval

This procedure is theeval primitive. The prototype for the procedure is:

void eval(void (*)())

Therefore, the statement

eval(worker);

will spawn the processworker. The result of the functionworker is discarded5.

2.5.3 Processes and the host languages

In ISETL-Linda theeval primitive requires a function that is currently in scope to be used as the

function to be evaluated concurrently. Therefore, a process is an ISETL function that is in scope

at the time theeval primitive is performed.

In SCA C-Linda theeval primitive again requires a function to be specified that is inscope

within the program performing theeval primitive. In York C-Linda theeval primitive requires

a filename for an executable file. The file is executed, and interacts with the run-time system.

Whether the process is an executable file, or a function whichis somehow executed concur-

rently, they will be referred to as processes. Within this dissertation’s example programs processes

are always given as though the process is a function.

2.6 Non-determinism and Linda

There are two characteristics of Linda which introduce non-determinism. An understanding of

these characteristics and their implications is importantfor anyone working with Linda, especially

if new primitives are to be proposed. These characteristicsare:
5SCA C-Linda supports a fulleval primitive that allows many functions to be specified within asingle tuple.
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Inter-process tuple competition When two or more processes compete for the same tuple, which

process receives the tuple is non-deterministic. This is shown in Program 2.3, where a

process spawns two processes both of which will compete for the same tuple. One of the

processes will obtain the tuple and the other will block (in this case forever). It is impossible

to say whether the first process spawned or the second processwill retrieve the tuple, the

choice is non-deterministic.

Program 2.3Example showing inter-process tuple competition.
worker := func(ts); $ ts is a tuple space handle

x := lin(ts,|[?int]|); $ Get a tuple

return 0;

end func;

simple := proc();

local tuple_space;

tuple_space := NewBag; $ Create a new tuple space

leval(ts,[worker(tuple_space)]);

leval(ts,[worker(tuple_space)]);

lout(tuple_space,[1]); $ Put a tuple in the tuple space

end proc;

Multiple tuple competition When there is more than one tuple within a tuple space that would

satisfy a template the tuple is chosen non-deterministically. This is shown in Program 2.4,

where a tuple space is created and two tuples placed into the tuple space. Thein primitive

will match one of the tuples, but which one is chosen is a non-deterministic choice.

Program 2.4Example showing multiple tuple competition.
simple := proc();

local ts,x; $ Local variables

ts := NewBag; $ Create a new tuple space

lout(ts,[1]); $ Place a tuple in the tuple space

lout(ts,[2]); $ Place a tuple in the tuple space

x := lin(ts,|[?int]|); $ Get a tuple out of the tuple space

end proc;

These competition characterstics are important to the Linda user, providing natural interaction

between processes and tuples. If the user requires more control over the non-determinism then
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the ability to use explicit coordination of structures in tuple spaces provides a way. For example

to control the order in which tuples are retrieved from a tuple space each tuple can be explicitly

tagged with a field. Such a method is described in Chapter 3, when describing the stream method

for the multiplerd problem.

However, sometimes a poor understanding of non-determinism within Linda can led to flawed

proposals. The case of the proposal to useinstructional footprintingwith the Linda primtives is a

good example.

2.6.1 Instructional footprinting

Landry[LA92, LA93a, LA93b, LA95] examined the applicationof instructional footprinting to

Linda programs in order to reduce the execution times. The basis for the work is the idea that an

in or rd primitive can be split into two sections, the “sending” of the template to the run-time

system (in
init

) and the receiving of a tuple from a run-time system (in
recv

). Landry’s proposal

is that a pre-compiler can automatically split all thein andrd primitives into their components,

and move them apart. Normally, when a Linda primitive is performed the user computation stops,

waiting for a reply message. The separation of the request for a tuple and the actual retrieval of the

tuple allows user computation to be performed concurrentlywith the tuple space access, thereby

providing a speed increase.

At first sight, the idea seems sound, and the results presented[LA95] indicate that on the par-

ticular LAN based kernel used, a significant drop in execution times is achieved in most cases and

the execution times never increase. However, Landry failedto account fully for non-determinism

and its effect on the Linda programs. He assumed that, using aset of rules, moving computation

between thein
init

andin
recv

parts of anin primitive would not alter the semantics of the pro-

gram. This is true, the semantics of the program are not altered, but the coordination constructs

used in Linda programs often make use of the time computationtakes.

In order to demonstrate this consider thedining philosophers problem. Landry[LA95] presents

a good description of the dining philosopher problem. Program 2.5 and 2.6 are slightly modified

code sections taken from [LA95]. Program 2.5 shows the original Linda function for a philosopher,

while Program 2.6 shows the so-called optimised version of the same function which the pre-

compiler doing the instructional footprinting would produce, with eachin primitive split into two

components. Both pieces of code have been modified to allow the length of time a philosopher

thinks before he eats to be specified.

Landry sets all the philosophers to work for the same length of time (0 seconds). Let us

consider, for the sake of simplicity, two philosophers, called Phil0 and Phil1, with Phil0 thinking

for 20 minutes and Phil1 thinking for 40 minutes. It is assumed that they both eat for the same

length of time, 10 minutes. Figure 2.2 shows how the two philosophers spend their time in the

original Linda version.

The version that has been optimised using instructional footprinting can produce the same
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Program 2.5Linda code for a philosopher.
void Philosopher(int time, int Phil_ID)

{

think(time);

in("Room Ticket");

in("Chopstick",Phil_ID);

in("Chopstick",(Phil_ID+1) % Num_Phil);

eat();

out("Chopstick",Phil_ID);

out("Chopstick",(Phil_ID+1) % Num_Phil);

out("Room Ticket");

}

Phil0

Phil1

30 minutes

50 minutes

thinks eat

thinks eat

Figure 2.2: How the philosophers spend there time in the Linda version.

results6 as shown in Figure 2.2. However, it is also possible for the result shown in Figure 2.3 to

be produced. In this case Phil0 blocks for 30 minutes, because both philosophers try to grab the

room ticket tupleat the same time. There is only one room ticket tuple and as the two processes

compete for the same tuple, which philosopher gets the room ticket tuple is non-deterministic. If

Phil0 gets it then everything will proceed as in the Linda version. If Phil1 gets it, then Phil0 does

his thinking and then must wait for Phil1 to release the ticket, so Phil0 is blocked. Phil1 thinks for

his 40 minutes then eats and then releases the room ticket tuple. Phil0 now becomes unblocked

and is able to eat. In this case the total execution time is 60 minutes, as opposed to 50 minutes

representing an increase in the execution time.

Phil0

Phil1

60 minutes
thinks eatsBLOCKED

50 minutes
thinks eat

Figure 2.3: How the philosophers may spend their time in the optimised version.

In the Linda version the computation provides a natural way of controlling the access to the

dining room. Only when a philosopher isready to eat does he attempt to get the ticket, so once

he has the resource (the ticket) he uses it immediately and then releases it. Many Linda programs

6The execution time will be slightly less, but because long thinking times and eating times are chosen the effect of

reducing the communication time can be effectively ignored.
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Program 2.6 “Optimised” Linda code for a philosopher using instructional footprinting.
void Philosopher(int time, int Phil_ID)

{

INinit("Room Ticket");

INinit("Chopstick",Phil_ID);

INinit("Chopstick",(Phil_ID+1) % Num_Phil);

think(time);

INrecv("Room Ticket");

INrecv("Chopstick",Phil_ID);

INrecv("Chopstick",(Phil_ID+1) % Num_Phil);

eat();

out("Chopstick",Phil_ID);

out("Chopstick",(Phil_ID+1) % Num_Phil);

out("Room Ticket");

}

use the fact that computation takes time to do natural load balancing[CG90a, page 114], in these

cases the instructional footprinting optimisations can lead to longer execution times, as with this

example.

2.7 Summary

An overview of Linda, describing the basic objects of Linda was presented in Section 2.2. A num-

ber of extensions to Linda were then described, including multiple tuple spaces and thecollect

primitive, which are adopted in the Linda used within this dissertation. More information about

the bulk primitives is presented in Chapter 4. The need for global synchronisations andout or-

dering has been discussed in detail with respect to theinp andrdp primitives. An overview of

the host languages and their Linda embeddings was presented, ending with a description of non-

determinsim within Linda. Chapter 5 will present a detailedoverview of both closed and open

implementations, and the techniques which they use.

In the next chapter a limitation of the functionality of Linda is examined. This limitation forms

the justification for a new primitive for Linda, thecopy-collect primitive, which is a bulk

primitive related to thecollect primitive.



Chapter 3

The multiple rd problem

3.1 Introduction

In this chapter, an expressive limitation of the Linda modelis identified, which is referred to as the

multiplerd problem. A multiple rd is defined as an operation where two or more processes are

required to concurrently, and non-destructively read one or more tuples from a tuple space which

match the same template, where there are at least two tuples that match the template, and at least

two of the processes can be satisfied by the same tuple. The problem is that a multiplerd cannot

be performed efficiently using the current Linda model if twoor more processes are concurrently

and non-destructively reading from a tuple space using the same template.

As an example, consider a tuple space containing a number of tuples with each containing two

fields representing peoples names such ash“Antony”
string

; “Rowstron”
string

i . This tuple space

is shared among many processes that may require access to thetuples. How would all the tuples

representing people whose surname isRowstronbe retrieved by a process?

Initially, the answer would appear to be the repeated use of therd primitive. The template

hj2

string

; “Rowstron”
string

ji will match a tuple whose surname isRowstron. This will only work

if there is a single tuple which matches the template. If all the names of an entire family are in

the tuple space, or there are several unrelated people with the same surname stored in the tuple

space, the repeated use of ard will not work. The semantics ofrd mean that if more than one

tuple matches a template the tuple returned is chosen non-deterministically. Having discounted

the use of therd primitive the answer may appear to be to use thecollect primitive. The

collect primitive will match all the matching tuples. However, the primitive is a destructive

operation therefore the collected tuples are removed so other processes cannot read them. Also,

the behaviour of concurrentcollect primitives is not well defined (see Section 4.2).

There are only two methods that enable many processes to concurrently and non-destructively

access a tuple space using the current Linda model. One method is to use a designated tuple as a

binary semaphore and the other is to organise the tuples as a stream. Before these two methods are

examined and evaluated another example containing the multiple rd problem is described.

33
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3.2 Parallel composition of two binary relations

The parallel implementation of the composition of two binary relations is now considered in order

to show how the different methods of solving the multiplerd problem perform.

3.2.1 Formal definition of the composition of two binary relations

A binary relation is defined as a relation between two sets. A binary relation defines a subset B, of

the Cartesian product of the two sets. Therefore, given two setsT andX, the Cartesian product

T �X is defined as:

f(t; x) : (t 2 T ) and(x 2 X)g (3.1)

If the ordered pair(s
1

; s

2

) is a member of the set B, then the binary relation B is said to hold

between the two values. This binary relation could for example be “less than”, sos
1

< s

2

. Given

two binary relations R and S, their compositionR � S is defined as:

f(a; d) : ((a; b) 2 R) and((c; d) 2 S) j b = cg (3.2)

3.2.2 The general approach to implementation

This example assumes that the ordered pairs in each set are held in separate tuple spaces, with each

tuple representing a single ordered pair. After performingthe composition a new tuple space will

be created containing the resulting tuples. This is shown inFigure 3.1.

[1,3]

[4,7]

[5,6]

[2,3]

[3,7]

Tuple space R

[3,7]

[6,12]

[5,8]

[9,10]
[3,9]

[5,12]

[2,9] [1,9]

[1,7]

[2,7]

Tuple space S Tuple space R  S

Figure 3.1: Composition of two binary relations represented using three tuple spaces.

Due to the properties of the composition of binary relationsit should be simple to implement

in parallel, with every pair in tuple space R being compared with each pair in tuple space S con-

currently. The results for each pair in tuple space R are independent of the results for any other

pair in tuple space R. So a number of processes are used. Each process takes a pair from tuple

space R, and checks the chosen pair with every pair in tuple space S. If the second element of the

pair from tuple space R is the same as the first element in a pairfrom tuple space S, a new pair is

produced. This new pair contains the first element of the pairfrom tuple space R and the second
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element from the pair from tuple space S. The finest grained parallel approach using this method

will use a process for every pair in tuple space R. The detecting of the elements in tuple space S

which match is an associative matching process which indicates that Linda should be ideal because

of the associative matching properties it has.

The multiplerd problem is seen within the parallel composition of two binary relations

because there are several processes that need to concurrently access the tuple space S non-

destructively. The stream and semaphore methods of solvingthe multiplerd problem are now

considered using the parallel composition of two binary relations as an example.

3.3 Tuples as semaphores

The first method considered for overcoming the multiplerd problem is to use a tuple as a binary

semaphore, orlock tuple. The lock tuple is a single and unique tuple that allowsuser processesto

control access to a tuple space.

The general concept is that a process obtains the lock tuple,thendestructivelyremoves the

matching tuples, using either theinp or collect primitives1. Once all the tuples have been

removed they are replaced, and then the lock tuple reinserted. The removal of tuples is acceptable

because only a single process can obtain the lock tuple, and therefore access the tuple space at any

one time2 provided the tuple space is returned to the same state as it was when the lock tuple was

removed no other process will be aware that the tuples have been removed and replaced.

In the case of the parallel composition of binary relations,the ISETL-Linda code for a worker

process is shown in Program 3.1. Each worker process removesa tuple from tuple space R and

then tries to remove the lock tuple in tuple space S. There is only one lock tuple in the tuple space

S so all but one of the processes will block on thein primitive (line A in Program 3.1). When a

worker process retrieves the lock tuple it has unrestrictedaccess to the tuple space S.

The worker process creates a template using the second field of the tuple removed from tuple

space R as the first element of the template. In this example, the template is then used by a

collect primitive tomoveall3 the tuples that match the template in tuple space S to a local tuple

space. The same operation can be performed using theinp primitive.

The worker process then removes each of the tuples from the local tuple space using thein

primitive. The worker process then places the tuple back into tuple space S. Because of the fine

grained nature of the worker processes used in the composition of binary relations, as the worker

process returns the tuples to tuple space S it also calculates any results and places them in the

result tuple space C. If the computation “associated” with each tuple is more complex then either

1If the Linda implementation supports neither of these then the semaphore method cannot be used, and streamsmust

be used.
2Provided that all the processes accessing the tuple space adhere to the use of the lock tuple.
3In this case all is acceptable because the tuple space will beinactiveif all processes adhere to using the semaphore

tuple.
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the worker process can place another copy of each tuple in a different tuple space for processing

once all the tuples from tuple space S have been replaced, or further processes can be spawned to

actually perform the calculations.

Once all the tuples in the local tuple space have been processed and replaced into the tuple

space S, the lock tuple is placed back into tuple space S. Thismeans that tuple space S contains

all the tuples that were present when the worker process obtained the lock tuple. The tuple which

acts as the semaphore canonlybe replaced in the tuple space when the tuple space is in its original

state. If the tuple is returned prior to this then the other processes are not guaranteed to find all the

tuples that they require.

Program 3.1A worker process using a tuple as a binary semaphore or lock tuple.
comp_worker := func(R,S,C);

local my_val, my_ts, my_comb, todo;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|); -- Get the element from R

dummy := lin(S,|["lock"]|); -- Get the lock (A)

todo := lcollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Grab matching tuples in S

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|); -- Process each one

lout(C,[my_val(1),my_comb(2)]); -- Create result tuples

lout(S,my_comb); -- Replace tuple in S

end while;

lout(S,["lock"]); -- Let the lock tuple go

return ["TERMINATED"];

end func;

3.3.1 Performance

There are two reasons why this isnot an acceptable solution to the multiplerd problem.

� One is that the solution requires the processes that use a tuple space to adhere to using the

lock tuple, and there is no guarantee that other processes will adhere to it. Consider the
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example given in the introduction of this chapter, involving a tuple space containing a set of

names. There is no reason why several processes performing different and unrelated tasks

may all require access to the name tuples within the tuple space concurrently. Suppose one

process does not adhere to the use of a lock tuple, either maliciously or accidently, then all

the processes can no longer reliably have access to all the possible tuples.

� The second reason why such an approach is not acceptable is that it creates a sequential

bottleneck for the access of the tuple space, as only one process can obtain the lock tuple

at any one time. Therefore, in the parallel composition of binary relations example the only

speed up achieved is the parallel reading of the tuples from tuple space R. The majority

of the time that the program executes only a single worker is active creating a sequential

solution because only one process can access the tuples within tuple space S at anyone time.

3.4 Streams

The second approach is to use astream. The basis of this approach is to remove the multiplerd

problem by having only one tuple match the template being used. This is achieved either by using

information which is already in the tuples, or by adding a unique field to each tuple. This means

that a unique template can be generated which will match a single tuple in the the tuple space. Any

processes which wants to use the tuples within the tuple space must be aware of the fields used

within the tuple and, if necessary, how the field is generated. Processes accessing the tuple space

use therd primitive to retrieveeverytuple, and use a local check to see if the tuple is required.

Consider the example of the parallel composition of binary relations, and assuming that the

tuple space S contains the five tuples (as shown in Figure 3.1):

h3

integer

; 7

integer

i; h6

integer

; 12

integer

i;

h3

integer

; 9

integer

i; h5

integer

; 8

integer

i; h9

integer

; 10

integer

i:

There is no unique field that allows each tuple to be independently chosen. Therefore a unique

field is added to each of the tuples:

h1

integer

; 3

integer

; 7

integer

i; h2

integer

; 6

integer

; 12

integer

i;

h3

integer

; 3

integer

; 9

integer

i; h4

integer

; 5

integer

; 8

integer

i; h5

integer

; 9

integer

; 10

integer

i:

After adding the extra first field, each tuple contains a unique field, and the relationship across

the tuples between the unique fields is known (an integer counter that is incremented by one for

each tuple). This allows a process to access the tuple space using the templatehjindex
integer

;

2

integer

; 2

integer

ji whereindex is a value between one and five in this example. Every worker

process takes a tuple from tuple space R, and then readseverytuple from tuple space S, using

the index field to match each tuple in turn. The worker process checks ifthe returned tuple is

actually required and either discards it or uses it accordingly. If the implementation supports the
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rdp primitive then this removes the need to check the tuplelocally, but all tuples still have to be

checked. A template of the formhjindex
integer

; R(2)

integer

;2

integer

ji would be used, whereR(2)

is the second element from the tuple retrieved from the tuplespace R. Therdp primitive would

then be used, and would return either the matching tuple or a value to indicate it was not found.

Every tuple still has to be checked. The ISETL-Linda code fora worker process using the stream

method is shown in Program 3.2.

Program 3.2A worker process using streams.
comp_worker := func(R,S,C,NumTupS);

-- NumTupS - No. of tuples in S

local my_val, my_comb;

my_val := lin(R,|[?int,?int]|); -- Get a tuple from R

while (NumTupS > 0) do -- Check all tuples in S

my_comb := lrd(S,|[NumTupS,?int,?int]|);

NumTupS := NumTupS - 1;

if (my_comb(2) = my_val(2)) then -- Does the tuple match?

lout(C,[my_val(1),my_comb(3)]);

end if;

end while;

return ["TERMINATED"];

end func;

In this example it is necessary to add an extra field but sometimes a unique field is already

present within the tuple. For example, when an image is stored in a tuple space, with each pixel

being stored as a tuple of the form:

hx-coordinate
integer

; y-coordinate
integer

;pixel value
integer

i:

A process may want to access all pixels that are of a particular value4. Here the obvious

template would behj2
integer

;2

integer

;pixel value
integer

ji. However, if many processes wish to

perform the operation in parallel it will introduce the multiple rd problem. Assuming that usually

the coordinate system used within the image will be known to the accessing processes, and there is

only one pixel value for each coordinate, the coordinate fields within the tuple can be used as the

unique fields. The processes can then use a stream approach, reading every coordinate to check if

the pixel value is the one required, and discarding if it is not.

4See Hough transform, Section 6.3.
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3.4.1 Performance

Although, with this method all the worker processes can perform the accessing of a tuple space in

parallel, there are two problems that make this approach unacceptable.

� Firstly, it negates the advantages of the tuple matching abilities of Linda.Everytuple in the

stream structuremustbe read. If there are many tuples in a tuple space and only a feware

required, the time cost and communication cost of reading every tuple is considerable. This

is compounded if the implementation does not support therdp primitive, because additional

checking within the user process of the returned tuple is required, to check if the tuple is one

that is required.

� Secondly, every tuple in the tuple space requires a unique field to be added, and all the

processes using the tuples must be aware of the unique field and how it is generated. This

removes the natural use of a tuple space as the data structureby adding another structure (a

stream) to the tuples within the tuple space. In order to achieve this, either the producer must

be aware of the need to add this unique field in which case the cost of adding it is minimal,

or the tuples are pre-processed to add the unique field beforebeing used.

Even if the producer can add the extra field, and so no pre-processing of the tuples is required,

the communication and time costs of checking every tuple explicitly using either therd or rdp

primitives is unacceptable unless the majority of tuples within a tuple space match the template.

3.5 Experimental results

In order to show the problems of both the binary semaphore andstream methods the execution

times of the parallel composition of binary relations usingboth these methods are considered.

The experimental results presented in this section are obtained using ISETL-Linda executing on a

transputer based Meiko CS-1 parallel computer using York Kernel I[DWR95] (an overview of the

main features of York Kernel I is given in Appendix A). For theexperiments the cardinality of the

tuple space R is set to five; the cardinality of tuple space S is50. For every pair (represented as a

single tuple) in tuple space R there are four pairs (again, represented as single tuples) in tuple space

S that match, therefore the cardinality of the composition tuple space C is 20. The worker processes

are altered to enable them to be instructed on how many tuplesare processed from tuple space R.

Thus, a single worker computes the results for all five pairs in tuple space R, whereas five worker

processes each compute the results for a single pair from tuple space R, as in the example code

segments Program 3.1 and 3.2. This is used to show that the semaphore method forces sequential

access to tuple space S, whilst the stream approach allows parallel access to tuple space S.

The execution timedoes notinclude the time taken to spawn the worker processes, and does

not include the time taken to create the tuple spaces S and R. In the stream approach it is assumed
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that the producer added the unique field to the tuples as they are created, thus avoiding the need to

pre-process the tuples to add the unique field.

The performance for both the methods of solving the multiplerd problem are compared

against a sequential version of the composition of binary relations. The code for the sequential

version is shown in Program 3.3. The sequential version takes each tuple from tuple space R, then

uses thecollect primitive to destructively move to another tuple space every tuple from tuple

space S in which the first element of the tuple is the same as thesecond element of the current tuple

chosen from tuple space R. The moved tuples are then destructively read using thein primitive

from the other tuple space, processed and then placed back into tuple space S. The result tuples are

placed in tuple space C. The sequential version uses the tuple spaces to store data structures as do

the parallel versions.

Program 3.3The code for the sequential composition of binary relations.
comp_worker := proc(R,S,C,NumTupR);

- NumTupR is the number of tuples in R

local my_val, my_ts, my_comb, todo, loop;

my_ts := |{}|;

for loop in [1 .. NumTupR] do -- For all tuples in R

my_val := lin(R,|[?int,?int]|); -- Get a tuple

todo := lcollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Process the matched tuples

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

lout(S,my_comb);

end while;

end for;

end proc;

3.5.1 The binary semaphore method

Figure 3.2 shows the execution times taken for the version using the semaphore method when the

number of worker processes are varied from between one and five. Also shown is the time taken

for a sequential version of the program. The timings are given in ticks, which are arbitrary units of

time (15625 ticks per second).

The sequential version is slightly faster than the parallelversion using the semaphore method
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Figure 3.2: Execution time for the parallel composition of binary relations when using the binary

semaphore method.

and one worker process. This is because the sequential implementation is similar to the semaphore

method except that a lock tuple is not used, as only one process can access the tuple space. This

means the difference in the execution times represents the cost of fetching and replacing the lock

tuple.

When two worker processes are used the execution time for thesemaphore method is slightly

less than the execution time for the sequential version. This is because of the parallel access to the

tuple space R. The fetching of a tuple from tuple space R is theonly work that can be performed

concurrently; the access to tuple space S is forced to be sequential.

There is no performance gain by increasing the number of worker processes above two. Ideally,

the execution time taken by five worker processes should be one third of the time taken when using

two worker processes. When there are two worker processes one will consume three tuples from

tuple space R and the other will consume two tuples from tuplespace R. Five worker processes

will each consume only one tuple from tuple space R. The reason why this does not occur is shown

in Figure 3.3 where the solid line represents the time a worker process is accessing tuple space

S, and the dotted line represents the time when the worker is accessing tuple space R. The solid

thick black lines represent the time when a worker process isblocked awaiting the lock tuple. The

length of the time taken by the longest worker is the execution time of the program. Figures 3.3(a)

and 3.3(b) show that the time taken by the longest worker process when either two or five worker

processes are used is the same. If three or four worker processes are used then the longest worker
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Number Number of tuples Maximum number of tuples Execution Time

of workers processed per worker processed by any worker Time per tuple

1 5 5 49506 9901

2 2,3 3 29633 9877

3 1,2,2 2 20280 10140

4 1,1,1,2 2 20298 10149

5 1,1,1,1,1 1 12079 12079

Table 3.1: Time taken per element in tuple space R as the number of worker processes increase.

process will again take the same time. As the number of workerprocesses increase there is no

performance increase because there is nothing more that canbe achieved in parallel.

P2

P1

(a) Execution pattern using two worker processes.

P1

P2

P3

P4

P5

(b) Execution pattern using five worker processes.

Figure 3.3: Execution patterns for two and five worker processes using the semaphore method.

3.5.2 The stream method

Figure 3.4 shows the execution times taken for the version using the stream method when the

number of worker processes is varied from between one and five. Again the time taken for the

sequential version is also shown and the predicted execution times are also shown. The predicted

execution time is calculated on the basis of the time taken for one worker process.

The results show that the execution time is dependent upon the number of worker processes

used. The relationship between the execution time and the number of worker processes is shown

in Table 3.1. The first column represents the number of workerprocesses used, the second column

shows the number of tuples from tuple space R that each workerprocess consumes (the total must
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Figure 3.4: Execution time for the parallel composition of binary relations when using the stream

approach.

always be five, as there are five tuples in tuple space R). The third column shows the maximum

number of tuples from tuple space R a single worker process consumes. The fourth column shows

the execution time for the program. The solution is parallelso the time taken depends on the

worker process or processes which consume the most tuples from tuple space R. The fifth column

shows the time taken for the worker processes to process a single tuple from tuple space R, and

is calculated by dividing the execution time (shown in column four) by the number of tuples from

tuple space R consumed by the worker process performing the most work (indicated in column

three).

The time taken to process a single tuple (column 5) should remain constant as the number of

worker processes is increased from one to five. The predictedresults shown in Figure 3.4 are based

on the execution time using one worker process which takes 9901 ticks per tuple from tuple space

R. When five worker processes are used the time taken per tuplefrom tuple space R increases

noticeably. This is because the underlying run-time systembeing used cannot service the requests

fast enough so when there are five worker processes, the run-time system becomes a bottleneck.

Table 3.1 also shows why there is a plateau in the execution times when three and four worker

processes are being used. In these cases the maximum number of tuples from tuple space R that

a single worker process consumes is two tuples. The execution time of the program does not alter

because the execution time is dependent on the time taken by the longest worker process. In both

cases the time taken by the longest worker process is the samebecause they perform the same
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amount of work.

3.5.3 Experimental conclusions

The experimental results show the dilemma that a programmerfaces when needing to perform a

multiplerd with Linda. The binary semaphore method provides no speed increase as the number

of worker processes used increases but is slightly faster than the sequential version when two or

more worker processes are used. The stream method shows a speed up as the number of worker

processes are increased but it takes a longer time to executethan the sequential version, even when

five worker processes are being used.

In Chapter 4 a new primitive is introduced which solves the multiple rd problem. However,

before considering the new primitive, some further observations are made about the multiplerd

problem.

3.6 Coarsening the approach

Some experienced Linda programmers suggest that the multiple rd problem canalwaysbe over-

come by using a coarser granularity of structures in tuple spaces. In the parallel composition of

binary relations to create a coarser grained approach all the pairs stored in tuple space S are placed

into a single tuple stored in tuple space S. Now, each of the worker processes removes a tuple from

tuple space R and then uses therd primitive to read the single tuple in tuple space S into a local

data structure within itself. This local data structure is then used to determine which pairs match

with the tuple chosen from tuple space R. A tuple space is a data structure in its own right and

it seems wrong to have to use a special local data structure. However, such an approach appears

attractive because of the apparent reduction in tuple communication this will entail. The code for

the worker process using this coarser approach is shown in Program 3.4.

Figure 3.5 shows the experimental results when using this method, and shows the best case

execution time for any other method, which is when a lock tuple is being used. These results

show that the adoption of a coarser grained approach has not produced a speed increase over

the best of the other methods. It should be noted that for somealgorithms a coarser approach

will lead to faster execution times. This is dependent upon both the algorithm, the amount of

unnecessary “information” communicated and the characteristics of the implementation being used

(the processor speed compared to the communication speed).

Since inception Linda has been used formultiprocessing(a single application consisting of

several processes). More recently use has been made of Lindafor multiprogramming5 (several

applications distributed over many processors)[Has94]. When Linda is used formultiprocessingit

is natural to use closed implementations; the use of tuple spaces can be well defined and controlled,

and in such a case the granularity of the program, and data structures can be regulated to gain

5It is also possible to refer tomultiprocessingasparallel processingandmultiprogrammingasdistributed computing.
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Program 3.4A worker process using a coarser data structure.
comp_worker := func(R,S,C);

local my_val, pair_list, todo;

my_val := lin(R,|[?int,?int]|); -- Get the tuple from R

pair_list := lrd(S,|[?tuple]|)(1); -- Get the single tuple

todo := #pair_list; -- Traverse the local structure

while (todo > 0) do

if (pair_list(todo)(1) = my_val(2)) then

lout(C,[my_val(1),pair_list(todo)(2)]);

end if; -- Produce the results if needed

todo := todo - 1;

end while;

return ["TERMINATED"];

end func;

maximum performance. For example, how is a digitised image stored in a local data structure?

The image contains a number of coordinates each with a pixel value associated. In traditional

programming such a structure is stored as a two-dimensionalarray (if the language used supports

two dimensional arrays). To retrieve a pixel from the array the pixels coordinates are used as an

index into the array.

How would a digitised image be stored in a tuple space? There are several possibilities, each

representing a different granularity of data structure. The finest grained representation possible is

to use tuples of the form:

h x-coordinate
integer

; y-coordinate
integer

; pixel-value
integer

i

where each tuple represents a single pixel in the image. A medium granularity approach is to use

a tuple per row or column of the image:

h x-coordinate
integer

; pixel-value[ x-coordinate]
integer�array

i

wherepixel�value[x�coordinate]

integer

represents a one dimensional array of all pixels which

reside on the column specified byx�coordinate. The coarsest data structure is to place the whole

image in a single tuple:

h image
integer�array

i:
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Figure 3.5: The worker process when adopting a coarser approach to the parallel composition of

binary relations.

The granularity adopted is important. For example, consider a 1024x1024 image where an

integer is represented as four bytes. Table 3.2 shows for each of the above representations the

number of tuples required and theminimum memoryrequired. The image will always require

4 Megabytes of memory, regardless of the granularity, because there are 1048576 pixels each

requiring 4 bytes. The other fields which are also in the tupleoccupy memory as well and this is

shown in theoverheadscolumn. Not included in the overhead measurements are the hidden costs

of other information that may be stored with each tuple.

Granularity No. of tuples Memory required for Total memory

of data structure in tuple space image overheads requirements

Fine 1048576 4 MBytes 8 MBytes 12 MBytes

Medium 1024 4 MBytes 4 KBytes 4 MBytes

Coarse 1 4 MBytes 0 Bytes 4 MBytes

Table 3.2: Comparison of the number of tuples and minimum memory usage for different granu-

larities of tuple usage.
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3.7 Conclusions

The Linda model has been in use for over ten years, so why has the multiplerd problem not been

identified previously within the Linda model?

When considering data parallelism within the context of theLinda model, some researchers

have alluded to the need for some operations that allow the parallel application of a function to all

tuples that match a given template[AS91]. Anderson et al. when describing PLinda state that the

motivation for such operations is:

Since many applications, particularly database ones, are expressed naturally in sets,

we expect operations that iterate through sets of tuples to be useful. In vanilla Linda,

a rd may repeatedly return the same tuple, even if several other tuples match.

There is no discussion of why therd primitive returning the same tuple is a problem, and the

current implementations of PLinda do not support such operations.

Currently, Linda programmers either know that the data structure stored in tuple space is such

that using the stream approach produces an acceptable performance, or they increase the coarseness

of the tuple structure within the tuple space until the levelof coarseness removes the multiplerd

problem, as shown in the previous section with the composition of binary relations. Table 3.2

shows the use of coarser data structures is advantageous especially if memory usage is of primary

concern. One of the strengths of Linda is the ability to perform coordination in a natural way, and

often fine grained structures are more natural. The binary composition example used in this chapter

seems natural using tuples of pairs. The argument as to whether or not the granularity of the data

structures stored within tuple spaces overcomes the multiple rd problem is largely fruitless when

consideringmulti-programming.

When the Linda model is used formulti-programming, controlling many aspects of coordina-

tion and data structure granularity becomes more complex. The different applications create tuple

spaces and share tuple spaces created by other applications, thereby sharing information. Each

application controls the granularity of the tuple structure within the tuple spaces it creates. If one

application chooses to store an image as a tuple for each pixel then any other application that

wishes to use that image tuple space has to adhere to the granularity set by the application which

created the tuple space.

This chapter has described the multiplerd problem and through the use of an example has

shown that the current methods for overcoming the multiplerd problem, using a binary semaphore

and streams, are not acceptable. Therefore, Linda is unableto perform a multiplerd in a viable

fashion. In the next chapter a new primitive for Linda is proposed calledcopy-collect. This

primitive is used to overcome the multiplerd problem.
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Chapter 4

Copy-collect: A new primitive for the

Linda model

4.1 Introduction

In the last chapter the multiplerd problem was described. What makes the multiplerd problem

frustrating is that it appears natural that several concurrent and non-destructive reads of a number

of tuples should be possible. Within the Linda model there isno notion of synchronisationbetween

primitives, thus two (or more) Linda primitives can be performedconcurrently, and the first York

Linda kernel (York Kernel I)[DWR95] supports concurrent primitive operations. If tword primi-

tives can be serviced concurrently it should be possible formany processes to perform a multiple

rd concurrently.

In this chapter a new primitive calledcopy-collect is proposed. The informal semantics of

the new primitive are described and it is shown how the primitive is used to overcome the multiple

rd problem.

4.2 Thecopy-collect primitive

Thecopy-collectprimitive is closely related to thecollect primitive, so first the semantics

for that primitive are considered. In Butcher et al.[BWA94]the authors state that the informal

semantics of thecollect primitive are:

int collect(TS destination, <template>)

The (informal) semantics ofcollect is that it moves all the tuples which match the

<template> into the tuple spacedestination, and returns the number of tuples

collected.

More formal (and full) semantics for this primitive are currently being investigated.

However, for the purposes of this paper we need only one property: given astable

49
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tuple space (one in which noins or outs are occurring),collect will remove

all tuples matching the template. The intricacies of a formal semantics centre on the

meaning of ‘all tuples’ in a non-deterministic active tuplespace.

The authors note that although not used in the paper the primitive could be extendible to

allow two tuple spaces to be explicitly stated, a source and adestination tuple space. No more

publications have been produced by the authors on further semantics of thecollect primitive.

The difference between thecollect primitive and thecopy-collect primitive is that the

copy-collect primitive copiesrather thanmovestuples. However, the semantics given to the

collect primitive appear rather unclear, particularly the use of the termsstableandactivetuple

spaces. Therefore the informal semantics of thecopy-collect primitive described here will

be more comprehensive in order to clarify the ambiguities1.

n = copy-collect (ts1, ts2, template)This primitive copiestuples that matchtemplate from

one specified tuple space (ts1) to another specified tuple space (ts2). A count of the

number of tuples copied (n) is returned. Tuple spacets1 is known as the source tuple

space and tuple spacets2 is known as the destination tuple space.

To determine how many tuples are copied a series of rules are used:

1. If a copy-collect primitive and no other Linda primitives are performed using

the source tuple space concurrently, thenall the tuples that match the template will be

copied to the destination tuple space.

2. If a copy-collect primitive and ard primitive are performed using the same

source tuple space concurrently, and one or more tuples exist that can satisfy both

templates, thenall the matching tuples will be copied to the destination tuple space

and therd primitive will not block and return a matching tuple. If no matching tuples

exist then thecopy-collect primitive will return zero, and therd primitive will

block.

3. If acopy-collectprimitive and anothercopy-collectprimitive are performed

using the same source tuple space concurrently, and one or more tuples exist that can

satisfy both templates, thenall the matching tuples will be copied to the destination

tuple space for each of thecopy-collect primitives. If there are no matching

tuples then both primitives will return zero.

4. If a copy-collect primitive and anout primitive are performed concurrently,

and theout primitive is placing a tuple into the source tuple space thatmatches the

template used in thecopy-collect primitive, then the result is a non-deterministic

choice between copying the inserted tuple or not. All other matching tuples will be

copied.

1It is proposed that thecollect primitive uses similar semantics.
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5. If a copy-collect primitive and anin primitive are performed using the source

tuple space concurrently, and one or more tuples exist that can satisfy both templates,

then thecopy-collect primitive either copies all the tuples or all the tuples minus

thematchedtuple that thein primitive returns (the choice is non-deterministic).

6. If a copy-collect primitive and acollect primitive are performed concur-

rently using the same source tuple space, then the number of tuples copied is non-

deterministic within the bounds of zero to the maximum number of tuples present that

match the template. The number of tuples that thecollect primitive will move will

be the number of tuples present that match the template.

If any primitive occurs concurrently with acopy-collect primitive that does not use

either a template which matches one or more tuples that thecopy-collect primitive

template matches, or the source tuple space, then there is nointerference between them.

The exception is when the primitive is either acollect primitive or acopy-collect

primitive performed on the destination tuple space with a template that matches one or

more of the tuples being copied. Then each tuple placed into the destination tuple space

is non-deterministically copied or moved by thecollect primitive or copy-collect

primitive being performed on the destination tuple space. When a value is returned by a

copy-collect primitive the copied tuplesarepresent within the destination tuple space.

Thecopy-collect primitive will never live lock – it will always complete and return a

value. Rule 4 states that if anout primitive occurs concurrently with acopy-collectprimitive

then the inserted tuple may or may not be included in the copied tuples. Is it possible for one pro-

cess to perform many primitives concurrently with another process performing acopy-collect

primitive? Within Linda there is no notion of time associated with a primitive. Therefore, with no

loss of generality it can be assumed that all primitives takethe same time. The maximum number

of out primitives that can occur concurrently with acopy-collect primitive is the number

of user processes minus one. Therefore, thecopy-collect primitive will complete provided

there are a finite number of processes. Pragmatically acopy-collectprimitive may take longer

than a singleout primitive and therefore, severalout primitives may occur concurrently with the

copy-collect primitive. This in itself is not a problem because it is impossible for the pro-

cess performing theout primitives or the process performing thecopy-collect primitive to

know that severalout primitives from the same processes have occurred, however it is up to the

implementor to ensure that thecopy-collect primitive completes and does not live lock.

To clarify what the rules mean it has been suggested[Woo96] that the primitive order should be

considered. This can be achieved by taking a trace of the primitives for a sequential Linda system,

where the primitives cannot be serviced concurrently. In such a system anin primitive and ard

primitive occurring “concurrently” will in reality produce either the trace:

[::::; in; rd; :::];
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or

[::::; rd; in; :::]:

If the template used in both operations match a single tuple,then the first trace would repre-

sent thein primitive retrieving the tuple first, and therd primitive blocking. The second trace

would represent therd primitive retrieving a copy of the tuple and then thein primitive removing

the tuple. Both traces are acceptable, and the choice of which trace occurs is non-deterministic.

This analogy covers any single tuple primitives (in, out andrd) occurring concurrently with a

copy-collect primitive. If a copy-collect primitive and twoin primitives occur “con-

currently” where the template for each matches several tuples in the tuple space, the possible traces

are:

[::::; in; in; copy-collect; :::];

or

[::::; in; copy-collect; in; :::];

or

[::::; copy-collect; in; in:::]:

Assume that before the first of these primitives occur there are n tuples in the tuple space

that match the template used in thecopy-collect primitive. Then, in the first trace the

copy-collect primitive will copy n � 2 tuples; in the second tracen � 1 tuples; and in the

third tracen tuples.

The rules described use the ideas of non-determinism currently used within the Linda model

(as described in Chapter 2). If ard primitive and anin primitive occur concurrently, and they

both use a template that can match the same tuple, then they non-deterministically compete for

that tuple. Thein primitive will always be satisfied because therd primitive does not remove the

tuple. However therd primitive will either get a copy of the tuple or block. If acopy-collect

primitive and anin primitive occur concurrently they compete for the tuple, ifthein primitive

acquires the tuple first, thecopy-collect primitive does not copy it. This is described using

the traces.

What happens if acollect primitive and acopy-collect primitive occur concurrently?

Rule 6 indicates that the same non-deterministic competition for tuples occurs. Therefore, the

collect primitive and thecopy-collect primitive compete for each tuple that matches the

template. The sequential traces force the primitives to either get all or none of the tuples because

the traces can be either:

[::::; collect; copy-collect; :::];
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or

[::::; copy-collect; collect; :::]:

The choice as to which trace is produced is non-deterministic, but the competition for indi-

vidual tuples no longer exists. In the first trace thecopy-collect primitive will not copy any

tuples, and in the second trace thecopy-collect primitive will copy all the matching tuples.

The rules appear to embody the true spirit of Linda. The tracesemantics for single tuple space

primitives provide the same semantics. However, the trace semantics when applied to the bulk tu-

ple primitives interaction (thecollect andcopy-collect primitives) provide a subset of the

possible results. The primitives could be implemented using such semantics and be valid because

the two outcomes described are achievable using the rules given.

Because of the relationship between thecollect primitive and thecopy-collect primi-

tive the informal semantics of thecollect primitive used within this dissertation are now consid-

ered similar to the informal semantics of thecopy-collectprimitive, except instead ofcopying

the tuples, they aremoved.

When the primitive returns the count of the number of tuples copied, all copied tuples are

present within the destination tuple space. Therefore, thecode segment shown in Program 4.1 will

always result in tuple spacests1 andts2 containing the same number of tuples that match the

templatehj2
integer

ji. This can be seen as the extension ofout ordering described in Chapter 2 to

cover both thecopy-collect primitive and thecollect primitive.

Program 4.1Demonstration of completion ofcopy-collect.
void demo(TS source)

{

TS ts1, ts2;

ts1 = tsc(); -- Create two tuple spaces

ts2 = tsc();

lcopycollect(source, ts1, ?int); -- copy source -> ts1

lcopycollect(ts1, ts2, ?int); -- copy ts1 -> ts2

}

Finally, on a pragmatic note in Chapter 2 a detailed description of global synchronisation and

out ordering was given and these are now both considered in the context of thecopy-collect

primitive. For many uses of thecopy-collectprimitiveout ordering is required since, without

out ordering it is difficult for one process to indicate to another that a set of tuples exist. For

example, consider Program 4.2. Assuming that both functions are passed the same tuple space and

no other processes have access to that tuple space, then ifout ordering is not guaranteed the value

of n in the functionmaster would be non-deterministic between 0 and 100. Ifout ordering is
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guaranteed the functionmaster knows that when the tupleh“COMPLETE”i appears in the tuple

space, the other tuples the functionworker produces are also present in the tuple space. If the

functionmaster is not aware of how many tuples are produced, thecopy-collectwill gather

all tuples that were produced.

Program 4.2Out ordering andcopy-collect.
worker := func(ts1);

local x;

for x in [1..100] do

lout(ts1, [x]);

end for;

lout(ts1,["COMPLETE"]);

end func;

master := func(ts);

local n;

lin(ts,|["COMPLETE"]|);

n := lcopycollect(ts, my_ts, |[?int]|);

end func;

This brings us to the second pragmatic issue, which is whether thecopy-collect primitive

requires a global synchronisation as described in Chapter 2. In Chapter 5 an implementation of

thecopy-collect andcollect primitives will be presented which does not use any global

synchronisation of tuples spaces in implementing the primitive. A global synchronisation could be

considered as necessary because, as with theinp andrdp primitives, different sections of a tuple

space could be checked at different times. Therefore, once one section of the tuple space has been

checked, a matching tuple is inserted before another section of the tuple space is searched. Under

the rules given, if anout primitive occurs concurrently with acopy-collect primitive then

whether this is copied isnon-deterministic. Therefore, if tuples are missed because they are being

inserted after that part of the tuple space has been checked it does not matter. Therefore, a global

synchronisation is not required.
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4.3 Usingcopy-collect to solve the multiplerd problem

Thecopy-collect primitive provides the functionality to overcome the multiplerd problem.

It allows several processes to concurrentlycopy the tuples they require. Consider again the ex-

ample where a tuple space is used to store a number of tuples containing peoples’ names. All the

people with the same surname are required. Using thecopy-collect primitive it is possible

to extract into a separate tuple space all the tuples with thesame surname. Hence, to extract all

people with the surnameRowstron, acopy-collect primitive is performed using the template

hj2

string

; “Rowstron”
string

ji.

<0,1,1>

<0,0,1>

<1,0,0><1,1,1>

<1,2,0><0,2,1>

<1,0,0>

<1,2,0>

<0,0,1>

<1,1,1>

<0,2,1>

<0,1,1>

image_ts
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P
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Figure 4.1: Using thecopy-collect primitive to solve the multiplerd problem.

Figure 4.1 shows the use of thecopy-collect primitive to overcome the multiplerd prob-

lem. The shared tuple space is calledimagets and the processes are called P
A

, P
B

and P
C

. Each

process creates a tuple space (imagets P
x

) to which only they have access. They then perform a

copy-collect primitive usingimagets as the source tuple space andimagets P
x

as the des-

tination tuple space. Once the tuples have been copied to thedestination tuple space each process

can retrieve each tuple in turn using thein primitive. Each process knows the number of tuples in

the tuple space because thecopy-collect primitive returns a count of the number copied, and

the process can, by destructively removing the tuples, ensure that every tuple is retrieved once and

only once without effecting the other processes. Because the tuple space cannot be accessed by

any other process the destructive removal of tuples does notaffect any other process. The example
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in Figure 4.1 has two of the processes requiring all the pixels which are set (the third field set to

one) and the other process requiring all the pixels which arenot set (the third field set to zero).

Program 4.3The worker process using thecopy collect primitive.
comp_worker := func(R,S,C);

local my_val, my_ts, todo, my_comb;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|); -- Get the tuple from R

todo := lcopycollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do -- Process all matching tuples

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

end while;

return ["TERMINATED"];

end func;

The parallel composition of two binary relations used as an example in the previous chapter,

is now used to show how thecopy-collect primitive overcomes the multiplerd problem in

more detail. The worker process using thecopy-collect method is shown in Program 4.3.

The general structure of the approach is the same as in the solutions given in the previous chapter,

with each worker process removing a tuple from tuple space R.The worker process then creates a

template using the retrieved tuple for use with thecopy-collect primitive. The second field of

the retrieved tuple from tuple space R is used as the first fieldof the template and the second field

of the template is left as a formal of type integer. Acopy-collect primitive is then performed

which copies the tuples from tuple space S to a tuple space which the worker process creates. The

count returned by thecopy-collect primitive is then used to control an iterative loop which

destructively reads the tuples from the tuple space and creates the result tuples in tuple space C.

4.4 Experimental results

The experimental results presented in this section, as in the previous chapter, are obtained using

ISETL-Linda running on a transputer based Meiko CS-1 parallel computer using the York Kernel

I. The copy-collect primitive was added to the run-time system by Douglas[DWR95], and

the implementation is naive (the approach adopted is described in Chapter 5). As in the previous
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chapter the worker process was altered to enable the number of tuples from tuple space R to be

consumed to be specified.

For the experimental results the cardinality of the binary relation R (stored in tuple space R) is

set to five and the cardinality of binary relation S (stored intuple space S) is set to 50. For every

pair in R there are four pairs in S that match, therefore the cardinality of the composition (stored in

tuple space C) is 20. This is the same configuration used in theexperimental results presented in

the previous chapter. Figure 4.2 shows the execution times for the worker processes for computing

the composition of two binary relations usingcopy-collect, the best execution time of the

other two methods (using a lock tuple with four worker processes), and the expected execution

time for thecopy-collectmethod is shown.
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Figure 4.2: Execution time for the parallel composition of binary relations when using the new

copy-collect primitive.

Figure 4.2 shows some interesting results. Firstly, the execution time using a single process

is less than the best time achievable using any number of worker processes for any of the other

methods. This is because thenumberof tuple space operations that have to be performed is sig-

nificantly smaller. This is expanded upon in Section 4.5. Thetime taken when three and four

worker processes are used is similar, for the same reason that in the stream method the time taken

for three and four worker processes is similar. The expectedresults are calculated using the time

taken for the single worker process and dividing it by the number of tuples in tuple space R, which

is five. As with the stream method, because there is parallel access it is expected that with five

worker processes, each processes a single tuple from tuple space R, and therefore, the time each
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worker takes should be one fifth of the time the single worker process takes. The actual execution

times are greater than predicted because the underlying run-time system is “saturating”; in other

words the run-time system is receiving more requests than itcan process, so becomes a bottleneck.

However the performance even with the run-time system saturating is twice as fast as the best

time produced by the semaphore or the stream methods, and a speed increase is observed as more

worker processes are used.

This shows how the new primitive can be used. The same approach can be used whenever

a multiplerd is required. Thecopy-collect primitive solves themultiple rd problem. A

worker process creates a copy in a tuple space of the tuples that the worker process requires using

thecopy collect primitive, and then destructively reads them from that tuple space. For exam-

ple, given a tuple space containing an image with each pixel aseparate tuple ([x coordinate,

y coordinate, value]) the command: copy collect(image ts, local ts,

|[?int, ?int, 1]|) copies all the tuples with a pixel value of one into the local tuple space.

Given the tuple space containing tuples representing first names and surnames. Each process

would use thecopy-collect primitive with the templatehj2
string

; “Rowstron”
string

ji, to

copy all the tuples with a surname of “Rowstron” to a separatetuple space, where they can be

destructively processed.

So far with all the experimental results the execution time for a specific cardinality of binary

relations S and R have been considered. Now the effect of making more tuples in tuple space S

match each tuple in tuple space R is considered. For this the cardinality of tuple space R is again

fixed at five. Figure 4.3 shows the execution times for five worker processes when the number of

tuples in the tuple space S that matcheachtuple in tuple space R is increased from one to 50 (the

cardinality of tuple space S is 50).

As the number of tuples in tuple space S that each tuple in tuple space R matches increases

there will be an increase in the computation time within eachworker process associated with the

calculation and placement of the result tuples into tuple space C. Although it might be expected

that the stream method should take a constant time because all tuples in tuple space S are always

read by every worker process, the actual time increases slightly. This increase is attributable to the

extra computation that the worker processes perform. The time taken for the semaphore method

increases uniformly with the addition of the extra tuples intuple space S that match each tuple in

tuple space R. The reason why the execution time increases ata greater rate than the other methods,

is that the other methods are parallel. So when the number of tuples that match each element in

tuple space R increases by one, each of the five worker processes process one more tuple. If the

method is parallel then this is performed concurrently. Because the semaphore method is sequential

the five tuples are processed sequentially leading to an increase in the execution time which is five

times greater than for the parallel methods. The execution time for thecopy-collectmethod

increases as the number of matching tuples in tuple space S increases. As more tuples match there

is extra computation costs associated with each extra tupleprocessed by the worker processes and
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Figure 4.3: Execution time for the parallel composition versus the number of pairs in tuple space

S which each pair in tuple space R matches.

there is extra communication because the number of tuple space operations is proportional to the

number of tuples in tuple space S that match each tuple in tuple space R. Within Section 4.5 why

the stream method performs better than thecopy-collect when 33 or more tuples out of the

50 are matched is considered.

4.5 Modelling the performance

How the copy-collect primitive solves the multiplerd problem has been shown by us-

ing a number of experiments. To evaluate the three methods (semaphore, streams and the

copy-collect primitive) in a more general way, a simple model of performance is produced

for each of the methods. This allows the performance of each of the methods to be evaluated using

arbitrary numbers of processes, tuples and tuples that match a template.

Let there be a tuple spaceT containingN tuples; a templatet with n of the tuples inT

matching this template; andP processes needing to perform a multiplerd concurrently. Initially,

assume thatP = 1. How many and which Linda primitives are required in order for the process

to read all the tuplesn and leave tuple spaceT in its original state?

Stream method If there areN tuples inT then each tuple will be read once using ard primitive.

Therefore, in the stream method the number of Linda primitives required is:
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No. of Linda primitives= N � rd: (4.1)

Binary semaphore method There are two approaches to implementing the semaphore method,

one uses thecollect primitive and the other uses theinp primitive. For thecollect

approach the number of Linda primitives required is: the number of primitives required for

obtaining and replacing of the lock tuple (a singlein andout); the primitive to move the

matching tuples to another tuple space (acollect); the number of primitives to remove

the tuples from that tuple space (n in); and the number of primitives to replace them inT

(n out). Therefore, the number of Linda primitives required is:

No. of Linda primitives= (n+ 1)� out+ (n+ 1)� in+ collect: (4.2)

For theinp approach the number of Linda primitives required is: the number of primitives

required for the semaphore access (anin and anout); the number of primitives to move

the matching tuples to another tuple space (n inp + n out + inp which fails); the number

of primitives to remove the tuples from that tuple space (n in); and the number of primitives

to replace them inT (n out). Therefore, the number of Linda primitives required is:

No. of Linda primitives= (2n+ 1)� out+ (n+ 1)� in+ (n+ 1)� inp: (4.3)

copy-collect method The number of Linda primitives required is: the primitive tocopy the tuples

to a tuple space (acopy-collect); and the number of primitives to remove the tuples

from the tuple space (n in). Therefore, the number of Linda primitives required is:

No. of Linda primitives= copy-collect+ n� in (4.4)

WhenP > 1 the number of primitives requiredin total will also rise proportionally with

the number of processes. Each process has to perform the samenumber of Linda primitives to

access the same tuples in the tuple space. Therefore, each ofthe equations given above must be

multiplied by the number of processes performing the operation (assuming that all the processes

wish to access the same number of tuples). The absolute primitive count is defined as the number

of primitives a set of processes need in order to perform a multiple rd.

Assuming 100 tuples in a tuple space (N = 100), Figure 4.4 shows the absolute primitive count

for the stream method, Figure 4.5 shows the absolute primitive count for the semaphore method,

and Figure 4.6 shows the absolute primitive count for thecopy-collect method. Figure 4.7

shows the absolute primitive counts for both the semaphore and stream methods on the same graph.

In all the figures the labelA stands for the absolute primitive count,n andP are as defined above,
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Figure 4.4: Absolute primitive count for the stream method for the multiplerd problem.

where the range ofn is 0 toN and the range ofP is 1 to 5, representing 1 to 5 processes performing

the multiplerd in parallel. Analysis shows that the semaphore method requires more primitives

than the stream method once 49% of the tuples are required (ie. n is 49% ofN , in this instance

n = 49).
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Figure 4.5: Absolute primitive count for the semaphore method for the multiplerd problem.

Figure 4.6 shows the absolute primitive count for thecopy-collect method. Analysis

shows that thecopy-collect method will always have the lowest absolute primitive count
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Figure 4.6: Absolute primitive count for thecopy-collect method for the multiplerd prob-

lem.

except whenn = N � 1 when the stream method will have a lower absolute primitive count.

Does this imply that thecopy-collectmethod is the best? The use of the absolute primitive

count is not the best measure, because Linda makes no assumptions about primitives being serviced

sequentially. In an ideal Linda system if two processes perform ard concurrently these would be

serviced concurrently. Therefore, as well as considering the absolute primitive counts, a count

of the number of primitives thatcannotbe performed concurrently should be considered. The

primitive counts for both the stream andcopy-collect versions are independent of the number

of processes performing the multiplerd. The stream method uses onlyrd primitives and so they

can all be serviced concurrently with otherrd primitives. Thecopy-collectmethod also uses

primitives that can be serviced concurrently. The primitive count for the semaphore method will

rise proportionally with the number of processes as each will perform anin primitive on the lock

tuple, and thenP � 1 will block. In the case of the semaphore method when using thecollect

primitive the number of primitives that cannot be performedconcurrently is:

No. of Linda primitives= ((n+ 1)� out+ (n+ 1)� in+ collect)� P: (4.5)

When using theinp primitive the number of primitives that cannot be performedconcurrently

is:

No. of Linda primitives= ((2n+ 1)� out+ (n+ 1)� in+ (n+ 1)� inp)� P: (4.6)

Figures 4.8 and 4.9 show how the count of the number of Linda primitives that cannot be

performed concurrently (L) varies as the value ofP andn are varied. In both cases the number
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Figure 4.7: Comparison of absolute primitive counts for thestream and semaphore methods.

of tuples inT , (denoted asN ) is fixed at 100. Figure 4.8 shows how the stream and semaphore

methods perform, and Figure 4.9 shows how the stream and semaphore (collect approach)

methods perform. Figure 4.8 has a Z axis representing the number of processes performing the

multiplerd
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Figure 4.8: Comparison of the non-concurrent primitive counts for the stream and semaphore

methods to the multiplerd problem.

because the number of primitives that cannot be performed concurrently in the semaphore method
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depends on the number of processes. Because both the stream and copy-collect methods

are independent of the number of processes performing the multiple rd, this information is not

required on the graph (represented by the Z axis in Figure 4.8).
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Figure 4.9: Comparison of the non-concurrent primitive counts forcopy-collect and stream

methods to the multiplerd problem.

Simple analysis indicates that when one or more processes wish to perform a multiplerd, the

copy-collect primitive method utilises less primitives if either the absolute primitive count or

the number of primitives that cannot be performed concurrently is considered, except when all the

tuples in a tuple space match. In this instance the stream method is better regardless of which count

is considered. The use of primitive counts assumes that all the primitives take the same length

of time. Pragmatically, this is not the case, but they provide an indication of the performance.

Given a specific Linda implementation the performance of themethods can be compared using

both the primitive counts. To show this the Meiko CS-1 ISETL-Linda implementation is now

considered. (See Appendix A for the characteristics of the York Kernel I which the ISETL-Linda

implementation uses).

For the implementation on the Meiko CS-1 the time cost of performing all the Linda operations

is described in Table 4.1. These timings are calculated using tuple spaces containing 100 tuples

and 10000 tuples. As the number of tuples within a single tuple space increase so do the costs

associated with matching the tuples. Therefore, the time that anin primitive and ard primitive

take is dependent on the template used and the number of tuples in the tuple space. In the worst

case all the tuples are matched, and in the best case the first tuple found matches the template.

When 100 tuples are used, the best case and worst case for anin primitive yield similar results.

When there are 10000 tuples the difference between the execution times is significant.
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Primitive Time in ticks

100 tuples 10000 tuples

Average Best case Worst case

out 71 74

in 130 124 1192

rd 128 121 1183

collect 458 17675

copy-collect 726 44290

Table 4.1: The time taken to perform the Linda operations using ISETL-Linda on a Meiko CS-1.

The primitive count models described in conjunction with the primitive timings given in Ta-

ble 4.1 for 100 tuples are used to estimate the performance ofthe different methods of the parallel

composition of binary relations on the Meiko CS-1. The timings for 100 tuples are used because

the number of tuples in a single tuple space on which primitives are performed does not rise above

100 in the parallel composition of binary relations. The absolute primitive count represents an

upper bound of the performance (worst case) and the primitive count for the number of primitives

that cannot be performed concurrently represents a lower bound for the performance (best case).

This is because the absolute primitive count represents thesequential servicing of the primitives,

whilst the primitive count for the number of primitives thatcannot be performed concurrently rep-

resents all the primitives being serviced in parallel. A distributed implementation will service some

primitives in parallel but others will be serviced sequentially.

Using the models described above andincluding the cost of performing a singleout primitive

for every tuple to tuple space C when a match is found, it is possible to predict the time taken

for the synchronisationwithin the parallel composition implementations. The expected time spent

performing synchronisations in the best case is shown in Figure 4.10 and in the worst case is shown

in Figure 4.11. These are created assuming the same program characteristics as used to obtain the

results in Figure 4.3, namely 5 worker processes, with tuplespace R having a cardinality of 5,

tuple space S having a cardinality of 50, and withn representing the number of tuples each tuple

in tuple space R matches in tuple space S.

If these expected communication timings are compared with the experimental results used in

Figure 4.3 there are a number of points that should be noted. The actual timings for the semaphore

approach are greater than the estimated times. This is because the actual timingsincludethe time

taken for the computation as well as the coordination. The calculated timings represent only the

coordination time. The actual execution times for both thecopy-collect method and the

stream method lie in between the worst and best case times. Asboth of these methods perform

the computation in parallel it is expected that the effect ofcomputation on the actual results is less

than for the semaphore approach, where the computation is not performed concurrently. In the best

case, estimated coordination times of the stream method become the fastest when approximately
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43 tuples from tuple space S match each tuple from tuple spaceR. In the worst case estimated

coordination times of the stream method are always slower. In the achieved results the stream

method becomes the fastest method when approximately 33 tuples match. This would indicate

that the run-time system is performing most of the tuple operations concurrently, considering the

computation that the actual timings include.
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Figure 4.10: Best case expected communication overheads for the three different methods to the

multiplerd problem.

The results and the primitive counts represent a fair way of comparing the best case and worse

case performance of the three methods for overcoming the multiple rd problem in general, and for

a particular implementation. The actual performance depends largely on the implementation being

used. In most implementations the cost of performing anin primitive and ard primitive should

be comparable. The cost of performing thecollect andcopy-collect primitivesshouldbe

comparable to the cost of performing anin primitive that blocks plus the time overheads to either

copy the tuples or attach them to a different tuple space. Unless thecopy-collect primitive is

implemented badly, the performance, in general, should be better than the semaphore method and

the stream method.

In the next chapter the implementation of thecopy-collect primitive is considered, and a

more efficient implementation approach is suggested, whichmakes thecopy-collectprimitive

far more efficient. Before considering the implementation of the copy-collect primitive,

the primitive is compared to other proposed primitives, andother uses of thecopy-collect

primitive are considered.
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Figure 4.11: Worst case expected communication overheads for the three different methods to the

multiplerd problem.

4.6 Comparison with other similar proposals

In Chapter 2 a number of proposed primitives were described,including acopy contents

primitive, a bounded multiplerd primitive and ard()all primitive. These primitives can all

potentially be used to overcome the multiplerd problem, and each of these primitives are now

considered in detailed. A description of their function is given in Section 2.3.2.

copy contents [NS93, NS94] This primitive is the closest to thecopy-collectprimitive. The

copy contents primitive copiesall tuples in a tuple space and does not return a count

of the number of tuples copied. This primitive has two disadvantages when compared to the

copy-collect primitive.

� The lack of “global information”.

Thecopy-collect primitive returns a count of the number of tuples copied. This

information can be used to control how the tuples are processed. The information

provides an indication to the process that performed the operation of the number of

tuples, and this process can then control how the tuples are consumed. For example, if

there are many tuples then several processes may be created to perform the processing,

and if there are only a few tuples then no other processes may need to be spawned.
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Because both thecollect andcopy-collect primitives return counts, they can

replace the primitives ofinp and rdp respectively. Thecopy contents and

move contents primitives do not replace theinp andrdp primitives. Indeed,

to overcome the multiplerd problem using thecopy contents primitive aninp

primitive would still have to be supported. This is because the processes perform-

ing the multiplerd needto know how many tuples should be consumed. For example,

how would all the people with the surname “Rowstron” be retrieved from a tuple space

containing tuples representing people’s names (as used in Chapter 3)? A process would

duplicate the entire tuple space using thecopy contents primitive, thenhow many

in primitives would the process perform to retrieve the correct tuples (containing the

surname “Rowstron”)? If too many were performed the user process will block for-

ever on anin primitive, and if too few were performed some of the people whose

surname is “Rowstron” would be missed. Extra information could be placed into the

tuple space, such as a tuple containing a counter and the name“Rowstron”, however,

such an approach can be seen to rapidly become unsatisfactory. Therefore, theinp

primitive is required, to be used to destructively remove the tuples and return a value

indicating when no more tuples are available.

� The lack of selectivity of which tuples are duplicated.

The duplication ofall tuples within a tuple space is unnecessary in order to overcome

the multiplerd problem. If entire tuple spaces are duplicated it leads to large tuple

spaces, which need to be searched, manipulated, and stored.In experience with using

the copy-collect primitive an entire tuple space is duplicated rarely, normally

selective subsets of tuples are required from a tuple space.Where an entire tuple

space was required, there was a template that matched all thetuples in the tuple space.

Obviously, there is no guarantee that tuples which match different templates will need

to be duplicated, but multiplecopy-collect primitives could be used if required.

Thecopy-collect primitive provides the ability to duplicateonly the tuples needed, and

provides enough information, in the form of a count of the number of duplicated tuples, to

make the post-processing of the duplicated tuples easy. Therefore, thecopy contents

primitive is not considered to have sufficient flexibility toovercome the multiplerd problem

in a satisfactory manner.

bounded multiple rd [Kie96] This primitive is again similar to thecopy-collect primitive.

Kielmann[Kie96] has proposed a Linda system called Objective Linda for use in open sys-

tems. When describing the background information to justify the primitive which Objective

Linda supports Kielmann[Kie96] states:

“Another approach is presented in [BWA94] and introduces a collect operation

which atomically returns all tuples matching a given template in a certain tuple
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space. This approach allows to select multiple objects to beconsumed, but in the

case of a RM-ODP trader, unrestrictedly returning the complete list of service

providers might still be too much (eg. with respect to memorysize) or at least too

inefficient.

There is also a demand for an in operation which atomically removes several

objects[tuples] from an object space[tuple space].”

There are a number of observations that should be made. Thecollect primitive re-

turns only a count of the number of tuples movednot the tuples themselves, and the

copy-collect primitive returnsonlya count of the number of tuples copied. The under-

lying run-time system controls the placement of tuples, andtheseneed noteither individ-

ually or as a collective, be moved to the processor on which the process that performs the

collect primitive resides.

Kielmann then continues to propose the bounded primitives as described in Chapter 2. The

bound multiplerd primitive copies a number of tuples (objects) from a tuple space (object

space) to a local data structure, called a multi-set. The maximum and minimum number

of tuples to be copied can be specified, as can a timeout for howlong the primitive should

block. Kielmann[Kie96] states:

“Here,a Multi-set is a simple container type with the operations put and get and

the predicate nbritems denoting the number of items stored inside.”

The boundedrd primitive can be used to overcome the multiplerd problem. However,

there are a number of observations that make such a primitiveless attractive than the

copy-collect primitive:

� Firstly, when being used to overcome the multiplerd problem the primitive would not

be used with bounds, all tuples that match the template are required. Therefore, the

statement that: “complete list of service providers might still be too much (eg. with

respect to memory size) or at least too inefficient”, appliesto the boundedrd primitive.

The management of the storage of tuples with thecopy-collect primitive is left

to the underlying run-time system.

� Secondly, the primitive appears unnatural, particularly in its use of a multi-set. A

multi-set is a tuple space. Therefore, it would be more logical to say that the bounded

rd primitive returns a tuple space, with the copied tuples present within that tuple

space. Then, a simple abstraction is to specify the tuple space into which the copied

tuples are placed, which isvery similar to the original proposal for thecollect

primitive[BWA94], where only the destination tuple space is specified (the source is

assumed to be the global tuple space).
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As the distinction is made between tuple spaces and the returned multi-set, a number

of operations which can be performed on multi-sets have to beprovided, and Kielmann

proposed the operations:put, get andnbr items. The use of the operationnbr items

allows the number of copied tuples to be calculated for use within the process to ensure

all the tuples are found when being removed from the multi-set. The put and get

operations would map onto the Lindain (or inp) andout primitives.

The use of a separate data structure, the multi-set, is not necessary. The same operations

can be performed upon a tuple space as a multi-set, except forthe counting of the number

of tuples within a tuple space. Thecopy-collect primitive provides this information.

Hence thecopy-collect primitive appears more natural and a closer fit with Linda than

a boundedrd primitive. If there is a need for a bounded primitive that copies a minimum

or maximum number of tuples then thecopy-collect primitive could potentially be

extended to support this.

rd(template)all(function) [AS91] This primitive is another primitive which is similarto the

copy-collectprimitive2. This primitive is interesting because computation is combined

with a primitive. The function is applied to each of the tuples that is matched by the template

provided. The description given is an overview of the primitive rather than a detailed de-

scription. The primitives are stated not to be atomic, and therefore the set of tuples that are

being matched can potentially change. Anderson[AS91] states that a “snapshot” semantics

were not used because of the implementation difficulties such semantics pose. There are a

number of questions about the semantics of therd()all primitive and its relations:

� Is the primitive guaranteed to terminate? If a process is constantly inserting tuples does

this primitive terminate?

� Does therd()all primitive automatically terminate once all matching tuples are

found, given that anrdp()all primitive is also proposed?

� What happens to any tuples that the function provided withinthe primitive produces?

If they match the template used in the primitive are they matched?

� The function within the primitive appears to be able to side-effect tuple spaces. Do

the functions run concurrently? If not this allows deadlockconditions to be introduced

trivially, by placing dependencies between the functions used in the primitive.

� Where is the function given in the primitive executed?

� How is the interaction between severalall primitives managed?

The semantics for such a primitive would be complex. The combining of computation and

communication appears to be against the natural philosophyof Linda. A parallel program

2The idea ofrd-loops is proposed by Leichter[Lei89]. This similar to therd()all primitive considered here.
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consists of coordination and computation. The coordination is provided by a coordination

language, and the computation provided by a programming language. The primitive does not

necessarily allow the same level of control as thecopy-collect primitive. For example,

because thecopy-collect primitive returns the number of tuples copied it is possible

for the program to control the number of processes that are used to consume the tuples.

Therefore, if there are a small number of tuples one process can be used, and if there are

many tuples more processes can be used. Therd()all primitive does not provide the

same flexibility as thecopy-collect primitive.

Therd()all primitive can be emulated using thecopy-collect primitive, and this is

shown in Program 4.4. This particular implementation ensures that therd()all primitive

terminates, tuples produced by the function in the primitive are not matched by the primi-

tive itself, and the function can deadlock if the function relies on tuples produced by other

instantiations of the same function.

Program 4.4Emulating ard()all primitive using thecopy-collect primitive.
rd_all := proc(ts, template, f);

-- ts is the tuple space, template is the template,

-- and f is the function

local my_ts, my_tuple;

my_ts := NewBag;

todo := lcopycollect(ts,my_ts,template); -- Get the tuples

while (todo > 0) do -- Process the tuples

todo := todo - 1;

my_tuple := lin(my_ts,template); -- Get a tuple

f(my_tuple); -- Apply the function

end while;

end proc;

Having considered other proposed primitives that could be used to solve the multiplerd prob-

lem, it is possible to conclude that thecopy-collect primitive is the most suited because it

supports two unique features: it allows the user to specify atemplate for tuple matching and there-

fore is selective in the tuples it duplicates; and it returnsonly a count of the number of tuples

copied, not the tuples themselves. A number of other issues are now considered.

Hasselbring[Has94] discusses the addition of primitives,specifically to “extend generative

communication with data parallelism”, which is seen as the motivating factor behind the proposal
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of therd()all (and its relatives). Hasselbring[Has94, page 82] concludes that:

Because of these problems we do not consider to extend generative communication

in PROSET with data-parallel operations. Such an extension would cause the serious

problems both for the definition of the semantics and for the implementation.

However, Carriero[CG90a] states there are three paradigmsfor coordinating in coordination

languages (particularly with reference to Linda);result parallelism, agenda parallelismandspe-

cialist parallelism. When discussingagenda parallelism[CG90a, page 19] Carriero states[CG90a,

page 20] that:

“Data parallelism is a restricted kind of agenda parallelism.”

As agenda parallelism is supported within Linda it is logical to conclude the data parallelism

is supported, and indeed in Carriero et al.[CG92] the ability of Linda to express data parallelism

is discussed in depth. The need for new primitives, like thecopy-collect primitive, is not

driven by the need to introduce new coordination paradigms to Linda, but by the need to be able

to perform certain operations satisfactorily. In the case of thecopy-collect primitive this is a

multiplerd operation.

Finally, a brief comparison between the use of thecopy-collect primitive and the use of

first class tuple spaces to overcome the multiplerd problem is considered. In Section 2.3.1 a de-

scription of multiple tuples was presented. If tuple spacesare first class, as in MTS-Linda[Jen93]

and Bauhaus Linda[CGZ95] then can they be used to overcome the multiplerd problem? It is

possible to produce a copy of an entire tuple space, by simplyusing therd primitive to take a copy

of it. This solution is similar to merging the boundedrd and thecopy contents primitives.

All the tuples in a tuple space can be copied into a local data structure within a single process. The

tuples which are then required can be retrieved from that data structure and processed. However,

as with the boundedrd primitive, what happens if the local memory is not large enough to store

the tuple space? Thecopy-collect primitive does not return the tuples so they remain stored

within the run-time system, which can control their placement. Also, operations that can be per-

formed on a tuple space stored within a process would have to be used, to at least retrieve the tuples

from the data structure. Given the implementational difficulties (see Section 5.5) that having first

class tuple spaces, combined with the unanswered questionsthat remain about how tuple spaces

can be manipulated, and that the copying of a tuple space involves the retrieval of an entire tuple

space, thecopy-collect primitive is still required if tuple spaces are first class objects.

4.7 New coordination constructs

In this chapter a new primitive was presented,copy-collect. It has been shown how this

primitive solves the multiplerd problem. In this section another use of thecopy-collect
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primitive is considered, when thecopy-collect primitive is used for the detection of comple-

tion of worker processes. Many Linda programs are written ina master worker style of parallelism

(or agenda parallelism)[CG90a]. This means that there are anumber of worker processes work-

ing concurrently with a single master process overseeing the worker processes. With this style of

Linda programming usually, when a set of worker processes are all blocked, they have reached a

completion state. Once this has been identified by the masterprocess apoison pill is passed to the

worker processes. Program 4.5 shows the basic structure of aworker process that uses a poison

pill. The worker process keeps removing tuples which contain “information” to be processed. This

is repeated until the worker process reads a tuple which has avalue that it recognises as a “poison

pill”. Once the poison pill has been identified the worker process terminates, knowing that all the

required work has been performed by the set of worker processes. To ensure that the other worker

processes terminate as well, the process replaces the poison pill tuple before terminating. The use

of poison pills has been well documented[CG89a, Lei89, CG90a].

Program 4.5Example of the use of poison pills in a worker process.
int worker(void)

{

int task_id;

in("work",?task_id);

while (task_id != POISON_PILL)

{

process_task(task_id);

in("work",?task_id);

}

out("work",POISON_PILL);

return 0;

}

How does the master process which produces the poison pill know when to produce it? If

the poison pill is produced before all the tasks have been consumed by the worker processes,

they may terminate before completing all the work. In the simplest case the consumer process

consuming the results produced by the worker processes knows how many results are expected.

Once the consumer process has consumed the required number of results it produces the poison

pill tuple and thus initiates the termination of the worker processes. The occasions when the

consumer process knows the number of results required is limited and the more usual approach is

to use a tuple as a global counter. The worker process using a tuple as a global counter is shown

in Program 4.6 where the tupleh“count”
string

; 0

integer

i is the tuple which is used as the global

counter. The procedurestart spawns a number of worker processes which consume tuples, and
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a functionproducer. The functionproducer creates a hundred tuples with a string and an

integer in each tuple. These tuples are consumed by the spawned worker processes (the function

consumer).

Program 4.6Example of the use of counters and poison pills.

int producer(void) int consumer(void)

{ {

int x, value; int task_id, value;

for (x = 0; x < 100; x++) while (true)

{ {

in(uts, "count",?value); in(uts, "work",?task_id);

out(uts, "count",value+1); if (task_id == POISON_PILL)

out(uts, "work",x); break;

} process_task(task_id);

return 0; in(uts, "count",?value);

} out(uts, "count",value-1);

}

out(uts, "work",POISON_PILL);

return 0;

}

void start(void)

{

int x;

out(uts,"counter",0);

for (x = 0; x < WORKERS; x++)

eval(uts, "consumer",consumer());

eval(uts, "producer", producer());

in(uts, "producer",0);

in(uts, "count",0);

out(uts, "work",POISON_PILL);

}

The main process waits until the producer has finished, and then waits for the counter tuple to

reach zero. Each time theproducer function places a “work” tuple in the tuple space the global

tuple counter is incremented by one, and every time a worker process consumes a “work” tuple
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it decrements the global tuple counter by one. If a worker process creates more work tuples then

it increments for each tuple it produces. The functionstart blockswaiting for theproducer

function to finish. Once theproducer function has finished thestart function then again

blockswaiting for the global tuple counter to have a zero value. When the global counter is zero

all theconsumer functions will be blocked, and all the “work” tuples will have been processed.

When thestart function becomes unblocked it places the poison pill tuple in the tuple space so

initiating the termination of all theconsumer functions.

The producer and consumer functions execute concurrently.The global counter tuple can

become a bottleneck, because all the worker processes and the producer process compete for the

tuple. When updating the global counter, the tuple containing it has to be removed from the tuple

space, the counter updated, and then a new tuple created in the tuple space with the new global

counter value. This means that the access of the global counter is sequential. If the program is

coarse grained this is not such a problem as few processes mayneed to concurrently update the

counter. However, as the granularity of the program is decreased, or the number of processes being

used increases, the regularity with which multiple processes want to update the global counter

concurrently increases. Therefore, this single tuple actsas a bottleneck for the entire system. An

alternative approach using thecopy-collect primitive is shown in Program 4.7.

In Program 4.7 there is a counter foreveryprocess which wishes to access the global counter.

The worker processes consuming the work tuples no longer decrement a single global counter

every time a work tuple is consumed but rather decrementany one of the counters. When the

producer creates a work tuple it incrementsanyone of the counters. A worker process can create

more work tuples, by simply producing them and updating the counter as appropriate. When all the

counters summed have a value of zero, and the producer process has either terminated or indicated

that it has stopped producing work tuples, then all the work tuples that have been produced by

the worker processes and the producer process have been processed, and the worker processes are

blocked waiting for more work tuples.

How can a check be made to see if the counter tuples summed are zero? This is achievable

using thecopy-collect primitive to “grab” a copy of the counter tuples using the template

hj“count”
string

;2

integer

ji. If there are less counters copied than exist then this meansthat at least

one process is currently updating a counter and therefore atleast one of the worker processes is still

working and a completion state has not been reached. If all the counter tuples are copied then all

the counters are summed to check if the total is zero. If the total is zero, then the worker processes

have completed and the poison pill can be inserted into the tuple space. In order to perform the

check a tuple space is created into which the counter tuples are copied. The repeated creation of

a tuple space in the checking loop will result in a large number of unreachable tuple spaces being

created. Unreachable in the sense that they contain tuples but the tuple space handle is out of

scope and not stored in a tuple space. Current work by Menezeset al.[Men96] shows that garbage

collection of such tuple spaces is achievable.
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Program 4.7Example of the usage of thecopy-collect primitive and poison pills.

int producer(void) int consumer(void)

{ {

int x, val; int task_id, value;

for (x = 0; x < 100; x++) while (true) {

{ in(uts, "work", ?task_id);

out(uts, "work", x); if (task_id == POISON_PILL)

in(uts, "count",?val); break;

out(uts, "count", val+1); process_task(task_id);

} in(uts, "count", ?value);

return 0; out(uts, "count", value-1);

} }

out(uts, "work",POISON_PILL);

return 0;

}

void start(void)

{

int count, mts, finished = false;

for (count = 0; count < WORKERS; count++) {

eval(uts, "consumer",consumer());

out(uts,"count",0);

}

eval(uts, "producer", producer());

out(uts,"count",0);

in(uts, "producer", 0);

while (finished == false)

{

mts = tsc();

if (lcopycollect(uts, mts, "count", ?int) == WORKERS + 1)

if (sum_tuples(mts) == 0)

finished = true;

}

out(uts, "work", POISON_PILL);

}

By creating one counter tuple for each process which accesses the counter, the counters will
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never act as a bottleneck. Any process which wishes to accessa counter tuple will be able to do so.

In the example given all the counter tuples appear the same. However, it is possible to have each

process maintain its own tuple in the tuple space which represents its current state. For example,

each process could have its own counter, which would be used to determine not only when all

the processes have completed but also the number of work tuples a worker process had consumed

and produced. Thecopy-collect primitive has been used in this way in a parallel algorithm

for stable assignment[WR95]3. In the program for the stable assignment problem completion of

the assignment occurs when all the processes are blocked. The state of each process is stored

in a tuple in a tuple space. Thecopy-collect primitive is used as described above to detect

completion by “grabbing” the state tuples for all the processes. Once they have been “grabbed”

they are checked to see if there is one tuple for every processand if the process’s state contained

in the tuple is correct for completion to occur.

Which of the two methods, the use of a global counter or the polling of distributed state using

thecopy-collectprimitive, is better is a subjective question? The use of thecopy-collect

primitive follows more in the asynchronous nature of the Linda model, but the continuous polling

may cause extra load on the run-time system. Alternatively,the use of a global counter requires a

global tuple shared by all the processes which can become a bottleneck.

4.8 Conclusion

The proposal of new primitives for Linda is common place. Section 2.3.2 outlined some of the

more sensible suggestions. The addition of new primitives should not be motivated by the need

to make something easier for the run-time system implementor, or to make something which is

implicit (using compile-time analysis), explicit. Thecopy-collect primitive solves a real

problem with Linda and the expressive power of the primitivehas been shown through the use of

experimental results and predicted results.

What primitives are required if multiple tuple spaces are adopted within the Linda model? The

answer to this is that thecollect primitive and thecopy-collect primitive are required.

The justification for thecollect primitive is given in Butcher at al.[BWA94]. The justification

for thecopy-collect primitive is the multiplerd problem as specified in Chapter 3. Are any

other primitives needed when multiple tuple spaces are added to the Linda model? So far there

appears to be no requirement for more general primitives, such as entire tuple space copies or

moves. These more general primitives could potentially be created using a number ofcollect

or copy-collect primitives if they were required.

This leads to the second question presented in Chapter 1. Howcan the bulk primitives of

collect andcopy-collect be implemented efficiently within an open Linda implementa-

3This was originally known as thestable marriage problem, but in these politically correct times people preferstable

assignment problem.
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tion? So far, the implementation of thecopy-collect primitive has not been addressed in any

depth. In the next chapter the implementation of thecopy-collect primitive is considered. By

combining implicit information about multiple tuple spaces and knowledge about the use of the

copy-collect (andcollect) primitives a novel Linda run-time system is proposed.



Chapter 5

The implementation of bulk primitives

5.1 Introduction

Having presented the newcopy-collect primitive in Chapter 4, in this chapter the efficient

implementation of both thecollect andcopy-collect primitives is considered. These bulk

primitives require multiple tuple spaces, and creating an efficient implementation of multiple tuple

spaces provides a foundation for a fast and efficient implementation of the bulk primitives. The

original inspiration came from observing the use of the bulkprimitives in programs using the York

Kernel I with ISETL-Linda on the Meiko CS-1.

In this chapter a new kernel is described called the York Kernel II, which has been fully imple-

mented. The performance of the York Kernel II is shown in Chapter 6, and Chapter 7 gives a de-

tailed proposal for the extension of the ideas presented in this chapter to create a truly hierarchical

kernel. Before the techniques used in the York Kernel II are described, a detailed review of imple-

mentations is given in the next section and a “naive” approach to implementing bulk primitives is

described.

5.2 Review of implementations

It has already been alluded to that implementations can be classified as either open or closed

implementations. All Linda implementations require some run-time system which is referred to as

thekernel. In some implementations this is a set of library routines which are linked in at compile

time, in other implementations it is a single separate process, and in some other implementations

it is a set of distributed processes. If the kernel is distributed then the different processes will

be referred to askernel processes. Different implementations and implementors refer to these

kernel processes by different names, for exampletuple space manager, TS-managerandTSMhave

all been used. The termkernel process, will be used regardless of what the authors originally

christened their processes.

A closed implementationis considered an implementation which requires information about

79
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all processes which are to communicate via tuple spaces to beavailable when the kernel starts.

The implication of using a closed implementation is that processes cannot leave and join at will,

because information about the processes that are to communicate is required when the kernel

starts. Most closed implementations require either the object code or source code for all processes

to be available at link or compile time. Such closed implementations have the advantage of being

able to use compile-time analysis, and therefore, normallyconsist of two sections; a pre-compiler

(or compiler) and a kernel (either distributed or non-distributed). The compilers perform some

form of compile time analysis to enable better control and management of tuples. Most early

implementations of Linda were closed implementations and were produced by researchers at Yale

University[Car87, BCG89, Lei89, Zen90], where Linda was originally created.

An open implementationis defined as an implementation where the processes communicat-

ing through tuple spaces need no information about the processes with which they share tuples

and vice-versa. Also the kernel requires no prior knowledgeabout processes when it starts.

This means that processes (programs) can leave and join at will, because no information about

processes (programs) is required when thekernel starts. The communicating processes can be

written independently, and even in different programming languages. Open implementations

consist of a kernel and sometimes a pre-compiler or compiler. The role of the pre-compiler is

normally to provide a more natural syntax for the Linda primitives embedded in the host lan-

guage. Because not all the processes are available to the pre-compiler less analysis of tuples

and tuple usage can be performed. There have been several open implementations, including

[DWR95, RDW95, SCM93, Pin91, Ams95, FGY95, Ban96, Tol95a].

5.2.1 Open implementations versus closed implementations

Most of the recent work has been performed on the developmentof open implementations. The

performance achievable by open implementations is currently below that of closed implementa-

tions which use compile time analysis because of the performance increases that compile time

analysis can provide. Closed implementations have the ability to alter the kernel’s fundamental

characteristics based on knowledge of how a program uses tuples. This should lead to a reduction

in the number of messages being sent between the user processes and the kernel, and as the com-

munication costs are significant, there should be an improvement in performance. The best closed

implementation using compile-time analysis is the SCA C-Linda, a commercial system based on

the implementations produced at Yale University.

However, the drawback with closed implementations is that they are restrictive. Most of the

closed implementations are used formultiprocessing[Has94] (a single application utilising several

processes) rather thanmultiprogramming[Has94] (many applications possibly utilising several pro-

cesses). With multiprocessing it is easier to control the whole system, a group of programmers cre-

ate the application and they are able to design the coordination patterns of the application. There

is little use of spatial and temporal separation, because all the processes are available at compile
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time. Whereas multiprogramming uses more of the general features of Linda, such as the ability

to support processes which are spatially and temporally separated[Ban96, Kie96, CG90b]. Appli-

cations need to be able to join and leave the kernel at will. Also open implementations support

the concept of persistence of tuple spaces. One applicationcan place information in a tuple space

and then another application can use that information at anytime in the future. Persistent tuple

spaces have been likened to files within a file space[Gel89]. Information can be placed within a

tuple space as it would be placed into a file, and then retrieved at a later date.

5.2.2 Closed implementation techniques

Carriero[Car87] implemented the first Linda system for bothshared memory parallel computers

(Encore Multimax and Sequent Balance) and a distributed memory parallel computer (S/Net).

The Encore Multimax and Sequent Balance implementations relied on the use of compile-time

analysis. The compile-time analyse involved the examination of the tuples and templates to enable

efficient data structures to be constructed for storing the tuples. The analysis specifically examined

field types and actuals present within the templates and tuples. Once this information is known

the fields which need to be matched at run-time can be calculated, and redundant fields can be

removed. The shared memory implementation placed the data structure in which the tuples are

stored in the shared memory. The distributed memory implementation on the S/Net did not use

any compile time analysis and simply replicated a simple data structure for storing tuples within

each processor module of the computer, and used broadcasts to all nodes to ensure that the data

structures were kept synchronised.

The same compile time analysis techniques used in the EncoreMultimax and Sequent Balance

implementations are used by Bjornson et al.[BCG89, Bjo92] and Zenith[Zen90]. However, both

these implementations examined how the kernel could be implemented for distributed memory

parallel machines where the replication of all tuples on allthe nodes is unacceptable. In these

implementations the kernel is distributed over several processors within the parallel machine and

the tuples stored on one of the many kernel processes. The tuples are distributed across the kernel

processes using a hashing function. For a given tuple the hashing function identifies a unique kernel

process for that tuple. For a given template the hashing function identifies the kernel process on

which a matching tuple would reside. The kernel architecture used within these implementations

provides the basic architecture that has been widely used inmost kernels since then.

The next major advancement of compile time analysis was again introduced by

Carriero[CG91a, CG90b, CG91b]. Instead of just analysing the tuples and templates to gen-

erate efficient data structures, and detect which fields needto be matched at run-time, the compiler

actually performed “partial evaluation” of the Linda primitives. The basic approach is to recognise

how tuples are being used and then implement a suitable approach to deal with the coordination

patterns. For example, if there are a number of processes performing in("semaphore")

followed by out("semaphore") the compile-time system can recognise this coordination
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pattern. Once recognised the kernel at run-time can create acounter to act as that particular tuple.

Whenever anin("semaphore") is performed the kernel simply decrements the global counter

if it is greater than zero otherwise the primitive blocks. Whenever anout("semaphore") is

performed the kernel increments the counter. The compile time analysis recognises a particular

coordination pattern (in this case a tuple being used as a semaphore) and instructs the kernel to

use a more efficient mechanism to control that tuple. The kernel is also able to ensure that the

mechanism is placed in a kernel process close to the user processes using the semaphore. The

compile time analysis is also capable of recognising when tuples are being used as global counters,

and instead of removing the tuple, updating it and then replacing it, the operation is implemented

as a counter stored within the kernel1. The analysis also improves the placement of tuples, for

example with the ability to detect that tuples can only be consumed by a particular user process

implies that the tuples can be sent directly to that user process. Also, if a tuple, once produced,

is only non-destructively read then it can be broadcast to all user processes that could potentially

access it.

The commercial version of C-Linda, SCA C-Linda, is based on the work of the Yale University

researchers[Car87, BCG89, Lei89, Zen90]. More optimisations have probably been developed for

compile time analysis by SCA but have not been published due to commercial considerations.

Work outside Yale University on closed implementations hasalso been performed. This has

mainly concentrated on the development of “hierarchical” kernels[dHM91, CdHMW92, CW92,

MP93]. The underlying idea is that by grouping processes which “share” tuples a more efficient

implementation can be made.

Matos et al.[MP93] have created an implementation based on the use of multiple tuple spaces

called Linda-Polylith. The multiple tuple space model adopted is a hierarchical one. The compile

time analysis can be considered to produce a tree, where the nodes represent a tuple space and

the leaves represent user processes. If a process is to access a tuple space then the process must

be a descendent of the node which is the tuple space. The root node is the global tuple space,

so all processes can access it. The problem with such an approach is the fixed nature of the

communication allowed. A tuple space handle cannot be passed to other processes because they

are fixed at compile time. However, the concept of a hierarchical kernel is an interesting one, and

is used in Chapter 7. A more in depth description of Linda-Polylith is given in Section 5.5.1.

Clayton et al.[CW92, dHM91] described their kernel as a hierarchical kernel, however, it ap-

pears to use a flat structure of their kernel processes. They use compile time analysis to group

tuples in a similar manner as Carriero[Car87] to allow distribution across a number of kernel pro-

cesses. They also use compile time analysis to create a static placement mechanism for spawned

processes[dHM91, CdHMW92]. This relies on a machine description; compile time information

about when processes are spawned; and heuristic rules to decide statically (at compile time) where

the processes should be placed.

1See the description of theupdate primitive in Chapter 2.
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Within this section a brief overview of the role of compile time analysis within closed imple-

mentations has been presented. The kernel implementation which is described in this chapter is an

open implementation. Most of the compile time analysis techniques described here are not suitable

for open implementations because they require informationwhich is not available. There are a few

of the compile time analysis techniques that can be used, forexample the conversion of anin/out

pair (as described in Section 2.3.2) into a single operation. However, within the context of this dis-

sertation the primary interest is with the implementation of the copy-collect primitive (and

the bulk primitives) rather than other optimisations that are already well known and documented.

There are many similarities between the kernels used in closed implementations and those used

in open implementations. In many ways the kernels currentlyused for open implementations are

cut down versions of the kernels used in closed implementations. In the next section an overview of

current techniques which are used in kernels (appropriate for open implementations) is presented.

5.3 Kernel implementation techniques

The basic role of a kernel in an open implementation is to manage tuples. It “receives” messages

containing instructions (which normally map onto the Lindaprimitives), it processes these mes-

sages, and returns, if appropriate, a tuple or reply message. All kernels have a number of basic

characteristics which are:

� Tuple distribution, which is how the tuples are going to be distributedacrossa number of

kernel processes,

� Tuple format, which is the format of the tuples,

� Tuple storage, which is how the tuples are stored within a single kernel process, and

� Eval implementation, which is how theeval primitive is implemented.

The characteristics are not disjointed and making decisions about using one approach for one

characteristic can often limit the choices for another characteristic. The tuple distribution mecha-

nisms and the implementation ofeval are now considered in more detail.

5.3.1 Tuple distribution

How are sets of tuples distributed across the kernel (as opposed to within kernel processes)? There

are four approaches used within current kernels to controlling the distribution of tuples across a

kernel[ACGK88, CSS94, Cam96]. These four approaches are:

Centralised This is where the kernel is a single process. All tuple space operations are sent to

this single process, and all the tuples are stored in it.
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The advantages of such an approach is that the kernel is simple and all the tuples are kept

together which means it is easy to take a “snapshot” of the current state of the tuple space.

This property has made the centralised approach popular in many implementations support-

ing fault tolerant tuple spaces, such as PLinda[JS94, Jeo96] and Paradise[Ass96].

The disadvantage of having a centralised kernel is that the single kernel process becomes

a bottleneck. As more processes try to perform tuple space operations concurrently the

kernel simply cannot service them fast enough. If either a small number of user processes

are to be used, or the number of tuple space accesses that a setof user processes are to

perform is low then a centralised approach provides acceptable performance. This type of

approach is used in Parlin[SCM93], TsLib[SVS94], PLinda[JS94, Jeo96], Paradise[Ass96]

and Glenda[SAB94].

Uniform distribution This is where the kernel is distributed (there is more than one kernel pro-

cess) and the tuples are distributed evenly over the kernel processes. This is often achieved

by every user process having two sets of kernel process identifiers called anin-setand an

out-set. Whenever a tuple is placed into a tuple space the tuple is broadcast to all the ker-

nel processes in theout-set. Whenever a tuple is required from a tuple space the request is

sent to all the kernel processes in thein-set. If the tuple is retrieved using anin primitive

then all the kernel processes in thein-set have to synchronise to update the tuple spaces

to ensure that two user processes cannot retrieve the same tuple. If there aret tuple space

servers the cardinality of theout-setcan vary from one tot (and the cardinality ofin-set

will vary from t to one). All theout-setspresent within the user process must include a

member from each of thein-setsin all of the user processes and vice-versa. Carriero’s

S/Net implementation[Car87] uses this approach with anin-setbeing a local kernel process

(one that resides on the same processor as the user process) and theout-setbeing all kernel

processes. This is because the S/Net provided a cheap broadcast function. If this kind of

approach is required then it is more common to adopt an approach known asintermediate

uniform distribution.

Intermediate uniform distribution This is a particular case of uniform distribution. If there are

t nodes then the cardinality of both thein-set and theout-setare
p

t. This is shown in

Figure 5.1.

This variant of uniform distribution has been proved the most optimal uniform

distribution[ACGK88] in terms of the number of nodes involved in an in prim-

itive and an out primitive. This particular approach is adopted in the Linda

machine[ACGK88, KACG87, KACG88], where the bus that joins the different Linda

nodes provides the arbitration necessary to ensure that thetuple spaces remain consistent

when severalin primitives are performed by different processes concurrently. A number

of other implementations have used the same approach, X-Linda[Faa91] (for transputer



5.3. KERNEL IMPLEMENTATION TECHNIQUES 85

in−set 1

in−set 2

in−set 3

in−set 4

out−set 2 out−set 3 out−set 4out−set 1

4
out−set

4
out−set

4
out−set

4
out−set

in−set
1

in−set
1

in−set
1

in−set
1

in−set
2

in−set
3

in−set
4

in−set
2

in−set
2

in−set
2

in−set
3

in−set
3

in−set
3

in−set
4

in−set
4

in−set
4

3
out−set

2
out−set

1
out−set

1
out−set

1
out−set

1
out−set

2
out−set

2
out−set

2
out−set

3
out−set

3
out−set

3
out−set

Figure 5.1: Intermediate uniform distribution using 16 kernel processes.

meshes) and the Bag-machine implementation[Tol95b] (network of workstations). In these

cases the communication costs of synchronising the duplicated tuples is too great[Faa91] to

make the method efficient without specialist hardware support (as in the Linda machine).

Whenever a tuple is retrieved by a user process from a kernel process, the kernel processes

which are members of thein-set used by the user process have to determine which can

provide a suitable tuple. If many kernel processes can provide a suitable tuple then one

has to be chosen. Once the kernel process has been chosen it then has to inform the kernel

processes that are in the sameout-setthat the tuple is being removed. Without the support

of special buses such an approach requires a large amount of communication to control

all the arbitration that is needed[Faa91]. Tolksdorf[Tol96] has created a kernel that can

dynamically change over time allowing the number of kernel processes to be both increased

and decreased, where the distribution strategy is based on intermediate uniform distribution.

This leads to the final general type of tuple distribution, Distributed hashing.

Distributed hashing Distributed hashing is another distribution mechanism foruse in distributed

kernels, and the kernel process which stores a particular tuple is chosen by using the proper-

ties of the tuple or template being used. In order to do this a hashing function is used which
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when applied to a tuple or template provides the kernel process on which either the tuple

should reside, in the case of a tuple, or where a matching tuple would reside in the case of

a template. Hashing is discussed in detail by Bjornson[Bjo92], and is used as the basis for

most open implementations, including several previous implementations at the University of

York[DWR95, RDW95]. The aim is to develop a hashing functionthat has two properties.

Firstly, this should provide a unique mapping between everytuple and a template which

matches it to a single kernel process and secondly it should provide a good distribution of

the tuples over the kernel processes. This has the advantagethat the kernel process given by

the hashing algorithm will contain a matching tuple, if there is one in the tuple space, which

removes the problems of searching multiple kernel processes. However, pragmatically this

has only been achieved effectively in closed implementations. For open implementations

no general purpose hashing algorithms have been created because of the limited amount of

information potentially provided within a template and thelack of compile-time analysis of

all tuples and templates used within a system. Therefore, inopen systems, hashing functions

are chosen that enable everytuple to be hashed to a unique kernel process and a template

hashed to a set of kernel processes. In the best case the cardinality of this set will be one

because the information the hashing algorithm uses for a tuple is present in the template.

The request for the tuple is then either broadcast to all the kernel processes produced by the

hashing algorithm for a particular template, or to a particular kernel process. If there is a

broadcast to more than one kernel process then some form of arbitration has to be performed

by the user process (transparent to the Linda programmer) asthere may be more than one

tuple returned. If the request is sent to a single kernel process and that kernel process cannot

find the tuple it will then broadcast the message or pass it to another kernel process. The

original kernel process then deals with the arbitration. Aninteresting point is that the kernel

created by Bjornson[Bjo92] provides dynamic analysis of tuple accesses. Therefore, if a

particular process is consuming tuples of a particular kind, then the hashing functions in the

user processes are dynamically altered (by messages from the kernel) to send the tuples to

the kernel process that is local to the user process consuming the tuples. This technique is

calledbucket switching.

The choice of the distribution approach used depends largely on the requirements of the system.

Most current implementations use the distributed hashing approach, because it is more efficient and

it does not require the synchronisation of kernel processesin out-setswhenever a tuple is destruc-

tively retrieved. The kernel developed in this chapter usesan approach based on the distributed

hashing method, which is discussed later in this chapter.

5.3.2 Theeval primitive

In Chapter 2 theeval primitive was described. To reiterate; theeval primitive creates anactive

tuple, which is a tuple with one or more of the fields a functionwhich are evaluated concurrently.
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Whenever the evaluation of a particular field is completed the value produced is placed within the

active tuple. Once all the fields have been evaluated the active tuple becomes a passive tuple.

Linda 1 did not contain aneval primitive, but the first implementations of Linda supporting

what is now called Linda 2, contain aneval primitive and introduce the concept ofactivetuples.

The need for active tuples appears unclear in the early implementations as they cannot be matched

or manipulated by any user process.

Implementation strategies vary from not providing any sortof eval primitive, through

mapping theeval primitive onto the basic spawning characteristics of the system being

used (for example, Glenda[SAB94], PLinda[JS94], eLinda[WC95] and York Kernel I (PVM

version)[RDW95]) to providing a mechanism that literally places an “active tuple” within the

tuple space that can be manipulated by other processes, for example MTS-Linda[NS94] (although

not fully implemented).

The creation of a tuple in the tuple space when all the functions have been evaluated appears

desirable. It provides a simple and effective mechanism to allow other processes to detect when

a set of processes have terminated. Allowing active tuples to be retrieved raises many questions.

How are active tuples matched, and in particular how is a fieldwhich is a process matched? How

does a process know if it is getting a process or a value? What happens to the matched process and

what does it mean to perform ard primitive matching an active tuple?

Nielsen et al.[NS94] discusses these issues, proposing that matched processes are bound to

variables, and the addition of atouch primitive which forces the functions to be evaluated before

the tuple can be retrieved. The example given in Nielsen et al.[NS94, page 27] implies that the

touch primitive is given a template that matches the tuple. The ability to manipulate active tuples

raises many questions about how this should be managed and implemented, which have not yet

been sufficiently answered.

There has been some research into how theeval primitive can be implemented to provide

a passive tuple upon completion, without supporting the manipulation by user processes as ac-

tive tuples[HKCG91, RA95]. Both approaches are similar andrequire compile time analysis

which makes them useful for closed implementations, but notfor open implementations. Both

approaches use the concept of “eval servers” which receive instructions to execute particular

functions. When a user process performs aneval primitive the description of the function or

functions to be executed are sent to theeval servers. When each function has been evaluated

theeval server updates a shared structure (which is a special tuple), inserting the resulting value.

When all the functions are evaluated and the values insertedthe tuple becomes a passive tuple. All

the communication is achieved through the use of tuple spaces (including the passing of arguments

to the functions). In both approaches care has to be taken to ensure that “spurious” deadlocks

do not occur if there are fewereval servers than spawned processes, because theeval servers

can only sequentially evaluate a single function. Spuriousdeadlocks can be produced if there is

a synchronisation between two process which are consideredto be executing concurrently but are
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in fact not. Consider the two functions in Program 5.1. Assuming another process has created

a tuple space and then uses theeval primitive to spawn these two process concurrently. These

two process need to be executed concurrently, therefore, ifthere was only oneeval server, one

function would be picked and executed, but it would blockuntil the other process was executed.

If the eval server is only able to service one function at a time, then theeval server will be

deadlocked and the other process will never execute.

Program 5.1An example of a “spurious” deadlock.
process_one := func(ts1);

lout(ts1, ["HELLO"]);

lin(ts1, |["REPLY"]|);

return 0;

end func;

process_two := func(ts);

lin(ts, ["HELLO"]);

lout(ts, |["REPLY"]|);

return 0;

end func;

An alternative adopted by Clayton et al.[CdHMW92] in a transputer implementation of Linda

involves the development of a static heuristic approach to the placement of processes. The ap-

proach is only suitable for a closed implementation and is restrictive, assuming certain types of

characteristics about the use of Linda programs, and is not suitable for use in open implementa-

tions.

In the ISETL-Linda implementation[DWR95, DRW95] at the University of York, the system

supports aneval primitive which produces a passive tuple but can only contain one function to be

evaluated. This is achieved without using compile time support as the language is interpreted, but

by using “ISETL engines” which receive both the function anda partial tuple. Once the function

has been evaluated by the ISETL engine it updates the partialtuple by filling in the returned value

from the function, and then places the (complete) tuple intothe appropriate tuple space. The ISETL

engines use threads and can therefore evaluate more than onefunction concurrently which ensures

that spurious deadlocks, due to functions not executing concurrently, cannot occur2.

The kernel which is described in this chapter provides a simple eval primitive which allows

a single process to be spawned. There is no concept of an active tuple, and a tuple is not created in

the tuple space when the function evaluation is completed. If a tuple is required the function must

create it before completing. It is not possible to pass any initial parameters to a spawned process.

2Provided that the number of threads being executed on each ISETL Engine is within the bounds of the hardware

being used.
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If initial parameters are required they must be passed through a shared tuple space. The York

Kernel II provides a universal tuple space to which all processes have access. It would probably

be possible to extend the work of Hupfer at al.[HKCG91] to provide more generaleval servers

that could be used within open implementations, however this has not been considered within this

dissertation.

This section has presented a brief overview of some of the main concepts and characteristics of

open implementations. In the next section the addition of explicit information to Linda programs

is considered as a mechanism for improving the performance of Linda programs.

5.4 Adding explicit information to Linda programs

The addition of explicit information to Linda programs can often improve the performance of the

kernel. The explicit information can take many forms including special primitives and “hints” (or

pragmas). The special primitives are treated in a more efficient manner than the equivalent using

Linda primitives. Examples of such primitives were outlined in Chapter 2 (theadd andupdate

primitives). Many programming languages already make use of pragmas which are either language

specific or compiler specific but do not normally alter the semantics of the program in which they

are used. There are a number of examples, including the use ofregister in C. This instructs

the compiler, that in the programmer’s opinion, a variable should be stored in a register. If the

compiler chooses to ignore this the program’s semantics will not change. Ada also uses compiler

hints in the form ofpragmas3, which control such things as whether functions should be inlined

and what type of optimisation should be used. Within the context of Linda, pragmas have mainly

been used to help control tuple spaces, and in particular howtuples flow through tuple spaces, and

how the tuple space is used.

Controlling the flow and order of tuples in and out of tuple spaces[Row95] can be used to

remove some of the costs of the extra synchronisation associated with forcing a specific order on

the tuples within a tuple space. Within the context of Linda the order in which tuples are removed

from a tuple space has no relationship with the order in whichthey are inserted. Pragmatically, in

most implementations, there is a relationship between the order in which tuples are inserted into

a tuple space and the order in which they are removed, which isdeterministic. This is acceptable

in implementations because the order in which the tuples arereturned is a member of the set of all

possible orderings. If the implementation was fully non-deterministic then it could always produce

the same ordering. A dilemma that often faces a programmer isthat a small performance advantage

can be gained by ordering tuple retrieval, but the cost of managing the ordering in terms of extra

coordination outweighs the benefits. Therefore, if a tuple space could be tagged as alast in first

out queue, or afirst in first outqueue the benefits of tuple ordering are achieved without theextra

synchronisation costs. If the implementation cannot support particular ordering then the program

3Some of the Ada pragmas alter the semantics of a program.
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will still work (as long as the program has been written to be independent of the ordering), but

without the performance gain of having ordered the tuples.

Eilean[CSS94] uses programmer hints which are used to aid inthe distribution of tuples. The

hints take the form of library calls indicating how certain tuples are used within a program, typing

the tuples as being one of the following classes: producer-consumer, result, write-many, read-most

and general read/write. Once classified the kernel treats each type of tuple differently, allowing

more efficient placement and retrieval of tuples. A more specific approach has been suggested by

Wilson[Wil91] where configuration files are created to allowthe kernel to be configured and then

the programs explicitly state where individual tuples should be placed. Such an approach may lead

to increased performance but degrades Linda into little more than a system providing asynchronous

buffered communication channels between processes, similar to many message passing systems

such as PVM[SDGM94].

In the description of the implementation of MTS-Linda[NS94] it is suggested that tuple spaces

should be explicitly tagged to indicate their use. Therefore, a tuple space could be tagged as a

persistent tuple space, a tuple space to be replicated, a tuple space that compile time analysis should

be performed on, a local tuple space, etc.. The kernel then treats the tuple space appropriately.

MTS-Linda is considered in depth in Section 5.5.2.

The addition of explicit information to Linda programs moves the onus of producing efficient

kernels from the kernel developer to the Linda programmer. This means that the Linda program-

mer has to understand and appreciate how the underlying implementation works in order to be

able to write efficient programs. The aim should be to make writing programs easier for Linda

programmers rather than more complex. This has led to a search for an alternative to the use

of pragmas and new primitives which has resulted in a programming tool called the Linda Pro-

gram Builder[ACG94] being developed. The Linda Program Builder is an interactive tool which

supports the design and development of Linda programs. The user is able to design programs by

choosing code templates which generate the code for different coordination patterns and constructs.

Because the Linda Program Builder is aware of which code templates were used to generate a se-

quence of Linda primitives, it knows more information abouthow the tuples are being used. This

extra information has been used in conjunction with the YaleC-Linda compiler[CG90b] to enable

the compiler to further optimise the programs. Therefore, although a standard Linda program is

produced by the Linda Program Builder it is able to add compiler hints. Unfortunately many of

the optimisations used within the Linda Program Builder aresuitable for closed implementations

rather than for open implementations. All communicating processes are developed using the Linda

Program Builder, and consistency in the use of particular tuples can be checked and enforced. All

the compiled processes know how a particular tuple or tuplesare stored or how a coordination

construct is implemented.
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5.5 Implementing multiple tuple spaces

Throughout this dissertation references are made to tuple space handles and names. In most im-

plementations the name of a tuple space acts as its handle as well. The name of a tuple space is

a (unique) tag that allows a tuple space to be identified. In open implementations the tuple space

name must be unique because when a tuple space is created there is no knowledge about which

processes will eventually be able to access the tuple space.If two tuple spaces have the same

names then it would be impossible to distinguish between them. In this dissertation tuple space

names such as “TS1” are used, however in reality they are usually a combination of several pieces

of information which when combined create unique names.

The simplest way of adding multiple tuple spaces is to allow the programmer to pick the tuple

space names as in Glenda[SAB94]. However, this means that several tuple spaces can uninten-

tionally be called the same name, particularly in open implementations, and individual processes

cannot create tuple spaces that other processes cannot access. So, it is normal for either the kernel

or the user processes to create the tuple space names. In MTS-Linda[NS93] the kernel chooses

names by providing a global name generator which ensures that every tuple space name is unique.

Such an approach requires communication between the user processes and the kernel whenever a

tuple space is created. Therefore, it is more common to allowthe user processes to create the tuple

space names[DWR95]. In a LAN implementation a user process is likely to use: the computer’s

name (IP address), process identifier, local counter withinthe user process, and potentially the date

and time. The advantage of producing the tuple space names locally is that there is no commu-

nication required with the kernel, but the tuple space namesare usually longer. Any user process

which is aware of the name can then potentially write tuples to the tuple space.

The kernel has to manage the access of the tuple spaces which the tuple space names represent.

The simplest approach is to treat the tuple space name as an extra field within tuples and templates.

Therefore, the first field of every tuple and template has to bean actual of the type string[SAB94].

The tupleh10
integer

; 1:0

float

i stored in a tuple space with the handle\4000:13:1" would be stored

as the tupleh“4000.13.1”
string

; 10

integer

; 1:0

float

i. The syntax of the primitives embedded into

the host languages disguises this so the programmer is unaware of this. When anin primitive is

performed the template has the tuple space name added to it asits first field. This will always be

an actual rather than a formal within the template. The kernel then treats the tuples and templates

as it would do if multiple tuple spaces did not exist.

By not considering the tuple space name as part of the tuple a number of implementations have

used tuple space names in a more efficient manner. Two implementations of particular interest are

Linda-Polylith[MP93] and MTS-Linda[NS93], which are now described in greater detail.
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5.5.1 Linda-Polylith

Linda-Polylith[MP93] is interesting because it uses classification of tuple spaces to achieve better

performance, and utilises a hierarchical kernel. It is a closed implementation which uses compile

time analysis to analyse the use of tuple spaces, and producea tree like structure of tuple spaces.

The position of the tuple spaces within the structure is static, and is fixed at compile time. The

leaves of the tree are considered to be user processes, and each node of the tree is considered as a

store for asingletuple space.

Program 5.2Linda-Polylith program example.

tuplespace global void main()

{ {

tuplespace local1 int i, num;

{ rd(0, "NUMBER", ?num)

init_process main(); for (i=0; i< num; i++)

init_tuple("NUMBER",5); {

} out(0,"fork",i);

tuplespace local2 eval(0,philosopher(i))

{ if (i>0)

init_process main(); out(0,"ticket");

init_tuple("NUMBER",7); }

} }

}

Matos et al.[MP93] give the example shown in Program 5.2. Theprogram consists of atuple

space descriptionwhich names the tuple spaces; defines any tuples that should be placed inside the

tuple space when it is created; and also specifies any initialprocesses that are executing “under” a

tuple space. Therefore, in this example, there is a global tuple space with two other tuple spaces

beneath it. The functionmain is spawned into each of these two lower tuple spaces. The function

main is an initialisation function for a dining philosophers program. It creates the tuples which

represent the room tickets and the forks, and spawns the philosopher processes. The number used

as the first parameter in the Linda primitives in the functionmain are used to indicate how far up

the tree the tuple space to be used resides. In this case the value 0 means the first level, which will be

either tuple spacelocal1 or tuple spacelocal2 depending on the tuple space to whichmain is

attached. If the value 1 is used, regardless of which local tuple space the functionmain is attached

to, the tuple spaceglobalwill be used. Hence, the twomain functions could communicate with

each other through the tuple spaceglobal by specifying 1 as the first parameter within the Linda

primitives.

There appears to be a restriction that a spawned process mustshare the same parent tuple

space as the process which creates the spawned process. The Linda-Polylith system has a number
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of other restrictions in order to aid compile time analysis,which are of no interest here.

Linda-Polylith uses the addition ofexplicit information to aid in the placement of tuple spaces.

A tuple space is managed by a single process, which can be considered as a node in a tree. Processes

cannot dynamically create tuple spaces, and handles for tuple spaces cannot be passed between pro-

cesses. The explicit information required is complex and substantial, and requires the programmer

to envisage the structure of the kernel in order to pass tuples through it. Such an explicit approach

could not be used within open implementations as the structure of the tuple spaces is not known

either at compile time, or when the kernel starts. The numberof tuple spaces, and the processes

which use them will change dynamically over time in a kernel for an open implementation.

In closed implementations[CG90b, CG91a] it is possible to analyse the tuples and the tem-

plates, and to create a similar structure to the one Linda-Polylith creates. Instead of expecting

the programmer to perform the partitioning and organising of the tuple spaces, the global tuple

space is partitioned automatically, and distributed over several processes. This compile-time anal-

ysis implicitly gathers much of the information which is provided in a Linda-Polylith program

explicitly.

Linda-Polylith is interesting because it uses informationabout tuple spaces. However, the very

explicit nature of the approach taken means that it is not only complex for a programmer but also

restricted to closed implementations. An interesting concept is the storing of tuple spaces within a

kernel with their position dictating who can access them. Given that the implementation is a closed

implementation it is likely that messages for higher levelsin the tree will be sent directly to the

relevant kernel process, rather than passing them up the tree. This then makes the kernel, from an

implementors point of view, flat. In Chapter 7 the concepts used in the York Kernel II are extended

to create a truly hierarchical kernel, which is based on the same concept of a tree, although instead

of each node storing a single tuple space, the nodes store sets of tuple spaces, and the tuple spaces

migrate up the tree.

5.5.2 MTS-Linda

MTS-Linda[NS93, NS94] is an implementation based on the work of Jensen[Jen93]. MTS-Linda

allows the user to tag a tuple space as a particular type of tuple space. The implementation supports

only local tuple spaces and shared tuple spaces, but Nielsenet al.[NS94] suggest other types of

tuple spaces could be used, such as replicated tuple spaces.

MTS-Linda uses both a hierarchical and a flat tuple space structure for tuple spaces. The

hierarchical structure is created because processes execute inside a tuple space, and then the tuple

spaces they create exist “within the process”. The tuple space in which the process resides can be

considered as the parent tuple space of the process. Tuple spaces that are created within another

process can becopiedto the parent tuple space, butnot movedto the parent tuple space. The tuple

spaces used to create the hierarchical tuple spaces are called local tuple spaces. A local tuple space

can only be accessed by the process that created it, and any other processes that have the tuple
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space as their parent tuple space. Therefore, it is common tohave several processes accessing a

“local” tuple space.

Shared tuple spaces are tuple spaces which are created so anyprocess can access them provided

that the processes has the tuple space handle. The tuple space handles can be passed using tuples

in other tuple spaces.

MTS-Linda uses explicit tagging of tuple spaces to provide more information about the tuple

spaces. However, MTS-Linda treats the underlying implementation of the tuple spaces as the

same, regardless of whether they are shared tuple spaces or local tuple spaces. The fact that a

tuple space is known to be a local tuple space, and subsequently can be accessed by a subset of

all the processes provides information that could be used within the implementation to manage

tuple spaces and control where spawned processes are executed. Indeed, the hierarchical kernel

described in Chapter 7 provides an ideal match for such a hierarchy of tuple spaces. The suitability

of hierarchical tuple spaces as embodied in local tuple spaces appears unclear, because of the

apparent need to provide a flat tuple space structure as well.

5.6 A naive approach to implementing the bulk primitives

Having considered a brief overview of current implementation techniques, a naive implementa-

tion of thecopy-collect primitive is considered, with respect to open implementations. A

better implementation, based on using the classification oftuple spaces is presented later in this

chapter and used in the York Kernel II. Because of the close relationship between thecollect

andcopy-collect primitives the implementation of both these primitives is considered in this

section.

In open implementations which use distributed hashing there are two approaches to implement-

ing the bulk primitives. The first approach is for where the kernel process chosen to store a tuple

is based solely on the fields within the tuple and is not influenced by the tuple space name. Thus

a tuple will always reside on the same kernel process regardless of the tuple space to which it be-

longs. As neither acopy-collectnor acollect primitive alter the fields of a tuple, the tuples

will remain resident on the same kernel process after acollect or copy-collect primitive

has been performed. The implementation requires all kernelprocesses on which a matching tuple

could reside to be contacted. Each kernel process checks thetuples it stores to find any matching

tuples. Each matching tuple is either re-tagged as belonging to the destination tuple space, if a

collect primitive is performed, or duplicated4 and then re-tagged if acopy-collect primi-

tive is performed. Each contacted kernel process returns a count of the number of tuples copied or

moved, and all these are summed at the user process and returned as the result of thecollect or

copy-collect primitive.

If the kernel process on which a tuple resides is dependent onthe tuple space name (and poten-

4The physical duplication of tuplesmaynot be necessary under some tuple storage schemes.
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tially the tuple) then both thecollect andcopy-collect primitives may require the move-

ment of tuples from one kernel process to another. The general bulk movement of tuples around a

kernel is an expensive process which occupies communication bandwidth and processing power.

This generally leads to poor performance of the kernel. However, in the right circumstances mak-

ing the collect and copy-collect primitives bulk move tuples can lead to a performance

increase. This will be discussed in detail later in this chapter, and is utilised in the York Kernel II.

Kernel process 1 Kernel process 2

User Process

Copy−collect
from ts1 to ts2
template: ?int

Copy−collect
from ts1 to ts2
template: ?int

20 7

preprocess_copycollect();
send_request(KP1);
send_request(KP2);
count := 0;
count += get_reply(KP1);
count += get_reply(KP2);
return count;

copy−collect(ts1, ts2, ?int);

Figure 5.2: A naive approach to implementing thecopy-collect primitive.

The first approach described is used in the first York Kernel I[DWR95, RW96a]. Even though

the tuples that match the template can (and should be) distributed over several kernel processes,

the approach does not require any global synchronisation between the different kernel processes

managing the tuples. Figure 5.2 shows a distributed kernel with two kernel processes, and a single

user process. The programmer uses acopy-collect primitive to move all tuples containing

a single integer from tuple spacets1 to tuple spacets2. Thecopy-collect primitive is

implemented as a library routine which encodes the tuple, and dispatches the command to the

appropriate kernel processes. In this case both kernel processes can potentially contain tuples

of single integers. The user process then blocks waiting to receive replies from all the kernel

processes contacted. Each kernel process contacted returns a counter indicating the number of
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tuples duplicated. When all the contacted kernel processeshave returned their counters, they are

summed by the user process’scopy-collect library routine to produce the number of tuples

actually duplicated by the entire kernel. The individual kernel processes do not communicate with

each other, and no tuples are moved within the kernel.

The duplication of tuples may not necessarily involve a physical replication of the tuples within

the physical memory of the kernel processes. It should be feasible to provide a data structure which

allows for a tuple to be present in many tuple spaces but stored in the physical memory only once.

Therefore, logically the tuple appears in several tuple spaces, but in reality it is physically only

stored once. This has not been adopted in the York Kernel II.

The naive way of implementing thecopy-collect andcollect primitives when the

kernel uses distributed hashing has been described. Their implementation when a centralised kernel

is used is easier, as the command is sent to the single kernel process, which performs the operation

and then returns a count of the number of tuples either copiedor moved. When either uniform

distribution or intermediate uniform distribution is usedthe cost of performing either acollect

or acopy-collect primitive is expensive. This is because the duplication of tuples occurs

in the kernel processes in theout-set. When tuples are either moved or duplicated all the kernel

processes in thein-set must be updated. Every kernel process in anin-set has the potential to

have tuples that match a given template, and everyin-setandout-setmust have at least one kernel

process in common, so in the worst caseeverykernel process has to be updated.

Having considered the implementation, especially in the context of distributed hashing which is

the most popular method for open implementation, it is interesting to consider how, by altering the

semantics of thecopy-collect andcollect primitives the need forglobal synchronisation

is introduced into a distributed kernel.

How thecopy-collect andcollect primitives interleave with other primitives is im-

portant. The rules as given in Chapter 4 state that iftwocollect primitives5 occur concurrently

using the same template and source tuple space, then the number of tuples moved from the source

tuple space is the number that match the template, but the number moved to each of the destination

tuple spaces is between zero and the maximum number of tuplesavailable that match the template.

The sum of the results of the twocollect primitives will be the number of tuples removed from

the source tuple space.

In Chapter 4 a suggestion to use traces to help define the semantics of thecopy-collect

primitive was discussed. The effect of using the traces is tomake all the primitives atomic. In

order to show the consequences to the implementation of making the bulk primitive atomic let us

consider the case of twocollect primitives being performed concurrently. Each uses the same

source tuple space, different destination tuple spaces, and the same template. If the primitives

were atomic then the result would be that one tuple space would be empty and the other tuple

space would have all the matching tuples in it.

5Assuming that the semantics of thecollect primitive are similar to thecopy-collect primitive.
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If the bulk primitives were made atomic then this would require a global synchronisation

between all the kernel processes that are involved in the operation to be performed. Consider

the example shown in Figure 5.2. If there are two user processes the first one performing a

collect(ts1, ts2, ?int) and the second performing acollect(ts1, ts3, ?int)

concurrently there will be two messages arriving at each of the kernel processes. The potential mes-

sage ordering for each of the two kernel processes is shown inTable 5.1 (where the abbreviation

col is used to mean a message containing acollect primitive request). This shows that the

messages can arrive in any order at each of the kernel processes. In Case 1 tuple spacets2 will

contain all 27 tuples (assuming the same tuple distributionas in Figure 5.2). In Case 4 tuple space

ts3will contain all 27 tuples. These are the only cases which fulfill the atomic semantics. In Case

2 tuple spacets2 will contain 20 tuples and tuple spacets3 will contain 7 tuples, and vice-versa

in Case 3. Therefore, if atomic semantics are used the two kernel processes have to synchronise in

order to ensure they perform thecollect commands in thesame order. Whereas, without the

atomic semantics Cases 1 and 3 are quite acceptable andno global synchronisation is required.

Case Kernel process 1 Kernel process 2

1 col(ts1, ts2, ?int) col(ts1, ts3, ?int) col(ts1, ts2, ?int) col(ts1, ts3, ?int)

2 col(ts1, ts2, ?int) col(ts1, ts3, ?int) col(ts1, ts3, ?int) col(ts1, ts2, ?int)

3 col(ts1, ts3, ?int) col(ts1, ts2, ?int) col(ts1, ts2, ?int) col(ts1, ts3, ?int)

4 col(ts1, ts3, ?int) col(ts1, ts2, ?int) col(ts1, ts3, ?int) col(ts1, ts2, ?int)

Table 5.1: Table showing how thecollect primitive messages arrive at the two kernel processes.

The implementation difficulties of a particular set of semantics is not necessarily a valid reason

to avoid using them. But, the semantics chosen in Chapter 2 not only appear natural within Linda

where there is competition for tuples already between the different primitives, but also remove the

necessity for a distributed kernel to perform a global synchronisation whenever acollect or

copy-collectprimitive is used. Theglobalsynchronisation of the kernel (or even just a subset

of all the kernel processes which can contain the tuples) is an expensive operation, and should be

avoided if possible.

5.7 Classification of tuple spaces

A more intelligent approach to implementing both thecollect andcopy-collectprimitives

is based on the premiss that they both provide information about where a tuple (or set of tuples)

is likely to be used. The York Kernel II is able to use such information to provide an increase in

performance over using the methods described so far. This isachieved by using a simple classifi-

cation of tuple spaces, which the kernel is able to performwithout the use of any pragmas or other

explicit information added to a Linda program. A Linda program written for C-Linda using the
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York Kernel I could use the York Kernel II without being altered, and providing thecollect or

copy-collect primitives are used a performance increase should be observed.

The fundamental difference between the York Kernel II and others is its ability to dynamically

alter where tuple spaces are being stored and consequently move tuples around en-mass. This is

achieved bydynamicallywatching where tuple space handles are, and subsequently tagging every

tuple space in the system accordingly. Tuple spaces are tagged as either alocal tuple spaces(LTS)

or aremote tuple spaces(RTS) relative to a user process. The definitions are:

Local tuple space For a given user process a tuple space is said to be alocal tuple space(LTS) if

that process created the tuple space and a tuple containing the handle of that tuple space has

neither been placed in a remote tuple space nor been passed asan argument to a spawned

process.

Remote tuple spaceFor a given user process a tuple space is said to be aremote tuple space

(RTS) if the process did not create it or if the process did create it and a tuple containing

the tuple space handle has either been placed in another RTS or passed as an argument to a

spawned process.

There are three important points about the classification oftuple spaces:

� Firstly, not all user processes know about all tuple spaces.The assumption is that the clas-

sification of a tuple space relative to a user process must be achieved using only knowledge

about the tuple space handles that are currently in scope in the user process and their history

relative to the user process. Therefore, there is no need for“global” repositories of tuple

space classifications.

� Secondly, if a tuple space is classified as a RTS relative to a user process then that tuple

space will not be classified as a LTS relative to any other userprocess. This can be justified

by considering how tuple space handles are passed between user processes. If processP
1

creates a tuple spaceT
1

, the only way processP
2

can also know aboutT
1

is if P
2

has

retrieved a tuple from a RTS (for example fromUTS) that contains the tuple space handle

of T
1

or if processP
1

spawns processP
2

and passes the tuple space handle as an argument.

If the tuple space handle is passed through a tuple space thenT

1

must be classified as a

RTS relative to processP
1

because processP
1

has placed a tuple in a RTS containing the

tuple space handle forT
1

, andT
1

must be classified as a RTS relative to processP

2

because

processP
2

has not created tuple spaceT
1

. If processP
1

passes the tuple space handle of

T

1

to processP
2

as an argument of the process then tuple spaceT

1

will be classified as a

RTS relative to processP
1

because processP
1

has passed tuple spaceT
1

as an argument to

a spawned process, andT
1

will be classified as a RTS relative to processP

2

because process

P

2

has not created tuple spaceT
1

. Therefore, it should be impossible for a tuple space to

be classifies as a RTS relative to one user process whilst classifying it as a LTS relative to
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another user process. The assumption is made that each tuplespace name is unique, so it is

not possible for two user processes to create the same tuple space.

� Thirdly, the tuple spaces are classified by thekernel, not the programmer. From a program-

mers point of view there is no difference between a tuple space classified as a RTS and a

LTS, they are both simply tuple spaces which are created and used in exactly the same way.

The underlying idea is that an LTS should be stored “as close as possible” to the user process

which knows it as a LTS. A RTS should be stored in such a way thatthe cost of retrieving tuples

from an RTS is minimised over all the user processes that can access it.

The classification of tuple spaces produces a better way of implementing thecollect and

copy-collect primitives. These bulk primitives are used to move or copy tuples from one

tuple space to another. Tuple spaces are stored in the kernelusing locality information. The imple-

mentations of thecollect andcopy-collect primitives implicitly harness this information

about tuple spaces because the primitives move or copy tuples between tuple spaces. The aim is

that the access costs of a moved or copied tuple should be lessthan that cost would have been if

the tuples had not been moved or copied.

The dynamic classification of tuple spaces is the main technique behind the kernel implemen-

tation described in this chapter. The classification described here and used in the kernel is simple

yet effective as the results in Chapter 6 show. In Chapter 7 the concepts of tuple classification

are extended to produce a more graduated classification scheme. In the next section the general

structure of the kernel is considered.

5.8 The York Kernel II

In this section a two layer hierarchical kernel, known as theYork Kernel II, is described which

supports the classification of tuple spaces. The kernel described here is an open implementation,

supporting persistence and allowing processes to join and leave freely. The kernel requires no

information provided by either special compilers or pre-processors and does not make any as-

sumptions about the host languages being used. The classification of a tuple space is achieved by

dynamicallyusing only information gathered since the user process joined the Linda kernel. A

process is said to have joined the kernel when the first Linda primitive is performed.

The architecture of the kernel is modelled around the concept of local and remote tuple spaces,

creating a two layer hierarchy. An outline of the kernel architecture is shown in Figure 5.3. The

kernel has two distinct sections, thetuple space serverand a number oflocal tuple space managers.

Tuple Space ServerA Tuple Space Server (TSS) is a dedicatedsystemthat exists to store and

manage RTSs. The TSS can be a single process (a dedicated server) or it can be a set of

processes. If the TSS is distributed then the distribution of tuples will be performed in a

similar way to traditional implementations. In the York Kernel II the TSS is distributed. The
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Figure 5.3: The York Kernel II architecture.

processes that create the TSS are referred to as TSS processes. Each of the TSS processes

cancommunicatewith other TSS processes and with all local tuple space managers.

Local Tuple Space ManagerA Local Tuple Space Manger (LTSM) is attached to each user pro-

cess. Each LTSM is distinct from the TSS but is aware of it, or if the TSS is distributed

the LTSM is aware of all the TSS processes. However, the TSS isnot explicitly aware of

the LTSMs. This allows LTSMs to join and leave the kernel without affecting the kernel.

Unlike the TSS the LTSM does not service remote requests, butproduces the requests and

accepts replies from requestsit made. The LTSM also initiates all the movement of tuple

spaces and packets of tuples within the kernel. The LTSMs areused to store LTSs and if a

tuple space is a LTS then it is stored on a single LTSM. The LTSMs do not communicate

with each other and do not share information in any way. Each LTSM is able to calculate

dynamicallythe classification for a tuple space it is presented with, andis implemented as a

set of library routines which the user process calls.

A LTS can never reside on the TSS and a RTS can never reside in a LTSM. Tuples that belong
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to a LTS, in general, cannot reside on a TSS and tuples that belong to a RTS cannot reside in

the LTSM. The only exception to this is when the transfer of tuples occurs, when a tuple space

changes from being a LTS to a RTS or a number of tuples are movedfrom a LTS to a RTS then

tuples belonging to a LTS may briefly reside on a TSS and vice-versa. This will be discussed in

detail later in Section 5.16.

When a user process performs a Linda primitive it calls a library routine in the LTSM. The

LTSM decides, using the tuple space handle, whether it can satisfy the request locally, or if a

message has to be sent to the TSS. With primitives that deal with single tuples (out, in, rd

primitives) this is simple because there is only a single tuple space being used, and the tuple space

either resides locally or on the TSS.

However, with the primitives that deal with more than one tuple space (collect and

copy-collect primitives) the LTSM has to decide where the operations should be performed,

which is dependent upon the classification of the source and destination tuple spaces. If the tuple

spaces are not both classified as the same (LTS or RTS) then thetuples being copied or moved

will move from a LTSM to the TSS or vice-versa. Whenever a set of tuples is to be moved from

the TSS to a LTSM or vice-versa, the LTSM initiates the movement. Table 5.2 shows where the

operations are performed with respect to the classificationof both the source and destination tuple

spaces.

Source tuple space

Local Remote

Local LTSM TSS(s)

Destination (Result to LTSM)

tuple space Remote LTSM TSS(s)

(Result to TSS)

Table 5.2: Table showing where thecollect andcopy-collect primitives are performed

based on the classification of their source and destination tuple spaces.

The York Kernel II has been implemented on top of PVM[SDGM94](Parallel Virtual Ma-

chine), which provides a mechanism to control the creation and subsequent communication be-

tween “processes”. PVM uses a message passing paradigm, andprovides an interface to TCP/IP

communication between workstations on a LAN. PVM has been used so that the kernel can easily

be ported, and used with a LAN of heterogenous workstations.In the following sections a more

detailed account of some of the general methods used in the kernel, and how the bulk movement

of tuples is used is presented.
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5.9 Tuple Distribution within the kernel

The tuple distribution strategy within the kernel uses a twostage hashing method which is per-

formed within the LTSM. The first stage uses the tuple space handle and produces a result of either

LTSM or TSS. If the result is LTSM then the tuple is inserted into the local tuple storage data

structure within the LTSM performing the hashing. If the result is TSS then a second hashing

stage is used which is based on the technique of distributed hashing. Normally, when using this

approach the hashing algorithm would produce a single TSS process for a tuple, and a non-empty

set of TSS processes for a template (which could contain justone TSS process). However, in this

implementation, only field type information is used, and thehashing algorithm always returns a

set of TSS processes regardless of whether a tuple or template is used. The LTSM then picks one

of the TSS processes represented in the set at random, and dispatches the tuple to it.

Within the TSS there is the possibility that individual tuples move from one TSS process to

another TSS process because of the way that tuples are found when anin primitive is performed,

and this is discussed in Section 5.13. There is no bulk movement of tuples from one TSS process

to another TSS process.

5.10 Tuples and tuple storage within the kernel

The tuples are encoded as a sequence of bytes at run-time within the language interface of the

LTSM (see Section 5.11). The first byte represents the numberof fields present within the tuple,

the second byte is used to indicate if there are any tuple space handles present within the tuple and

then each tuple field is represented in the encoded tuple. Each tuple field is composed of a byte

representing the type of the field, which is unique for each type, followed by two bytes containing

the number of bytes needed to store the field value, and then the actual field value in as many bytes

as required. A template is created in a similar manner, except whenever a formal is used in the

template, the field length for that field is set to zero, and thetuple field value is omitted.

Using such an encoding for tuples and templates means that all the information required to

perform the match in the kernel is present in the tuple and template. The matching algorithm is

completely independent of the types used. Therefore, otherlanguage interfaces can be created,

and as new types are needed, because the types that the language supports are more varied than

the current types being used, there is no need to alter any other host language embeddings. If a

particular language does not support a data type supported by other languages then that language

will not be able to consume tuples which contain fields of the unknown type. Some care has to be

taken to ensure the same type in two different languages6 has the same type identifier, so the two

languages can communicate values of that type through tuples. Although the matching algorithm

is independent of the types used, the kernel is not independent of the types used, because it must

6or, indeed, in two embeddings of Linda in different implementations of thesamelanguage.
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be able to “track” tuple space handles in tuples. The only type identifier the kernel is aware of is

the type identifier for tuple space handles, which is fixed. Section 5.15 details how tuple space

handles are tracked. If a pre-compiler was used then the tuples and templates could be partially

encoded at compile time.

A graphical representation of the tuple storage data structure that is used in both the LTSM

and the TSS processes is shown in Figure 5.4. The “tuple space” is represented by a record which

contains the tuple space name, and a number of pointers to lists of tuples. Each pointer represents

a list of tuples of a particular number of fields, with the finalpointer pointing to a list of all tuples

that do not belong to any of the other lists. It should be notedthat there is a number associated

with each list of tuples. This number represents the number of tuplesmissingfrom that list. This is

used in order to maintain theout ordering when bulk tuple space operations are performed, tuple

spaces moved or individual tuples migrated. This is explained in detail in Section 5.16.

Tuple Space Name: TS1

0 1 0 0 0

Type: INTEGER

Value: 10Length: 2

Type: CHAR

Value: ALength: 1

Type: INTEGER

Value: 10Length: 2

Type: CHAR

Value: ALength: 1

Fields: 2
TS?  No

Fields: 2
TS?  No

Figure 5.4: The tuple storage data structure used within TSSprocesses and the LTSM.

5.11 The Local Tuple Space Manager

The LTSM is the part of the kernel that is “included” in user processes. This means that the LTSM

needs to be flexible enough to be included in different host languages. In order to do this two

interfaces to the LTSM are used; called thelanguage interface moduleand theLTSM interface

module. The language interface modulecontains all the routines that the user processes call, and

contains all the routines for the management of encoding anddecoding of tuples to and from a

form that the host language is capable of using. If tuples arefirst class objects in the language, as

in ISETL, then the Linda primitives may return tuples. If they are not first class objects then the

values within the encoded tuple have to be transfered to other variables, as in C-Linda.

The LTSM interface moduleprovides routines for each of the Linda primitives. All the rou-

tines expect two strings, representing a tuple space name and the encoded tuple or template as



104 CHAPTER 5. THE IMPLEMENTATION OF BULK PRIMITIVES

appropriate. These representations should be independentof the host language used, as the same

tuple specified in two different host languages will be encoded into the same string. Therefore, to

embed the Linda primitives using the York Kernel II into a newhost language, only a new language

interface module has to be developed. A C language interfacemodel has been developed.

One of the problems facing an implementor of a distributedheterogeneoussystem is represen-

tation of data types[ZG96]. This can vary from the ordering used to store bytes (eg. big endian

and little endian) to the internal representations of “complex” types in different languages or com-

pilers. For example, one language or compiler may use a different character to terminate a string

compared with another language or compiler. The advantage of the kernel not depending on the

types and their representations is that the kernel is not effected by the representation chosen by the

language or compiler. It treats tuples and templates as a string of bytes. The only byte-ordering in

tuples or templates of importance is the bytes which represent the length of the field (which are as-

sumed to be stored as big-endian7). The structuring of fields is controlled by the language interface

module. Whenever a new type identifier is added its representation is specified by the language

interface implementor who adds it, and then future languageinterface modules must respect this.

If a technique such as “receiver makes right”[ZG96] is adopted this could be incorporated within

the language interface module.

The LTSM is also able, under some circumstances, to detect when a process deadlocks. Both

thein andrd primitives block when there are no tuples available which satisfy the template used.

When there isnevera tuple that will satisfy the request, the user process executing thein or rd

primitive will block forever. In closed systems using compile time analysis it is often possible to

detect some of the primitives that will block forever and produce appropriate warning messages.

If a user process is blocked, waiting for a tuple in a LTS, the LTSM can detect this. The LTSM

knows that no other process can place tuples into a LTS, so theLTSM can terminate the user

process, and produce an appropriate message. Current research[Men96] is examining ways of

detecting deadlocks and more generally how to perform garbage collection within distributed open

implementations.

5.12 Implementing theout primitive

When anout primitive is performed the LTSM checks the tuple space, intowhich the tuple is

being inserted, to see if it is a LTS. If the tuple space is a LTSthen the tuple is placed into the local

tuple storage data structure. If the tuple space is not a LTS then a set of possible TSS processes

are calculated using the second stage hashing. One of the calculated TSS processes is chosen at

random and the tuple is dispatched to that TSS process. In order to ensure thatout ordering is

maintained the TSS process issues an acknowledgement whichthe LTSM must receivebeforethe

next tuple is inserted into a tuple space (or before acollect or copy-collect primitive is

7The most significant byte in the lowest numeric byte address of the two.
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performed). The management of the acknowledgement messages is considered in Section 5.17.

5.13 Implementing thein and rd primitives

When either anin or rd primitive is performed the LTSM checks the tuple space, fromwhich a

tuple is required, to see if it is a LTS. If it is then the local tuple storage data structure is checked.

If the tuple space is a RTS then the tuple will reside on a TSS process. The second stage hashing

is used and provides a set of possible TSS processes on which atuple that matches the template

could reside. A matching tuple may reside on either all of these TSSprocesses, on some, or on

none of them. Therefore, if a matching tuple exists it needs to be found.

There are several ways in which this could be achieved. The first is a broadcast from the LTSM

to all the possible TSS processes. The LTSM would then act as the arbitrator, potentially receiving

a number of tuples and then picking one, and returning the rest to the appropriate TSS processes.

An alternative approach is to pick one of the TSS processes atrandom and then allow that one to

arbitrate, which is the method adopted in the York Kernel II described in this chapter because it

requires less communication and control.

5.14 Implementing the bulk primitives

When either acollect orcopy-collect primitive is performed the LTSM checks the source

and destination tuple spaces being used. If they are both LTSs then the LTSM performs the oper-

ation locally. If the source tuple space is a LTS and the destination tuple space is a RTS then the

duplication occurs locally and the copied or moved tuples are dispatched to the TSS processes, in

packets ofmultiple tuples.

If the source tuple space is a RTS then the operation will be performed on the TSS. The TSS

processes which could contain matching tuples are asked to perform the operation by the LTSM. If

the destination tuple space is a LTS then each of the contacted TSS processes creates a tuple space.

The TSS processes perform the operation placing the tuples in the destination tuple space they have

created, and returns a count of the number of tuples placed inthe tuple space to the LTSM. Once

the counts have been received then the bulk movement of the tuples is initiated by the LTSM from

the TSS processes to itself. This is achieved by the LTSM requesting from each TSS process the

destination tuple space. Each TSS process packs the tuples from the destination tuple space into

packets, then removes the tuple space and sends the tuples tothe LTSM which issued the request.

If both the source and destination tuple spaces are RTSs, then the same operations are performed

as when the destination tuple space is a LTS, except the tuples are not moved to the LTSM.

It appears more efficient if the TSS automatically packs and dispatches the tuples to a LTSM

if the destination tuple space is a LTS. This was originally tried but was found to provide poor

performance. The LTSMhasto receive all the counts before the primitive can complete.The time
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taken to unpack the tuples is significant. Therefore, to receive all the packs of tuples from the

TSS processes, unpack the tuples, and insert them into the tuple data structure takes a relatively

long time, compared with unpacking a number of single integer messages and summing them. An

optimisation was applied which is described in Section 5.17, which required each TSS process

to send two messages, one containing the count and the other containing the tuples. However,

the packet containing the tuples often arrived before all the count messages had arrived, which

significantly reduced the effectiveness of the optimisation. This was overcome by requesting the

tuples to be sent once all the counts had been received.

5.15 Tracking tuple space handles

In the descriptions of how the primitives are implemented, it is stated that the LTSM checks the

tuple space handle to see if it is a LTS or a RTS. How does a LTSM know whether a tuple space is

a LTS or a RTS? The LTSM tuple space classification is achievedby each LTSM monitoring two

events; the creation of tuple spaces and the movement of tuple space handles in tuples goingout

of the LTSM to the TSS.

From the definition of an LTS, given earlier, a tuple space canonly be a LTS if the handle for

the tuple space has neither been placed in a RTS nor passed as an argument to a process, and the

user process to which the LTSM is attached created the tuple space. The classification is performed

by checking the local tuple storage data structure to see if an entry for the tuple space exists, and

if it does the tuple space is a LTS, otherwise it is a RTS.

Whenever a tuple space is created it has to be a LTS. Therefore, when the procedure which

initialises a tuple space (tsc primitive routine) in the LTSM interface module is called, it also

creates an empty entry in the local tuple space data structure. In order to detect when a tuple space

handle is leaving the LTSM checking is performed at two points. Firstly, when a tuple is being

encoded (within the language interface module) and secondly when a bulk movement of tuples

occurs. The LTSM interface module provides a routine which,when given a destination tuple

space handle and a tuple space handle that appears in a tuple,checks to see if the destination tuple

space is a RTS, and so converts the tuple space represented inthe tuple to a RTS, if it is a LTS.

Tuple encoding Whenever anout primitive is performed the routine for theout primitive in the

language interface module encodes the tuple. As each field isencoded it checks to see if the

field is a tuple space handle, and if so the routine in the LTSM interface module is called

with the destination tuple space handle and the tuple space handle in the field.

This ensures that if a tuple is inserted into a RTS, all the tuple spaces that are represented

within the tuple become RTSs.

Bulk movement Whenever a tuple space or a set of tuples is being moved from the LTSM to the

TSS each tuple has to be checked to see if it contains a tuple space handle. If any of the
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tuples contain handles to a LTS these tuple spaces need to be transfered to the TSS, and they

then become RTSs. Figure 5.5 shows why this is necessary. Thetuple spaceUTS is a RTS,

and both the tuple spaceTS0 and the tuple spaceTS1 are LTSs. The tuple space handle

for tuple spaceTS1 is embedded within a tuple contained in tuple spaceTS0. A tuple is

placed in tuple spaceUTS which contains the handle for tuple spaceTS0. At this point both

the tuple spaceTS0 and the tuple spaceTS1 become RTSs. This is because the handle for

the tuple spaceTS1 now resides in a RTS, so the tuple space handle forTS0 is present in a

tuple in a RTS, so it must become a RTS.

When a tuple is inserted into a packet of tuples the tuple is checked. If a tuple has any tuple

space handles within it, they are treated as though the tuplewas being encoded. The LTSM

interface module routine is called, and initiates any tuplespace movement that is necessary.

[TS1, 10]

TS0

TS1

UTS

[TS0]

TSS LTSM

Figure 5.5: Tuple space handles embedded within tuple spaces.

Initial experiments showed that there are significant costsinvolved in checking each tuple

to see if it contains tuple space handles when the bulk movement of tuples occurs. This,

in conjunction with the fact that in most cases no tuples contained tuple space handles, led

to the addition of a flag within the encoded tuple structure toindicate if one or more tuple

space handles are present within the encoded tuple (see Section 5.10). Checking this flag

means that the tuple can be quickly and efficiently checked for tuple space handles. If it is

set then each field in the tuple can be checked.

In the original definitions of a LTS and a RTS indicated that ifa tuple space handle was passed

as an argument to a spawned process then the tuple space wouldbe classified a RTS. The York
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Kernel II does not support the passing of arguments to a process8, therefore does not need to check

for tuple space handles within the arguments. However, if the passing of parameters was supported,

they would need to be checked for tuple space handles. Theeval servers as proposed by Hupfer

et al.[HKCG91] provide the passing of arguments to a spawnedfunction via tuple spaces, and

therefore the checking used in the encoding of the tuple would find the tuple space handle if it as

passed as an argument, and convert the tuple space to a RTS if necessary. If tuple spaces were not

used, then in the same way that theout primitive routine in the LTSM interface module checks the

tuple being created, theeval primitive routine would have to check the arguments being passed.

Because the tuple space handle is passed to the spawned process, the process does not create the

tuple space, so it should not be present in the tuple storage data structure, and therefore the spawned

process considers it a RTS.

The scheme adopted makes the introduction of “special” global tuple spaces easy. For example,

the universal tuple space (UTS) is predefined in the Linda header files. The tuple space is not

created by the user process so the LTSM does not insert it intoits local tuple storage data structure

and hence automatically treats it as a RTS. Because the TSS processes do not need a tuple space

initialised within their tuple storage data structure, theTSS processes do not need to be informed

of global tuple spaces. The tuple space handle name is manually chosen, and the tuple space name

mustnot be one that the LTSM can generate. Pragmatically, this is simple to ensure due to the

format of LTSM generated tuple space names.

5.16 The bulk movement of tuples

The need forout ordering has been reiterated in several places within this dissertation. How is

theout ordering of tuples affected by the bulk movement of tuples? When tuples are in transit

they are neither in the TSS nor a LTSM and this has serious implications if not managed properly.

Consider the program fragment shown in Program 5.3, where itis assumed that tuple spacets2

is a LTS for process one, ts3 is a LTS forprocess two, andts1 is a RTS which is

known to onlyprocess one andprocess two. It is also assumed that both functions are

executing concurrently. The functionsprocess one andprocess two synchronise using the

tupleh“DONE”
string

i, and ifout ordering is preserved the expected outcome is that the variable

n in both of the functions will be the same value.

Because the functionprocess one performs acollect primitive from a LTS to a RTS,

the LTSM attached toprocess one will perform the operation and then dispatch the moved

tuples to the TSS. If theout primitive “overtakes” the tuples whilst they are moving to the TSS

processes, there is the chance thatprocess two becomes “unblocked” and then performs the

collect primitive beforethe tuples have arrived at the TSS. The same problem exists iftuples

are moved from RTSs to LTSs, and when whole tuple spaces are moved from a LTSM to the TSS.

8The passing of arguments is achieved by passing them in a tuple through a shared tuple space, such asUTS.
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Program 5.3Example ofout ordering and the bulk movement of tuples.
int process_one(void)

{

....

n = collect(ts2, ts1, ?int, ?int);

out(ts1, "DONE");

......

}

int process_two(void)

{

......

in(ts1, "DONE");

n = collect(ts1, ts3, ?int, ?int);

......

}

Two mechanisms are used to ensure that the problem does not occur. When tuples are be-

ing transfered from the TSS to a LTSM a counter is used to indicate if tuples are expected. In

Section 5.10 the data structure used to store tuples was discussed, and each list of tuples has a

number associated with it, which is a counter used to indicate the number of tuplesmissingfrom

the structure. Therefore, in Figure 5.4 one tuple containing two fields is missing. If acollect or

copy-collect primitive is performed with a template with two fields, then the LTSM process

will perform the operation on the tuples that reside in the tuple space, andwait for the remainder

to arrive. If anin primitive or ard primitive is performed and a tuple that has already arrived

matches the template then that tuple is retrieved, and the user process continues. Tuples are only

moved from a TSS to a LTSM after acollect or copy-collect primitive, which provides

the number of tuples copied or moved, and is the same number oftuples that the LTSM expects to

receive, and is used to set the counter.

The second mechanism is used when tuples are transfered froma LTSM to a TSS, either after

a bulk primitive or a tuple space movement. Theout ordering is guaranteed in the same manner

as theout primitive, by using acknowledgement messages. Each packetthat is dispatched to the

TSS requires an acknowledgement before any operation that inserts tuples is performed on any

tuple space.
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5.17 Optimising the York Kernel II

There are two particularly interesting optimisations thatare used to increase the performance of

the York Kernel II. These are the optimisation of theout primitive and the tuple insertion in a

LTSM.

5.17.1 out optimisation

In Chapter 2out ordering was described. In order to achieve this eachout primitive to a RTS

requires an acknowledgement before the next tuple insertion operation to a RTS (or bulk movement

to the TSS) is performed. A naive approach is to translate anout primitive to a RTS into a

simple send message followed by a wait for an acknowledgement message from the TSS process.

However, such an approach leads toout primitives taking nearly as long to execute as anin

primitive.

In the York Kernel II theout primitive to a RTS sends the message, sets a flag to indicate

that an acknowledgement message is expected, and then returns to the user’s program. When an

out primitive (or collect or copy-collect primitive) is performed all the packing of the

message is completed so the message is ready for sending to a particular TSS process, before

the acknowledgement flag is checked. If an acknowledgement message is required and has not

arrived the system waits until one arrives. Even if there aretwo out primitives performed one

after another there is an improvement in performance because the secondout primitive performs

all its preparation of the message before checking the acknowledgement flag. The bulk movement

of tuples from the LTSM to the TSS also requires an acknowledgement, and the same flag (and

hence optimisations) are used for these acknowledgements.

5.17.2 LTSM tuple insertion optimisation

Whenever multiple tuples are moved around the system, they are moved in packets containing

many tuples. When either a LTSM or a TSS receives a packet containing many tuples the obvious

approach is to unpack them and insert them into the tuple storage data structure.

The LTSM does not do this, it attempts to lazily unpack the packet of tuples as and when the

tuples are needed. It is often the case that the template usedwith acopy-collect or collect

primitive is used with subsequent primitives. Hence, the first tuple unpacked from the packet will

match the template used in the primitive. Therefore, instead of always inserting the packet when

a tuple is requested the LTSM checks to see if a packet of tuples is available for a particular tuple

space. If so, the LTSM takes a tuple from the packet and matches it with the template. If they

match, then no further tuples are unpacked and the user’s program continues. If the tuple does

not match then it is inserted in the tuple storage data structure and the next tuple in the packet is

checked. If another Linda primitive is used which requires amessage to be returned from a TSS

process, then all the tuples in the packet are inserted in thetuple storage data structure.
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This approach is never slower than inserting the tuples directly into the tuple storage data struc-

ture when the packet of tuples arrives, and as will be seen in Chapter 6, can provide a significant

speed increase.

5.18 Why classify tuple spaces?

Why does the ability to make a simple classification of the tuple spaces lead to an increase in the

performance of the kernel? The ability to classify a tuple space as a LTS or RTS provides no speed

increase in a parallel program using primitives for simple synchronisation with “single” tuples, as

the bulk movement of tuples does not occur. The advantages become apparent as data structures

are stored as tuples in tuple spaces where the bulk movement of tuples is used implicitly. Individual

tuples are still used to provide control in the programs, such as to indicate that worker processes

have completed, but collections of tuples are required for processing.

The bulk movement of tuples may initially appear an expensive operation, but there are two

attributes which make the bulk movement of tuples and tuple spaces advantageous: the control of

packet size and less communication.

Control over packet size

The first advantage is the ability to control the packet size.When a set of tuples are being moved

from a TSS to a LTSM or vice-versa it is possible to control howmany tuples are packed into a

single packet (or indeed how many bytes are packed into a single packet). With many communica-

tion mechanisms the time taken to send a packet is not linear with respect to the packet size. When

considering an Ethernet based LAN the sending of small packets across it is a more expensive

operation than sending larger packets. Therefore, the ability to bulk move tuples is cheaper than

moving a set of tuples one at a time.

In order to show the advantages of controlling the packet size, the characteristics of the Ethernet

used at the University of York are considered. The characteristics measured are derived using test

programs written in PVM[SDGM94], which the York Kernel II uses for communication. The mea-

surements were produced by passing messages between two Silicon Graphics Indy workstations,

connected using a 10 Megabit per second non-dedicated Ethernet.
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Figure 5.6: Latency for messages up to 1024 bytes in size using PVM.

Figure 5.6 shows the time taken to send messages of between 0 bytes and 1024 bytes, and

Figure 5.7 shows the time taken to send a message of between 128 bytes and 100 Kilobytes in

size between the two workstations. Figure 5.8 shows the bandwidth in megabytes per second that

is achievable for messages of sizes between 0 bytes and 1024 bytes, and Figure 5.9 shows the

bandwidth for messages of between 128 bytes and 100 Kilobytes in size. These charts clearly

show that as the message size increases the bandwidth increases, so more data can be transfered

per second across the network as the message size increases.A packet size of about 30 Kilobytes

provides the best bandwidth.
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Figure 5.7: Latency for messages up to 100 Kilobytes in size using PVM.
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Figure 5.8: Bandwidth versus messages size up to 1024 bytes.
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Figure 5.9: Bandwidth versus messages size up to 100 Kilobytes.

Figure 5.10 shows the time taken for a single byte to be transfered given a particular message

size between 1 byte and 1024 bytes, and Figure 5.11 shows timetaken for a single byte to be

transfered given a particular message size between 128 bytes and 100 Kilobytes in size. These

graphs show that the cost of sending a byte is reduced significantly as more bytes are packed into

a single message.
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Figure 5.10: The time taken to send a single byte for messagessize up to 1024 bytes.

In many Linda programs the size of individual tuples can be small, containing just a few fields

occupying less than 50 bytes9. The actual message dispatched through the network will require

certain other information, such as the destination tuple space or the source tuple space. Even with

this information the entire message will be less than 100 bytes. Therefore the cost of sending

these little tuples is very large compared with the cost packing them into packets and then sending

them. Therefore, the ability to pack several tuples (or indeed several hundred tuples) into a single

message allows the message sizes to be increased achieving better communication performance.
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Figure 5.11: The time taken to send a single byte for messagessize up to 100 Kilobytes.

9A tuple containing seven integers would require approximately 50 bytes.
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The advantage gained is dependent on the network used. If thenetwork characteristics are such

that the cost of sending a single byte is virtually independent of the packet size, the bulk movement

of tuples is still favorable because less communication is required.

Less communication

The second advantage is that less communication is required. If tuples are moved to where they

are to be used the amount of communication necessary is reduced. Everyin primitive performed

on a RTS requiresat leasttwo messages. The first message sends the template to the TSS process

and then a second message is required to return the tuple to the calling user process. There may be

further communication required between the TSS processes to find a matching tuple. Therefore, if

N tuples are required from a RTS, there will be at least2�N messages between the user process

and the TSS. If the tuples are moved to a LTSM (say, using thecopy-collect primitive),

and then read from a LTS, the number of messages required willbe 4 times the number of TSS

processes on which the tuples may reside. The first message sent to each TSS process will be

the request to perform the operation, then the second message is from each TSS process returning

a count of the number of tuples duplicated. Then the LTSM willsend a message requesting the

tuples and finally the TSS processes send a message containing all the tuples. When the actual

in primitives are performed there will beno communication with any other process, as the tuples

are stored in the LTSM. Thein primitives call a function that will search a local data structure

stored within the LTSM which is part of the process. Therefore, givenT TSS processes, theN

tuples would require only4 � T messages. This could potentially be reduced to2 � T messages

if the message containing the count of the tuples copied or moved, and the message containing the

tuples is compressed into one message, saving a message, andthere would be no need for a request

message for the tuple space.

A similar reduction in communication is observed if a tuple is inserted into a LTS rather than a

RTS. The insertion of a tuple in a RTS requires two messages, the message to the TSS process and

the acknowledgement message. ForN tuples to be inserted2�N messages are required to insert

them in a LTS. If the tuples are inserted in a LTS, at most2�T messages are required, the message

with tuples in it and an acknowledgement message from each TSS process sent a packet. An empty

packet is never sent, so if only one tuple is inserted into a LTS which then becomes a RTS, there

will be only 2 messages: a packet containing one tuple and an acknowledgement message from the

TSS process receiving the packet. The reduction in the number of messages is shown in Table 5.3.

In systems where the cost of sending a byte in a message is independent of the message size

there will still be an improvement in performance because less communication between processes

is needed, and the total number of bytes in all the messages for a particular operation when they are

bulked moved will be less than if they were moved as individual tuples10. Only if a communication

system has characteristics which make the cost of sending a byte in a packet cheaper than accessing

10Provided the tuples are used.
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LTSM N in primitives N out primitives

Enabled 4� T 2� T (worst case)

(inc. copy-collect primitive) 2 (best case)

Disabled 2�N 2�N

Table 5.3: Table summarising the reduction in communication when using the LTSM (whereT is

the number of TSS processes).

local memory will the bulk movement of tuples not provide an improvement in performance.

5.19 Conclusions

In this chapter the novel techniques used within the York Kernel II have been described. The

kernel uses an efficient method of deciding where tuple spaces should be stored, based on implicit

information gathered at run time, requiring no explicit information to be added to a Linda program.

The ability to classify tuple spaces allows the effective implementation of the bulk primitives of

collect andcopy-collect.

One issue not addressed so far is what happens if a processor does not have sufficient physical

memory to store an entire LTS? For example, when the number oftuples being transfered from a

RTS to a LTS makes the LTS too large to be stored by the LTSM. TheYork Kernel II assumes this

cannot happen, and as the workstations being used support virtual memory this has not proved a

problem. However, if a device with less memory was attached to the kernel it could be a problem.

A LTS can be seen as a special case of a RTS. Any tuple space thatis a LTScouldbe converted to

a RTS, which is potentially distributed over many processes, even if only one process can access

it. Therefore, if a tuple is being inserted into a LTS using anout primitive and there is insufficient

memory, the LTS can be made into a RTS, and then the tuple inserted as though it was a RTS. The

collect andcopy-collect primitive implementations could be altered to return the size of

the copied or moved tuples as well as the number copied or moved tuples. The LTSM can therefore

decide if it has enough space to store a LTS, or whether the LTSshould be transfered to a RTS.

York Kernel II has been built on top of PVM[SDGM94]. In the next chapter the performance

of the York Kernel II is evaluated. In Chapter 7 the shortcomings of the current York Kernel II

are described and the technique of classifying tuple spacesis extended to overcome some of the

shortcomings of the York Kernel II.



Chapter 6

Performance of the York Kernel II

6.1 Introduction

This chapter evaluates the performance gains that are achieved by the kernel outlined in the previ-

ous chapter. A number of simple experiments are used to show the performance advantages that

the bulk movement of tuples can achieve by comparing the performance of a number of common

coordination patterns using the York Kernel II with the LTSMenabled and disabled. When the

LTSM is disabled the kernel degenerates into a traditional implementation with all the tuple spaces

being stored on the TSS and no bulk movement of tuples, similar to the York Kernel I[DWR95]

and other such implementations.

The performance of a “real world” example, the Hough transform, with the LTSM enabled and

disabled is also shown. The Hough transform is a common imageprocessing algorithm. Using

this example the performance of the York Kernel II is also compared with the performance of SCA

C-Linda, a commercialclosedimplementation which uses compile-time analysis.

6.2 Experiments

All the experiments are conducted using a number of Silicon Graphics Indy workstations using

a 10 Megabit per second non-dedicated Ethernet connection.The York kernel II is initialised so

that all the tuples are distributed across all the workstations used. Unless otherwise stated, all

experiments used tuples containing a single integer so matching the templatehj2
integer

ji. Also

the test processes are the only processes using the kernel and all the execution times stated in this

chapter are given in seconds and represent “wall clock” timings.

The Ethernet used is non-dedicated and subsequently other users effect the time it takes to send

messages over it so the experimental results were all gathered during the early hours of the morning

when the Ethernet load should be minimal. Six experiments are used to show the performance of

the York Kernel II. The C-Linda source code for the experiments is given in Appendix B. These

six experiments are:

117
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Experiment one This experiment shows that when a tuple space is a RTS the use of the LTSM

doesnot effect the execution times. In order to show this 1000 tuplesare placed in the RTS

UTS using theout primitive, and then all 1000 are retrieved from theUTS in any order

using thein primitive.

Experiment two This experiment shows that when a tuple space is a LTS the use of the LTSM

provides faster access to the tuples within the tuple space.In order to show this 1000 tuples

are placed in a LTS using theout primitive and then all 1000 tuples are retrieved from

the LTS in any order using thein primitive. This experiment is similar to experiment one,

except that the tuple space is a LTS rather than a RTS.

Experiments one and two are designed to show that the LTSM does not provide an overhead

for the access of RTS, and that the speed of LTS access is improved by using the LTSM. The

next four experiments show that the bulk movement of tuples (and tuple spaces) between

the LTSM and the TSS is effective.

Experiment three This experiment shows that the movement of entiretuple spacesbetween the

LTSM and the TSS provides better performance than not movingthem. In order to show this

1000 tuples are placed into a LTS using theout primitive. A tuple containing the handle

of this LTS is then placed into a RTS (UTS) using theout primitive. The movement of the

entire tuple space occurs when the tuple space changes from being classified as a LTS to a

RTS. Subsequently, all 1000 tuples are retrieved from the tuple space (which has become a

RTS), into which they were placed, using thein primitive.

Experiment four This experiment shows that the movement of multipletuples from a LTSM

to the TSS provides better performance than not moving them.In order to show this

1000 tuples are placed into a LTS using theout primitive, and are then copied using the

copy-collect primitive from this tuple space to a RTS (UTS). Then all 1000 tuples are

retrieved from the RTS, into which they were copied, using thein primitive.

Experiment five This experiment shows that the movement of multipletuplesfrom the TSS to

a LTSM provides better performance than not moving them. In order to show this 1000

tuples are placed into a RTS (UTS) using theout primitive, these are then copied using the

copy-collect primitive from this RTS to a LTS. All 1000 tuples are then retrieved from

the LTS, into which they were copied, using thein primitive.

Experiments three, four and five are designed to show that thebulk movement of tuples and

tuple spaces provides a performance increase. The final experiment is designed to show the

performance achievable when multiple block movements of tuples are performed one after

another.

Experiment six This experiment shows that bulk movement of tuples can be performed one after

another, moving multiple tuples from a LTSM to the TSS and back to the LTSM. In order
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to show this 1000 tuples are placed into a LTS using theout primitive, and they are then

moved using thecollect primitive from this tuple space to a RTS (UTS). The tuples are

then copied using thecopy-collectprimitive back from the RTS to a LTS and finally all

1000 tuples are retrieved from the LTS into which they were copied, using thein primitive.

In all the experiment descriptions whether a tuple space is aRTS or a LTS is explicitly stated.

There is no distinction as far as the programmer is concerned. Each tuple space is simply a

tuple space (see source code in Appendix B).

6.2.1 Experimental results

Experiment one

Table 6.1 shows the execution times taken to perform the two operations: the insertion of the

tuples, and the removal of the tuples. The experiment is performed with both the LTSM enabled

and disabled using a number of different workstation configurations. In each case the number of

workstations used indicates the number of machines over which the tuples stored in a RTS are

distributed. Figure 6.1 shows a graphical summary of these results.
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Figure 6.1: Summary of the results of experiment one.
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LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.970 3.026 3.062 3.049 3.191 3.013

1000in 3.243 3.275 3.384 3.379 3.538 3.526

Total 6.213 6.301 6.446 6.428 6.729 6.539

Table 6.1: Experiment 1 - Accessing a RTS with the LTSM enabled and disabled.

Experiment two

Table 6.2 shows the execution times taken to perform the two operations: the insertion of the

tuples, and the removal of the tuples. The experiment is performed with both the LTSM enabled

and disabled using a number of different workstation configurations. Figure 6.2 shows a graphical

summary of these results.

LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.975 0.018 2.908 0.019 2.975 0.019

1000in 3.270 0.019 3.380 0.018 3.513 0.019

Total 6.245 0.037 6.288 0.037 6.488 0.038

Table 6.2: Experiment 2 - Accessing a LTS with the LTSM enabled and disabled.
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Figure 6.2: Summary of the results of experiment two.



6.2. EXPERIMENTS 121

Experiment three

Table 6.3 shows the execution times taken to perform the three operations: the insertion of the

tuples, the placing of the tuple intoUTS, and the removal of the tuples. Figure 6.3 shows a

graphical summary of these results.

LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.889 0.019 2.816 0.018 2.940 0.019

1 out 0.003 0.044 0.003 0.056 0.003 0.081

1000in 3.265 3.912 3.400 3.639 3.524 3.827

Total 6.157 3.975 6.219 3.713 6.467 3.927

Table 6.3: Experiment 3 - Changing a tuple spaces classification from a LTS to a RTS.
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Figure 6.3: Summary of the results of experiment three.

Experiment four

Table 6.4 shows the execution times taken to perform the three operations: the insertion of the

tuples, their duplication, and the retrieval of the copied tuples. Figure 6.4 shows a graphical

summary of these results.
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LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.797 0.018 2.818 0.019 2.919 0.018

copy-collect 0.015 0.054 0.011 0.064 0.010 0.093

1000in 3.248 3.921 3.286 3.752 3.382 3.755

Total 6.060 3.993 6.115 3.835 6.311 3.866

Table 6.4: Experiment 4 - Moving tuples from a LTS to a RTS using thecopy-collect primi-

tive.
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Figure 6.4: Summary of the results of experiment four.

Experiment five

Table 6.5 shows the execution times taken to perform the three operations: the insertion of the

tuples, their duplication, and then retrieval from the LTS.Figure 6.5 shows a graphical summary

of these results.
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LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.870 2.924 2.864 2.885 2.911 2.902

copy-collect 0.014 0.014 0.011 0.012 0.010 0.013

1000in 3.297 0.068 3.407 0.067 3.538 0.058

Total 6.181 3.006 6.271 2.964 6.459 2.973

Table 6.5: Experiment 5 - Moving tuples from a RTS to a LTS using thecopy-collect primi-

tive.
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Figure 6.5: Summary of the results of experiment five.

Experiment six

Table 6.6 shows the execution times taken to perform the fouroperations: the insertion of the

tuples, their movement, duplication and their retrieval. Figure 6.6 shows a graphical summary of

these results.
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LTSM Disabled Enabled Disabled Enabled Disabled Enabled

Two workstations Four workstations Eight workstations

1000out 2.967 0.019 2.884 0.018 2.952 0.019

collect 0.003 0.052 0.003 0.070 0.003 0.085

copy-collect 0.007 0.705 0.007 0.361 0.008 0.285

1000in 3.345 0.063 3.441 0.057 3.576 0.058

Total 6.322 0.839 6.335 0.506 6.539 0.447

Table 6.6: Experiment 6 - Moving tuples from a LTS to a RTS and then back to a LTS.
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Figure 6.6: Summary of the results of experiment six.

6.2.2 Experimental conclusions

Experiments one to six - combined results

Figure 6.6 shows a graphical summary of all the results for experiments one to six.

Experiment one

The results show that when the LTSM is enabled it has no effecton the time taken to perform

operations on a RTS. The time to perform the 1000out primitives is almost constant regardless

of the number of workstations over which the RTS is distributed, but the time taken to perform the

1000in primitives increases as the number of workstations over which the TSS and consequently
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Figure 6.7: Summary of the results of all six experiments.

the RTSs are distributed is increased. This is as expected because every time anout primitive

is performed it selects a single TSS process and sends a “message” to it. Whether there are two

TSS processes or eight TSS processes the time taken to send the message is the same, but the

time taken for anin primitive is dependent on the number of TSS processes on which a matching

tuple can reside. This is because when a tuple is not available then other TSS processes, that

could potentially contain a matching tuple, are contacted to see if they have a matching tuple. The

more potential TSS processes that could store a matching tuple the higher the communication costs

required to find a tuple. For more details on how anin primitive works see Section 5.13.

Experiment two

The results when the LTSM is disabled are similar to the results obtained in experiment one. This is

as expected because when the LTSM is disabled all the tuples are stored on the TSS, and there is no

distinction between a LTS and a RTS in terms of accessing them, so the execution times should be

the same as in experiment one. Again, as the number of workstations increases the time to perform

the 1000out primitives remains constant and the time taken to perform the 1000in primitives

increases slightly. When the LTSM is enabled the execution time for both the 1000out primitives

and the 1000in primitives is independent of the number of workstations theTSS is distributed

over and is many times faster than when the LTSM is disabled. This is because the operations

are local to the process and require no communication with any other process, either on the same

workstation or on other workstations. The speedup providedby the LTSM is approximately 165

times than when the LTSM is disabled.
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Experiments one and two show both the speedup achievable by using the LTSM for accessing

tuples stored in LTSs and that the LTSM does not reduce the access times for tuples stored on the

TSS in RTSs. The fast insertion and retrieval of tuples from aLTS stored in the LTSM shown does

not show how such an approach improves the performance for communicating processes. The

results for the next four experiments show that the bulk movement of tuples (and tuple spaces)

between the LTSM and the TSS is effective, which is required if processes are to communicate.

Experiment three

All the results when the LTSM is disabled are similar to the results for experiments one and two

when the LTSM is disabled. This is because the single extraout primitive, which places the tuple

containing the handle for the tuple space in UTS, takes little time (less than 0.003 seconds), and

therefore the operation is comparable to performing 1000out primitives to a tuple space stored

on the TSS, and then retrieved from the TSS. When the LTSM is disabled there will beno bulk

movement of tuples from the LTSM, and there is no bulk movement of tuples between different

TSS processes.

When the LTSM is enabled the total execution time of the test program is approximately a third

faster than when the LTSM is disabled. This is because the tuples are placed into a LTS which is

stored in the LTSM, and then the entire tuple space is bulk moved on to the TSS when the handle

for the LTS is placed in a RTS (out(uts, ts) is performed). The times taken to execute this

out primitive and the subsequent 1000in primitives show that the singleout primitive takes

longer than when the LTSM is disabled, and the time increasesas the number of workstations that

the TSS is distributed over increases. This is because the time taken for the singleout primitive

is the time taken to send theout message to the appropriate TSS process (as when the LTSM is

disabled)andto pack the all the tuples in the tuple space and dispatch themto the appropriate TSS

processes.

The time theout primitive takes is dependent on the number of TSS processes because the

more TSS processes there are, the more messages need to be prepared and dispatched, and the time

cost of creating the messages and initialising the sending of more messages takes longer. The time

taken to unpack the tuples within the TSS processes does not effect the time of theout primitive

because the LTSM does not “pause” until all the acknowledgements from the TSS processes are

received (see Section 5.3 for more details of the acknowledgements required). The extra time taken

in performing the 1000in primitives is attributable to thefirst in primitive performed, as thein

primitive cannot be performed until all the acknowledgements from the TSS processes despatched

packets of tuples have been received. A TSS process dispatches an acknowledgmentbeforeplacing

the tuples in its tuple storage data structure. Once the acknowledgements are received by the LTSM

it is able to send the template for the firstin primitive to an appropriate TSS to perform the tuple

retrieval. This request for a tuple is only serviced by the TSS process when it has finished inserting

the tuples into its data structure.
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In theory a trade off could be used here, the more TSS processes the smaller the number of

tuples dispatched to each of them, and the larger the communication costs because, as the Ethernet

performance charts (in Chapter 5) show, as the package size decreases the effective bandwidth

available decreases. But, the fewer tuples in a packet the less unpacking is required by the TSS

process receiving the packet, and the TSS processes will be able to service the next request sooner.

Pragmatically it is difficult to determine exactly what timecosts are attributed to each operation at

such a level. It is plausible that in this experiment the bestperformance is achieved when the tuple

space is transferred to the four TSS processes. In this case apacket size of about 2.2 Kilobytes1

is sent to each of the TSS processes containing 250 tuples. The time taken to dispatch and unpack

the tuples is less than sending a single packet of 9 Kilobytesand unpacking 1000 tuples or eight

packets of 1.1 Kilobytes containing just 125 tuples.

The important point is that the results show that the bulk movement of a tuple space does not

impede the performance of the kernel, and indeed provides a speed up of at least 1.5 times over

using only the TSS to store all the tuples.

Experiment four

Regardless of whether the LTSM is enabled or disabled the execution times in each case are similar

to the execution times for the same case in experiment three.As with the last experiment when the

LTSM is disabled there is no bulk movement of tuples between the LTSM and TSS processes, and

between TSS processes.

The similarities between these results and those of experiment three are expected as funda-

mentally the same operations are being performed, except that instead of the 1000 tuples being

moved as a “tuple space” they are moved as a 1000 tuples. As with experiment three the time

taken to perform the operation that initiates tuple movement (thecopy-collect primitive) and

the 1000in primitives is larger where the LTSM is enabled than when it isnot. The reason for this

is the same as in experiment three when theout primitive and the firstin primitive took longer.

However, the time taken to perform thecopy-collect primitive is always slightly longer than

the time taken to perform theout in experiment three. The difference is accounted for by the time

cost of performing the match between the template and every possible tuple in the tuple space.

When a LTS handle is placed in RTS the entire LTS is moved and there is no matching of tuples.

When acollect or copy-collect primitive is used matching of each potential tuple has to

be performed.

Experiment five

The execution times when the LTSM is disabled are comparableto those in experiment four.

This is as expected because when the LTSM is disabled the program used in this experiment and

1A single tuple containing just an integer will be coded into astructure about 9 bytes long. Therefore, 1000 tuples

at 9 bytes is 9000 bytes divided evenly between the four TSS processes being used.
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experiment four are the same because regardless of whether atuple space is a RTS or a LTS, it is

stored on the TSS.

When the LTSM is enabled the placing of the tuples into a RTS takes the same time as when

the LTSM is disabled. When considering the movement of tuples from a LTSM to the TSS there

are two identifiable operations incurring extra time overheads due to the bulk movement. These are

the instructions that initiate the movement of the tuples and the firstin primitive performed on the

moved tuples. The time cost of performing thecopy-collect primitive appears significantly

less than the time cost of performing theout orcopy-collect primitives in experiments three

and four. The reason for this is that duplication of the tuples is performed in the TSS processes

concurrently and the count returned. The user process can then continue after requesting that

the tuples be sent (see Section 5.17 for more details) whilstthe tuples are being packaged and

transmitted to the LTSM by the TSS processes.

The 1000in primitives take only approximately 0.04 seconds longer than the equivalent oper-

ations in experiment one. When the tuples are moved from a LTSM to the TSS (experiment three

and four) the difference between the LTSM enabled and disabled times to perform the 1000in

primitives is approximately 0.4 seconds. This would imply that a bulk movement of tuples takes

approximately 0.4 seconds. If the time taken to perform the 1000in primitives when the LTSM is

enabled in this experiment is compared with the same operation in experiment two, the difference

is only approximately 0.04 seconds. This implies that overheads of bulk moving tuples between

the TSS and LTSM is only 0.04 seconds. Why does the bulk movement of tuples from the TSS to

the LTSM appear to be have lower overheads for the same numberof tuples, particularly consider-

ing the time to perform thecopy-collect primitive is less than to perform the equivalent tuple

movement initiating primitive in experiment three and four? There are two factors that justify this,

firstly the LTSM does not wait until all the tuple packets fromthe TSS processes are received, as

the first packet received has a matching tuple. Secondly the first tuple removed from the first packet

matches the template. Therefore the tuples are never inserted into the tuple storage data structure

(as described in Section 5.17). The time the 1000in primitives take drops when the number of

TSS processes increases because the more TSS processes, theless tuples are stored on each one,

so the time taken for the TSS processes to pack the tuples is less. Thus the first packet of tuples

will arrive at the LTSM sooner, so a match can be found sooner.

This experiment is of particular interest as it contains thecoordination pattern that is performed

when solving the multiplerd problem using thecopy-collect primitive. The use of the

copy-collect primitive to get a copy of all the required tuples followed bythe consumption

of all of them using thein primitive with the same template as used in thecopy-collect

primitive.

These experiments show the basic performance of the York Kernel II when multiple tuples

are moved. The LTSM has been shown to improve the performanceof the kernel. The sixth

experiment shows the performance achievable when multipleblock movements are performed one
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after another.

Experiment six

When the LTSM is disabled the results are very similar to the other experimental results involv-

ing the placement and removal of 1000 tuples from a tuple space which is stored on the TSS.

The difference between the time taken to perform thecollect primitive and to perform the

copy-collect primitive shows time overheads associated with duplicating the tuples rather

than just altering the tuple space to which they belong. Whentuples are duplicated memory has to

be assigned and the tuple physically duplicated (see Section 5.6).

When the LTSM is enabled the execution times display a numberof interesting characteristics.

The time taken to perform thecopy-collectprimitive is significantly longer than in experiment

five where acopy-collect primitive is performed involving the bulk movement of tuples from

the TSS to a LTSM. This is because thecopy-collect primitive requires a message from each

of the TSS processes which could contain tuples that match the template (in this case all of them).

Therefore, the time taken by thecopy-collectprimitive represents the time taken for the tuples

to reach the TSS process (initiated by thecollect primitive), to be unpacked, duplicated and

the count of tuples duplicated and return the count to the LTSM. As the number of TSS processes

which store the tuples increases, thecopy-collect primitive takes less time, because as the

number of the TSS processes increases, the number of tuples that each receives decreases. The

time spent by the TSS processes inserting them into the tupledata structures, matching them and

duplicating them also decreases. As with experiment five once transfer to the LTSM has been

initiated by thecopy-collect primitive the 1000in primitives take a comparable time to the

same operation in experiment five, which would be expected.

Concluding remarks

The experimental results show the performance of the York Kernel II with respect to its ability

to move multiple tuples in a single operation. The experiments are specifically designednot to

test the template and tuple matching, or the underlying tuple storage data structures. Although

the kernel is designed to be efficient, the more efficient waysof performing these operations using

pre-compiler support have not been considered. The kernel is designed to show how the bulk

movement of tuples can be used to improve performance. The experimental results show that the

use of the LTSM does not degrade the performance of the kernelwhen using RTSs and increases

the performance of the kernel when using LTSs. The experiments show sets of operations which,

from experience, appear common in Linda programs, which usemultiple tuple spaces and the

collect andcopy-collect primitives.

The experiments compare the performance of the kernel when the LTSM is enabled and dis-

abled, but do not consider the performance against other implementations. Even when the LTSM

is disabled the performance is better than the York Kernel I[DWR95, RDW95]. Although many of
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the underlying implementation decisions were based on methods used in the York Kernel I: York

Kernel I uses a two stage hashing algorithm for the placementof tuples rather than a one stage

hashing algorithm. The format of the tuples used in the York Kernel II are far simpler2 than the

format used in York Kernel I, so the matching of templates against tuples is faster and a better

tuple storage data structure is used in the York Kernel II. York Kernel II also gains performance by

using PVM efficiently, but the LAN version of the York Kernel Iis a port[RDW95] of an existing

implementation developed for a Transputer based system, and so it does not use PVM to the full.

An example of the performance of the York Kernel I is given in Table 6.7 which shows the results

for experiment one. The results should be compared with the results for experiment one for the

York Kernel II (Table 6.1). The time taken to perform the 1000out primitives is significantly less

than for the York Kernel II, because the PVM port of the York Kernel I does not fully supportout

ordering3 and so does not use acknowledgements forout primitives as does the York Kernel II

implementation. This means that only a single message is required for everyout primitive rather

than the two messages required in the York Kernel II.

Using a TSS distributed over two workstations

1000out 1.654

1000in 8.391

Total 10.045

Table 6.7: The performance of York Kernel I when placing tuples in a RTS or a LTS.

Comparison between York Kernel II and other implementations that are open systems is diffi-

cult for several reasons. There are few kernels publicly available and those kernels that are not pub-

licly available quote results using different workstations and networks. This makes the comparison

of results impossible. The public versions available are PLinda[Jeo96, JS94] and Glenda[SAB94],

but both implementations use a centralised TSS rather than adistributed TSS as used by the York

Kernel II, so any comparison is biased in favour of the York Kernel II. PLinda is designed to show

fault tolerant techniques which degrades performance further by requiring it to regularly take snap-

shots of the tuple spaces. The performance the York Kernel IIis better than Glenda and should

be better than PLinda, even with the LTSM disabled because they use centralised TSSs. In order

to show this the execution timings for Glenda to place a 1000 tuples into a RTS using theout

primitive and then retrieve them using thein primitive (experiment one) is given in Table 6.8.

The results show the performance of the single TSS process both on the same workstation

that the test program is being executed, and on a different workstation. Table 6.8 shows that the

performance of the Glenda performing theout primitives exceeds that of the York Kernel II. This

2York Kernel I allowed embedded data structures within tuples, therefore tuples can contain sets, tuples, bags, etc;

and matching can be performed on any field either within the tuple or the data structure within the tuple.
3The Mieko CS-1 provided synchronous communication, whereas PVM provides asynchronous communication.

Out ordering is guaranteed if synchronous communication channels are provided.
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TSS resident on

same workstation different workstation

1000out 1.541 1.084

1000in 6.088 12.763

Total 7.629 13.847

Table 6.8: The performance of Glenda when placing tuples in aRTS or a LTS.

is because Glenda uses a centralised TSS, and PVM which guarantees message ordering between

two processes. Therefore, an acknowledgment message for each out primitive is not required,

because the message for anout primitive is guaranteed to arrive at the centralised TSSbefore

the next message sent from a process. Hence, as long as the centralised TSS process services the

messages in the order they arrive at the TSSout ordering is guaranteed. The time taken to perform

the 1000in primitives is greater than the time taken using the York Kernel II because the tuple

storage mechanism and the matching of tuples with templatesis inefficient. Glenda is also built on

top of PVM and, as with the York Kernel I, it is not used in an efficient manner.

Owing to the lack of suitable open implementations, in the next section, the performance of the

York Kernel II is compared with the performance of SCA C-Linda. This is a commercial C-Linda

produced using the techniques developed at Yale. It is probably the best implementation currently

available, primarily because it is a closed implementationand uses compile time analysis to gain

performance. SCA C-Linda does not support thecollect andcopy-collect primitives, and

does not have multiple tuple spaces. So to compare the performance of the two systems a “real

world” case study is used. This is a commonly used method fromthe image processing field, the

Hough transform.

6.3 The Hough transform

The Hough transform[DH72] is an image processing algorithm, and is referred to as an

intermediate-level vision operation[WMM+92]. The Hough transform is used to detect straight

lines (and other shapes such as circles) in binary images. Figure 6.8 shows its role in a general

image processing system. The initial image (top-right) is agrey-scale image of an aeroplane

in flight. The grey scale image is then processed, using a thresholding algorithm[SSWC88], to

produce a binary image from the grey-scale one. The thresholding process attempts to distinguish

the sky and the aeroplane, by making the aeroplane pixels setand the sky pixels unset. This is

represented as the next image in Figure 6.8. The next stage isto detect the outline of the plane.

This can be achieved using a number of techniques, including4/8-connectedness[DF86]. These

stages are all described as low-level image processing. If the aeroplane is to be detected as an

aeroplane, some sort of object matching (a high-level operation) has to be performed. The image

is transformed to the Hough space (or Parameter space), and this is used to determine straight
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lines in the image. The last two images in Figure 6.8 show these stages. This final stage is further

processed and used as the input to an object matching process, which will identify the image as an

aeroplane (hopefully).
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Figure 6.8: Processing an aeroplane image.

The work described here focuses on the basic Hough transformfor detecting straight lines and

a more formal overview of it is now given. The Hough transformmaps a binary image pixel,

(x; y), in thecoordinate space(the binary image) to a sinusoidal curve in theparameter space(or

Hough space). This sinusoidal curve is ‘plotted’ as a set of coordinatesin the parameter space.

The version of the Hough transform which is used is to detect straight lines in images is described

by Equation 6.1, where(�; �) pairs represent solutions of the equation given a specific(x; y).

x cos � + y sin � = � (6.1)

Therefore, for each pixel(x; y) in the coordinate space the set of(�; �) pairs define a sinusoidal

curve in the parameter space. The range of� is�90

� and the range of� is the rangeD to�D where

D is defined in Equation 6.2. The granularity of the parameter space is controlled by controlling the

quantisation of�, and throughout all the experiments a granularity of�1

� is assumed. Therefore

for every pixel in the coordinate space the Equation 6.1 produces 180(�; �) pairs.

D = max(x; y;

p

2

2

x+

p

2

2

y) (6.2)

Given two points in coordinate space, the equation of the line joining them is determined by

the point of intersection of their corresponding curves in parameter space. The(�; �) value at

the intersection is substituted into Equation 6.1 creatinga function that describes a straight line
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in the coordinate space. In order to detect the straight lines in an image, the parameter space is

examined for intersections, and the number of curves that intersect at a particular point is equal

to the number of image pixels in the coordinate space lying onthat line in the coordinate space.

The Hough transform therefore consists of two stages: the transformation from coordinate space to

parameter space; and the subsequent processing of the parameter space. Only the transformation

stage will be considered. Figure 6.9(b) shows the resultingparameter space for the simple image

shown in Figure 6.9(a). A more detailed description of the Hough transform can be found in

[GW87].

(a) Coordinate space
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Figure 6.9: A simple image and its Parameter space after the Hough transform has been applied.
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6.4 Parallel decomposition of the Hough transform.

Much work has already been done on the parallel decomposition (using a data parallelism style) of

the Hough transform[WMM+92, YA85]. The method adopted here is the data parallel approach

proposed by Yalamanchili et al.[YA85]. There are two primary ways of implementing a data

parallel Hough transform. The first is to divide the coordinate space into segments then have a

worker process for each segment. The worker takes each pixelin the segment it is responsible

for and calculates the entire curve it produces in the parameter space. The second is to divide the

parameter space into segments and then have a worker processfor each of those segments. Every

pixel within the coordinate space is processed by every worker, but only the part of the curve

which bisects the segment of the parameter space which the worker process is responsible for, is

calculated.

Segmenting the coordinate space creates two problems. The first problem is load balancing.

The pixels within an image are not always distributed evenlyover all the segments and in most

cases they are unlikely to be. The execution time of each worker process is proportional to the

number of pixels within the segment of the image for which it is responsible. Therefore, there is

the possibility that some workers will have no work to perform, whilst others will have significantly

more than the average. The second problem is that all the workers want to update the parameter

space. During the execution of the Hough transform many of the positions within the parameter

space are updated by many different workers, causing contention problems. The implementation

within a Linda context produces no particular difficulties owing to the nature of the blocking

primitives, but the load balancing problems are significantwithin a Linda context.

Segmenting the parameter space means that each worker process only updates a small segment

of the parameter space, to which it will have exclusive access, but every process has to read every

pixel in the coordinate space in order to create its segment of the parameter space. Figure 6.10

shows the parallel decomposition of the problem within a Linda context. The image tuple space

contains the image, in the form of triples,hx� coordinate

integer

; y� coordinate

integer

; pixel�

value

integer

i. The image is a binary image, so thepixel-value will always be either one or zero.

The image could be stored using just pairs,hx � coordinate

integer

; y � coordinate

integer

i with

the assumption that if the tuple is present the pixel is set and if it is not set then the pixel is not

present[RW95]. It is assumed here that the all the pixels arerepresented in the tuple space. In

general this approach is better because the producer of the image tuple space may not know which

processes are going to use it. Some processes may want the pixels with zero values, which is

costly to determine if only the tuples which represent set tuples are present. In Figure 6.10 there is

a second tuple space which is used to store the parameter space and four worker processes. Each

worker is required toread all the image tuples with apixel-valueof one, and update the quarter

segment of the parameter space for which it is responsible. The readingof the tuples by all four

processes produces themultiplerd problem. Therefore, each process takes a copy of the tuples

representing the tuples which are set and then destructively removes them from the copy it has
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taken and updates its segment of the parameter space accordingly.

Image tuple space Parameter tuple space

Worker
Process

Worker
Process

Worker
Process

Worker
Process

Figure 6.10: The parallel decomposition of the Hough transform

In the implementation, the parameter space quarters are created using local data structures

within the worker process, and then transfered to the parameter tuple space after all the image

pixels have been processed. Processing of the parameter tuple space cannot start before a segment

has been fully completed so this is an appropriate approach.Within the parameter tuple space the

parameter space is stored as a sparse data structure. Tupleswithin the parameter space are triples of

the formh�

integer

; �

integer

; counter

integer

i. If the counter is to be zero for a particular(�; �) pair

then the tuple is not present. The parameter space is processed in such a way to detect “peaks”,

as they represent the lines with the most pixels on. Therefore, points with a zero count are not

normally required in further processing.

The SCA C-Linda implementation has been implemented slightly differently, because it does

not support thecollect andcopy-collect primitives or multiple tuple spaces. The different

tuples spaces are emulated by tagging the tuples with a string to represent the tuple space to which

they belong. The SCA C-Linda uses the stream approach to overcome themultiplerd problem.
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6.4.1 Experimental results

The experimental results show two things. One is the effect of using the bulk movement of tu-

ples for performance gains. The other is to reinforce themultiple rd problem, and how the

copy-collect primitive overcomes it.

The first set of results show the effect of using bulk movementof tuples. In this case every pixel

in the image is set to one. In Chapter 4 the time cost (in terms of primitives) of using the stream

method and thecopy-collectmethod for overcoming the multiplerd problem are compared.

This showed that the number of primitives required by the stream method isN�rd (Equation 4.1).

The number of primitives required for thecopy-collect method iscopy-collect+ n� in

(Equation 4.4). When all the tuples in the tuple space are required (which is when all the pixels are

set),n = N . Therefore, the stream approach should be slightly more efficient, requiring one less

primitive. The other question is the cost of performing anin primitive and ard primitive simi-

lar? The difference is that the amount of tuple template matching is less in thecopy-collect

method because thein primitive matches all the tuples copied by thecopy-collect primitive.

Therefore, every tuple retrieved requires only one tuple template matching operation, but when-

ever ard primitive is used, potentially many tuples have to be matched against a template before

a suitable match is found. In the SCA C-Linda very efficient hashing algorithms are used (created

at compile time) which means that the number of tuples actually checked when ard primitive

is performed should be very small. Combining this with the ability to place tuples based on the

compile time analysis should make the cost of performing therd primitive as efficient (if not more

efficient) than the York Kernel II performing anin primitive on a tuple space stored on the TSS.

By comparing the time taken when all the pixels are set provides an acceptable way of comparing

the performance of the York Kernel II and the SCA C-Linda.

Table 6.9 shows the execution times in seconds for the Hough transform using four Silicon

Graphics Indy workstations connected by a 10 Megabit per second non-dedicated Ethernet when

all the pixels are set in a 256x256 binary image. The execution times represent the time to create the

image tuple space; perform the Hough transformation of it; and produce a tuple space containing

the parameter space. The time cost of spawning the worker processes is not included because of

the difficulties in determining this for the SCA C-Linda4. For all the parallel versions four workers

are used, one placed on each of the four Silicon Graphics Indyworkstations. For the York Kernel

II the TSS is distributed over the four workstations as well.The table shows the time taken for the

SCA C-Linda, York Kernel II with the LTSM enabled and disabled, and two sequential versions

using York Kernel II.

The sequential version using setup one uses a single machinefor the kernel and the program.

The sequential version using setup two has the kernel distributed over four workstations and the

program running on one of those. The sequential version is identical to the parallel version except

no workers are spawned, the function that is spawned in the parallel versions is instead just called

4In the case of the York Kernel II the time to spawn four processes is under 5 seconds.
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in the sequential versions. The execution times of the sequential versions are very similar. With a

single process accessing the tuple space, the speed gains ofhaving the tuple space distributed over

four workstations is lost in the communication overhead of sending packets around the system.

SCA York Kernel II with LTSM Sequential version

C-Linda disabled enabled Setup 1 Setup 2

256x256 image

100% pixels set 523.20 670.48 56.32 68.70 72.02

(65536 pixels)

Table 6.9: Comparing the performance of the bulk movement oftuples with traditional techniques.

The difference in execution times between the SCA C-Linda and LTSM disabled kernel repre-

sents the performance improvement SCA C-Linda achieves through using compile time analysis

(about 28% speed increase). Also both the SCA C-Linda and theLTSM disabled kernel take

considerably longer to execute than the sequential versions. When the LTSM is enabled the per-

formance of the kernel improves significantly, providing over a 900% speed improvement over the

best of the other parallel versions. It also produces an execution time that is less than both the

sequential versions. Table 6.10 shows the speed up of the LTSM enabled version over the other

versions.

York Kernel II with LTSM enabled speedup against

SCA C-Linda LTSM disabled Sequential

Setup 1 Setup 2

256x256 image

100% pixels set 9.3 11.9 1.2 1.3

(65536 pixels)

Table 6.10: Speedup over other implementations when using the York Kernel II with the LTSM

enabled for the parallel Hough transform when all pixels in an image are set.

The maximum performance increase achievable for this parallel algorithm, as more processors

are added, is linear speedup, therefore the speedup of the four worker parallel version over the

sequential versions, in the best case, should have been fourtimes. There are several reasons why

this does not occur. Primarily, all the worker processes areperforming the same operations on the

tuple space at the same time. All the primitives want to copy the matching tuples at approximately

the same time. Each of the TSS processes receives severalcopy-collect messages almost

simultaneously, and as it can only service one at a time a bottleneck occurs for a small period.

Secondly, the costs of communication increases as the number of processes increase. Thirdly, the

algorithm is fine grained and not ideally suited to a network of workstations. The computation

costs are small compared with the communication costs. Whatis significant is the speedup of
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the York Kernel II with LTSM enabled over it with the LTSM disabled and the SCA C-Linda

implementations.

Further experimental results

As already stated the parallel implementation suffers fromthe multiplerd problem. In Chapters 3

and 4 the parallel composition of binary relations was used to show the performance differences

between the different approaches to overcome the multiplerd problem. The Hough transform

provides another opportunity to show the effectiveness of both thecopy-collect primitive as

a means of overcoming the multiplerd problem and the LTSM.

SCA York Kernel II with LTSM Sequential version

C-Linda disabled enabled Setup 1 Setup 2

256x256 image

100% pixels set 523.20 670.48 56.32 68.70 72.02

(65536 pixels)

256x256 image

75% pixels set 523.37 559.03 42.61 53.31 57.66

(49152 pixels)

256x256 image

50% pixels set 510.92 447.14 26.39 37.88 41.06

(32768 pixels)

256x256 image

25% pixels set 514.47 337.91 15.19 22.67 25.53

(16384 pixels)

256x256 image

0% pixels set 520.59 182.15 7.46 5.18 6.85

(0 pixels)

Table 6.11: The advantages of using thecopy-collectmethod for the multiplerd problem.

Table 6.11 shows the results when different numbers of pixels are set within the image. For all

the versions except the SCA C-Linda the execution time is linked to the number of pixels set to

one in the image, regardless of whether the LTSM is enabled ordisabled. Even when the LTSM

is disabled using thecopy-collect method provides better performance than using the SCA

C-Linda (and the stream method) when about 60% of the tuples represent a set pixel in the test

image. The actual speedups of the LTSM enabled kernel over the other versions are shown in

Figure 6.13.

The results show that the performance of the SCA C-Linda version is practically independent

of the number of pixels set. This appears logical because this version uses the stream method to
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overcome the multiplerd problem. Subsequently, regardless of how many image tuplesactually

represent a set pixel, all the pixel tuples are read. However, the amount of computation and the

number of tuples placed into the parameter spaceis dependent on the number of pixels set. For the

test images used Table 6.12 shows the number of tuples that would be placed into the parameter

tuple space. This implies that the execution time should decrease as the number of set pixels within

the image decreases.

Pixels set Number of Number of non-zero elements

tuples in image in the parameter space

100% 65536 58484

75% 49152 51210

50% 32768 43881

25% 16384 36558

0% 0 0

Table 6.12: Number of non-zero elements in Parameter space for test images used.

York Kernel II with LTSM enabled speedup against

SCA C-Linda LTSM disabled Sequential 1 Sequential 2

256x256 image

100% pixels set 9.3 11.9 1.2 1.3

(65536 pixels)

256x256 image

75% pixels set 12.3 13.1 1.3 1.4

(49152 pixels)

256x256 image

50% pixels set 19.4 16.9 1.4 1.6

(32768 pixels)

256x256 image

25% pixels set 33.9 22.2 1.5 1.7

(16384 pixels)

256x256 image

0% pixels set 69.8 24.4 0.7 0.9

(0 pixels)

Table 6.13: Speedup of the parallel Hough transform.

The reason why the execution time for the SCA C-Linda versionis not less (it would be

expected to be approximately 490 seconds) when there are no pixels set in the test image could

be due to the optimisations that the pre-compiler performs.For example, when a program creates
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1000 tuples containing a single integer, and then consumes the tuples in any order (using a template

hj2

integer

ji) the program takes 22.93 seconds to execute. If the program is altered to remove the

tuples in the same order in which they are inserted the program takes 3.89 seconds to execute. As

the order in which they are retrieved in the altered program is a valid ordering for the tuples to

be returned in the first program it would be expected that the execution time of the first program

should be no longer than the execution time for the second program.

The execution times for all the other versions show a dependency on the number of tu-

ples within the image tuple space. This is to be expected as all the other versions use the

copy-collect method to overcome the multiplerd problem, so the number of tuples read

and processed depends on the number of tuples representing set pixels in the image.

The Hough transform is by its nature fine grained. The implementation strategies adopted

have tried to mirror this. Therefore, there is a significant amount of communication compared

to computation. The Hough transform is chosen to show the effectiveness of the LTSM in such

situations. The fact that there is little speed increase over the sequential version when four worker

processes are being used, although not desirable, indicates that the algorithm with such a small

image is not suited to distribution over networks of workstations. What the results do show is that

without using the LTSM there is no point in performing the Hough transform in parallel. It should

be noted that all of the sequential execution timings have been obtained with the LTSM enabled.

The results for the sequential version with the kernel distributed over four workstations and the

LTSM disabled is given in Table 6.14.

256x256 image 256x256 image 256x256 image 256x256 image 256x256 image

100% pixels set 75% pixels set 50% pixels set 25% pixels set 0% pixels set

(65536 pixels) (49152 pixels) (32768 pixels) (16384 pixels) (0 pixels)

625.94 537.42 455.03 363.89 191.53

Table 6.14: Execution timings for the sequential versions using setup two with the LTSM disabled.

6.4.2 Conclusions

The experimental results show that the performance of the York Kernel II increases when the LTSM

is being used. The performance of the York Kernel II has been compared with the commercial

SCA C-Linda which uses compile time analysis allowing it to efficiently place and store tuples.

Normally, the performance of open implementations and closed implementations are not compared

because of the advantages provided by using compile time analysis within closed implementations.

By showing the performance gains, when using an image with all pixels set, it is possible to fairly

compare the performance of the York Kernel II with the SCA C-Linda. When the LTSM is disabled

the expected results of an open implementation are produced, but when the LTSM is enabled the

results show that an open implementation using the techniques used in the York Kernel II is many
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times faster than the closed implementation.

The multiple rd problem effects “real world” problems and the results show how the

copy-collect primitive can be used to efficiently solve the problem.

In many parallel algorithms and programs the use of thecollect andcopy-collect

primitives are inappropriate. In these cases the compile time analysis that SCA C-Linda uses

will normally provide better performance. The aim is to showthat appropriate use of the

copy-collect andcollect primitives can improve performance and that improvement can

be enhanced by using the implementational techniques for the bulk movement of tuples as used in

the York Kernel II.

6.5 Conclusion

In Chapter 5 a description of how a two layer kernel can be created that uses locality information

provided by multiple tuple spaces to create efficient implementation of the bulk primitives of

collect andcopy-collect. In this chapter the performance of the York Kernel II, a kernel

implementation which uses the concepts described in Chapter 5, has been shown. A number of

common Linda coordination operations have been used to showthe speed increase that efficient

implementation of the bulk primitives can provide.

The performance of the York Kernel II, an open implementation, has been compared to the

performance of the SCA C-Linda closed implementation. In order to be able to compare the two

effectively the Hough Transform (an image processing algorithm) was used.

The results in this chapter support the claim that the proposed method is more efficient

than a naive approach, and adds further experimental results to support the inclusion of the

copy-collect primitive within Linda to overcome the multiplerd problem.

The performance gains observed are only possible if multiple tuple spaces are used within a

program, and the bulk primitives are used. Algorithms that use Linda to simply pass messages (or

data structures) between processes will not observe any speedup using the York Kernel II. However,

the speeds achievable mean that in many cases data structures that might be passed as a single tuple

can be stored in tuple spaces as a collection of tuples, providing a more natural programming style.
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Chapter 7

Generalising tuple space classification

7.1 Introduction

The bulk movement of tuples has been shown to be effective in producing a performance increase

in the York Kernel II. However the York Kernel II, described in Chapter 5, has three shortcomings

which are: eagerness in the movement of tuple spaces; the inability to move RTSs to LTSs; and

the kernel does not support a large number of workstations.

Initially, these shortcomings are considered in more detail, and then a more graduated approach

to the classification of tuple spaces is presented which builds on the ideas in Chapter 5. This more

generalised classification of tuple spaces overcomes the problems of eagerness of tuple movement

and scalability. It does not address the problem of RTSs becoming LTSs.

A kernel supporting the approach outlined in this chapter has not been implemented. Before

such a kernel can be realised there are many other problems that need to be overcome. However a

simple simulator has been created, which is described at theend of this chapter.

7.2 Eagerness in tuple space movement

The movement of a tuple space occurs the moment that another process can potentially access

that tuple space. Consider the example procedure shown in Program 7.1. Using the York Kernel

II the tuple spacets1 will be changed from being a LTS to become a RTS when the handlefor

ts1 is placed inUTS (a RTS). This means that all thein primitives will be performed on a RTS,

regardless of whether any other processes can actually accessts1.

The example given in Program 7.1 is rather contrived, but theexample in Program 7.2 shows

the same problem in a more practical way using the master/worker style of parallelism. The two

functionsproducer1 andproducer2 both create a tuple space, and place 100 tuples into

that tuple space. However,producer1 places the handle of the tuple space intoUTS after the

tuples have been placed into the tuple space, andproducer2 places the tuple space handle into

UTS beforethe tuples have been placed in the tuple space. The functionconsumer removes a

143
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Program 7.1An example showing the eagerness of the York Kernel II.
void demo_eager(void)

{

int j;

TS ts1;

ts1 = tsc();

for(j = 0; j < 100; j++)

out(ts1, j);

out(uts, ts1); /* TS1 moved */

for (j = 0; j < 100; j+)

in(ts1, j);

}

tuple containing a tuple space handle fromUTS and removes a 100 tuples from that tuple space.

Assume that in a system, theconsumer function and either one or other of the producer functions

are executing concurrently. The end result will be the same regardless of which of the two producer

functions is used, but which will provide the best performance? The answer is it depends on the

amount of computation performed in both the producer and theconsumer. If the consumer takes

longer to process an individual tuple than it takes the producer to create it, then making the tuple

space a RTS before the producer starts should yield the best performance. If the producer takes

very little time then the conversion of the tuple space to a RTS once the tuples have been inserted

may provide better performance. This is because everyout primitive performed on a RTS requires

two messages to be sent.

This extra communication affects the time taken to perform eachin primitive because it re-

duces the bandwidth of the Ethernet and causes the TSS processes to perform more work (pro-

cessing theout primitives) thus potentially having to queue the consumer‘s in primitives. This

places an onus on the program writer to decide which will givethe best performance. A lazier

kernel would result in the tuple space being moved only when it was required. The movement of

entire tuple spaces could be relaxed so that the movement occurs either when a tuple containing the

tuple space handle is actuallyremovedfrom a RTS by another process, or when another process

actually accesses the tuple space for the first time.
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Program 7.2A second example showing the eagerness of the York Kernel II.
int producer1(void)

{

int j;

TS ts1;

ts1 = tsc();

for(j = 0; j < 100; j++)

out(ts1, j);

out(uts, ts1); /* TS1 LTS -> RTS */

return 1;

}

int producer2(void)

{

int j;

TS ts1;

ts1 = tsc();

out(uts, ts1); /* TS1 LTS -> RTS */

for(j = 0; j < 100; j++)

out(ts1, j);

return 1;

}

int consumer(void)

{

int j;

TS ts1;

in(uts, ?ts1);

for (j = 0; j < 100; j+)

in(ts1, j);

return 1;

}
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There are three reasons why a lazier approach to the movementof tuples is not adopted in the

York Kernel II. The first reason is the increased communication costs that would be imposed. As

the TSS is distributed every TSS process would have to be toldthat the tuple space resides on a

particular LTSM, and if they receive an operation to be performed on the tuple space, then the tuple

space must be moved from the LTSM to the TSS. The communication costs of ensuring that all

tuple spaces are aware of where the LTSM is, followed by the communication necessary to inform

the TSS process that the tuple space has now moved, would be very high. Secondly, adopting a

lazier approach to the movement of tuple spaces would require the LTSM to “interrupt” the user

process in order to service the request for the tuple space tobe moved. Thirdly, the LTSM is linked

into the user process. When the user process terminates the LTSM terminates, and subsequently

all the tuples stored within are lost. If a lazier approach isadopted then tuples which belong to a

RTS can reside on a LTSM. Therefore, if tuples are residing ona LTSM which belong to a RTS,

and the user process terminates, the tuples stored in the LTSM are lost. These three factors make

the lazier movement of tuple spaces unattractive for use in the York Kernel II.

7.3 Reclassification of a RTS to LTSs

A looser definition of a LTS would be: a tuple space is a LTS onlywhen one process has the tuple

space handle in scope and the tuple space handle is not currently in any tuples present within a RTS.

The current definition is: a tuple space is a LTS if it is created by the process and the tuple space

handle has not been placed in a tuple in a RTS. When the currentdefinition is used, there are only a

few situations where a tuple space is classified as a RTS, whenit could be classified as a LTS under

the looser definition. Consider the program shown in Program7.3. Functiontest calls function

one which creates a tuple space (referred to asT

1

), and places its handle in a tuple inUTS. When

the tuple space is created it is a LTS. When the tuple is placedinto UTS the created tuple space

becomes a RTS. The functiontest then evaluates functiontwo concurrently. Functiontwo gets

a tuple fromUTS which contains a tuple space handle. Assuming that the tuplecontaining the

handle forT
1

is the only tuple inUTS that matches the template used by thein primitive within

functiontwo, this will be returned.T
1

can nowonlybe used by functiontwo and could therefore

be stored “as close as possible” to functiontwo, and considered a LTS.

Another situation where a tuple space is classified as a RTS, and when it could be classified

as a LTS under the looser definition, is when spawned processes die. If a program uses the mas-

ter/worker style of parallelism a master process may createa tuple space, and create a number of

worker processes that use the tuple space. When the tuple space is created it is a LTS. When the

worker processes start using it the tuple space has to be a RTS. When all the worker processes die,

the tuple space, under the looser definition, may become a LTSagain.

Within the context of the York Kernel II, the communication costs associated with using a

definition of a LTS that allows a RTS to become a LTS is too high for the few occasions when this
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Program 7.3Example showing when a RTS could be a LTS.
void one(void)

{

TS ts_handle;

ts_handle = tsc(); /* Create a tuple space */

out(uts, ts_handle); /* Place the handle in a tuple space */

}

char *two(void)

{

TS ts_handle;

in(uts, ?ts_handle); /* Read a tuple space handle from UTS */

return "TERMINATED";

}

void test(void)

{

one();

eval(two());

}

occurs. It would be necessary to create a graph of all the userprocesses which have the handle to

each tuple space, and whenever a tuple space handle goes out of scope within a process the graph

would need updating. The graph would also have to contain allthe information about which tuple

spaces have tuples with the tuple space handles in them.

Early work by Menezes et al.[Men96] suggests that the maintenance of such a graph may have

other uses, such as in the garbage collection of unaccessible tuple spaces. If these graphs were

found to be necessary to provide other facilities within a kernel, then their use to enable tuple

spaces to move from being RTSs to LTSs would be acceptable, and the looser definition of a LTS

could be used.

7.4 Scalability

The York Kernel II, like many other Linda implementations, has been developed for use with a

Local Area Network (LAN) and a relatively small number of workstations (approximately thirty

workstations). Linda is ideally suited for use in distributed computing because it supports asyn-
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chronous processes that communicate despite being temporally and spatially separated. Within

the foreseeable future there will be kernels developed for use with Wide Area Networks (WAN).

These kernels are going to be required to support thousands or even millions of workstations and

computing devices. The technique of bulk moving tuples within a kernel, as used in the York

Kernel II, is scalable provided the classification of tuple spaces is made less rigid.

In the next section the generalisation of the classificationof tuple spaces is considered to enable

multi-layer or N-layer hierarchical kernels which can potentially support many geographically dis-

tributed workstations to be created, although before this is achieved there are many other problems

that need to be answered!

7.5 N-layer hierarchical kernel

In the York Kernel II a tuple space is either a RTS or a LTS. A LTSis stored in a LTSM and a RTS

is stored on the TSS. Therefore the classification of a tuple space can be represented by the layer

on which it resides. In the N-layer hierarchical kernel a tuple space will not be classified by either

user processes or individual processes within the kernel, but by which layer within a hierarchy it

is stored.

The N-layer hierarchical kernel can be considered as a tree of TSSs, as shown in Figure 7.1.

Each node of the tree represents a TSS, and is referred to as a TSS node. User processes are

connected to the leaf nodes of the tree. An arc between nodes represents a communications link,

which could be: a socket between process on the same computer; a socket over a LAN; a dedi-

cated virtual communication channel in a parallel computer; a socket over a WAN; a radio link

to an orbiting satellite; etc.. A user process can communicate with only one of the TSSs, and the

communications link between the TSS and the user process cantake one of many forms, but the

most likely are either an interface to a set of library routines; a socket between processes on the

same computer; a socket over a LAN or a dedicated virtual communication channel in a parallel

computer. Figure 7.1 shows an example of a five layer hierarchical kernel where each of the TSS

nodes has been given a letter to allow easy identification forthe descriptions that follow later in

the chapter. A user process “chooses” a leaf TSS node to be itscontact with the kernel.

A TSS is defined in Chapter 5 as: “A Tuple Space Server (TSS) is adedicatedsystemthat exists

to store and manage RTSs. The TSS could be a single process (a dedicated server) or it can be a set

of processes”. In this chapter the definition of a TSS is changed slightly to: A Tuple Space Server

(TSS) is a dedicatedsystemthat exists to store and manage tuple spaces. A TSS is considered as a

single process, but it could potentially be a set of processes.

The work in this chapter assumes that each TSS is a single process. Distribution of tuples

throughout a kernel occurs because different tuple spaces are stored on different TSSs. Using the

analogy used by Douglas[DWR95], if tuple spaces are considered as layers of a cake then in the

distributed TSS as used in Chapter 5 each TSS process has a slice of the cake. In the hierarchical
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Figure 7.1: An example five layer hierarchical kernel.

kernel described in this chapter each TSS node has a number oflayers of the cake, but not the

whole cake.

In this kernel the TSS nodes not only manage the tuple spaces,but decide when tuple spaces

should be moved up the tree, and control the retrieval of tuples from tuple spaces higher up the

tree. Each TSS node can only communicate with its parents andchildren. The TSS node does not

need to know if it is communicating with another TSS node or a user process. Each TSS node

knows nothing about the depth or breadth of the tree.

The nearer the root TSS node of the tree that a tuple space is stored, the more global the tuple

space. TheUTS will be stored on the root node because all processes can access that tuple space.

A user process can only access a tuple space if the TSS node it is attached to is a descendent of the

TSS node on which the tuple space is stored. When a user process creates a new tuple space it is

stored on the TSS node to which the user process is connected.As more processes become able to

access the tuple space, it moves up the tree.

As already discussed, in the York Kernel II the movement of tuple spaces is eager. The moment

a tuple space becomes a RTS it is moved on to the TSS. Such an approachcannotbe adopted in the

N-layer hierarchical kernel because such an approach wouldlead to all tuple spaces either moving

to the root TSS node of the tree or remaining on the TSS node on which they were created. This is

because in order for two unrelated processes to swap a tuple space handle it must be passed through

a tuple space. Consider two user processes using the N-layerhierarchical kernel. When the two

user processes commence the only tuple space they have in common isUTS which must reside

on the root of the tree as it is accessible by all processes. Ifthe processes wish to share a tuple

space that one of the processes has created, a tuple must be passed to the other process through the

tuple spaceUTS. As soon as a tuple containing a tuple space handle is placed intoUTS the tuple

space will migrate to the same layer as the tuple space in which the tuple was placed, which is the
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root TSS node. The migration to the root TSS node occurs because the tuple containing the tuple

space handle is placed in a tuple space which all user processes can access. Therefore, the tuple

space must move to a level at which all user processes can access it. This is unsatisfactory because

all tuple spaces either reside on the leaf TSS nodes or on the root TSS node creating a two layer

hierarchical kernel, similar to the York Kernel II.

To overcome this the N-layer hierarchical kernelhas to be less eager about moving tuple

spaces. Although this leads to an increase in communicationthe movement of tuple spaces can

still be achieved dynamically and implicitly.Noextra information is required from the programmer

and the same program used with the York Kernel II will be able to use the N-layer hierarchical

kernel without alterations.

7.6 The TSS node structure

Each TSS node is only aware of its parent node and child nodes,and can only communicate with

these TSS nodes. The TSS nodes receive messages and service them. There are ten possible

messages that a TSS node can receive. Each message type is nowdescribed and the pseudo-

code for the operations a TSS node must perform when the message is received is given. It is

assumed that: the communication system preserves the orderof messages sent from one TSS node

to another TSS node; that a single TSS node can only service one message at a time; and it services

the messages from a particular source (either a user processor another TSS node) in the order they

are received. Before the messages are considered the nomenclature is clarified.

The kernel usestagsto help it control the placement of tuples and the flow of messages within

it. There are two types of tags, a message tag and a tuple spacetag. There is, at most, one message

tag associated with a message. They are used to provide information about either the destination

of a message, or the path that the message has followed through the TSS node tree. A tuple space

tag is attached to a tuple space handle, and is used to store information about where a tuple space

resides within the kernel. Usually, the tag will indicate where the tuple space resides. However,

as the tuple spaces move up the tree the tag becomes out of date. In order to overcome this each

TSS node maintains a table of all the tuple spaces that pass through it. This ensures that if a tuple

space has moved above the TSS node in the tree, and the TSS nodecontains a tuple space which

contains a tuple which has a field that refers to that tuple space, the tuple space tag can be detected

as incorrect. The possible messages that a TSS node can receive are: out message; in message; rd

message; reply message; request message; packet message; collect message; copy-collect message;

packet down message; c-reply message and a create message. These are now described in detail.

out message

This message represents anout primitive. The message takes the form;

[out

identifier

; destination

tuple space

; tuple]
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whereout
identifier

is a field which allows the TSS node to recognise that the message is an out

message,destination
tuple space

is the tuple space into which the tuple is to be placed, andtuple

is the tuple. The pseudo-code for an out message is shown in Figure 7.2.

if is_local(destinationtuple space) then
  insert(tuple, destinationtuple space)
else
  for all tuple spaces handles in tuple do
    ts = get_next_ts(tuple)
    if is_local(ts) then
      create_ts_tag(ts)
    end if
    if exists_ts_tag(ts) then
      add_TSS_identifier_to_tag_tail(ts)
    end if
  end for
  pass_message(parent_TSS)
end if

Figure 7.2: The pseudo-code for managing an out message within a TSS node in the N-layer

hierarchical kernel.

The aim of the pseudo code is to give a high level overview of how a TSS node processes the

message. The functionality of the functions used in the pseudo-code are:

� is local checks to see if the specified tuple space is stored locally.

� insert inserts a tuple in the specified tuple space (assuming it is stored locally).

� get next ts finds the next tuple space handle in the tuple.

� createts tag creates an empty tag for the specified tuple space handle. If atag is already

associated with the tuple space it is cleared.

� existsts tag checks to see if there is an initialised tuple space tag for the specified tuple

space handle.

� add TSSidentifier to tag tail adds the current TSS node name (that the connected TSS

nodes know) to the tail of the specified tuple space.

� passmessagesends the updated message to a specified connected TSS node.

When the TSS receives an out message it attempts to see if it can service it locally. If it cannot,

it checks to see if any tuple space handles are present and if so, updates them appropriately. When

the tuple is inserted into the destination tuple space the first element of any tuple space tag is the

TSS node on which the tuple space was last seen. If the tuple space tag does not exist then the

tuple space must reside higher up the tree.
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in message

This message represents anin primitive. The message takes the form:

[in

identifier

; source

tuple space

; template] : message tag

wherein
identifier

is a field which allows the TSS node to recognise that the message is an in

message,source
tuple space

is the tuple space from which a tuple is to be fetched, andtemplate is

the template to be used for matching the tuple. The message has a message tag. The pseudo-code

for an in message is shown in Figure 7.3.

if is_local(sourcetuple space) then

  tuple = find_match(sourcetuple space, template)

  for all tuple space handles in tuple do
    ts = get_next_ts(tuple)
    if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts)then
      if get_ts_tag_tail(ts) <> get_msg_tag_tail() then
        create_ts_local(ts)  
        mark_ts_tuples_pending(ts)
        send_request(get_ts_tag_tail(ts), ts, remove_ts_tag_tail(ts))
        clear_ts_tag(ts)
      else
        ts = remove_ts_tail_tag(ts)
      end if
    end if
  end for
  send_reply(get_msg_tag_tail(), tuple, remove_msg_tag_tail())
else
  add_TSS_identifier_msg_tag()
  pass_message(parent_TSS)
end if

Figure 7.3: The pseudo-code for managing an in (and rd) message within a TSS node in the N-layer

hierarchical kernel.

The functionality of the new functions used in the pseudo-code are:

� find matchsearches the specified tuple space for a tuple that matches the template. If a tuple

is not available the function will queue the request until a matching tuple is inserted within

the tuple space.

� in passtablechecks the local table of tuple spaces that have passed through the TSS node

to see if the specified tuple space has passed through.

� get ts tag tail returns the tail element of the specified tuple space tag.

� get msgtail tag returns the tail element of the message tag.

� createlocal tscreates the specified tuple space locally within the TSS node.
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� mark ts tuplespendingmarks the specified tuple space to indicate that there is a packet of

tuples expected.

� sendrequestproduces a request message with the destination TSS node as the first value (it

must be either the parent or a child of the TSS node), the tuplespace which is required as

the second field and the message tag to be attached to the message as the third field.

� removets tag tail removes the tail element from a tuple space handle tag.

� clear ts tag removes the tag associated with the specified tuple space handle.

� sendreplysends a reply message to the child TSS node specified, with thetuple and message

tag also specified.

� removemsgtag tail removes the tail element from a message tag.

� add TSSidentifier msgtag adds the TSS node identifier to the tail of the message tag.

When an in message is received by the TSS node it checks to see if the tuple space resides

locally. If it does then it finds a tuple that matches the template. The matched tuple is then checked

for tuple space handles. If a tuples space handle is found, and if it has no tag or is listed in the

passed through table, then the tuple space must reside higher up in the tree. If the tuple space

resides higher up the tree or locally on the TSS node then there is no need to move the tuple space.

If a tuple space handle with a tag which has not moved up the tree is found, then if the TSS node

that the matched tuple is to be sent to next, and the tail element of the tuple space tag are the same

then there is no need to move the tuple space to this TSS node. Otherwise the tuple space must be

moved to this TSS node. In order to achieve this the required tuple space is created locally, and

marked as missing tuples. A request is then dispatched for that tuple space to be moved, using the

tuple space tag as the message tag. The result tuple is then dispatched to the original sourcing TSS

node, using the message tag of the in message as the message tag of the reply message, so that the

reply message retraces the path of the in message through thekernel.

If the source tuple space specified within the in message doesnot reside locally, the TSS node

identifier is added to the message tag and the message is dispatched to the parent of the TSS node.

The name of the TSS node is added to the message tag, so that when the source tuple space is

found the matching tuple can be returned back down the kernel.

rd message

This message represents ard primitive. The message takes the form:

[rd

identifier

; source

tuple space

; template] : message tag

whererd
identifier

is a field which allows the TSS node to recognise that the message is a rd

message,source
tuple space

is the tuple space from which a tuple is to be fetched, andtemplate is
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the template to be used for matching the tuple. The message has a message tag. The pseudo-code

for the rd message is the same as for an in message, except thatthefind matchfunction does not

remove the matching tuple.

reply message

This message is used for passing a result tuple down the tree when a tuple is returned from an in

or rd message. The message takes the form:

[reply

identifier

; tuple] : message tag

wherereply
identifier

is a field which allows the TSS node to recognise that the message is a reply

message,tuple is the tuple which is being returned as a result of an in or rd message. The message

has a tag which represents the path down the tree that the message is to take. The pseudo-code for

a reply message is shown in Figure 7.4.

for all tuple space handles in tuple do
  ts = get_next_ts(tuple)
  if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
    if get_ts_tag_tail(ts) <> get_msg_tag_tail() then
      create_ts_local(ts)
      mark_ts_tuples_pending(ts)
      send_request(get_ts_tag_tail(ts), ts, remove_ts_tag_tail(ts))
      clear_ts_tag(ts)
     else
       ts = remove_ts_tail_tag(ts)
     end if
   end if
end for
if exists_msg_tag() and (get_msg_tag_tail() <> my_user_process) then
  dest = get_msg_tag_tail()
  remove_msg_tail_tag()
  pass_message(dest)
else
  pass(tuple, user_process)
end if

Figure 7.4: The pseudo-code for managing a reply message within a TSS node in the N-layer

hierarchical kernel.

The functionality of the new functions used in the pseudo-code are:

� passsends a tuple to a user process.

� existsmsgtagchecks to see if there is an initiated message tag associatedwith the message.

When the TSS node receives the reply message, it checks all the tuple space handles in the tuple

to see if any of them need to be moved up the tree in a similar fashion to the checks performed

when the TSS node receives an in message and finds a tuple that matches. Once any necessary
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tuple space movements have been organised, the TSS node thenchecks to see if it is the recipient.

This can occur if either the message tag is empty, implying itmust have sourced it, or if the tail

element is a recognised user process that it manages. If thisis the case the result tuple is dispatched

to the user process. If the reply message is not for one of the TSS nodes user processes, then it

sends the reply message to the next TSS node, and removes thatTSS node from the message tag

which is passed with the message.

request message

This message is a request for a tuple space and is used when a tuple space is to be moved. The

destination TSS node produces the request and it is sent downthe tree. The message takes the

form:

[request

identifier

; source

tuple space

] : message tag

whererequest
identifier

is a field which allows the TSS node to recognise that the message is a

request message andsource
tuple space

is the tuple space which is required to be moved up the tree.

The message has a tag which represents the path down the tree that the message is to take to reach

the TSS node which has the tuple space. The message may not reach that TSS node if a TSS node

the message travels through first, contains the tuple space.The pseudo-code for a request message

is shown in Figure 7.5.

if is_local(sourcetuple space) then

  tuples = close_tuple_space(sourcetuple space)

  for all tuple in tuples
    for all tuple spaces handles in tuple do
    ts = get_next_ts(tuple)
    if is_local(ts) then
      create_ts_tag(ts)
    end if
    if in_pass_table(ts) then
      clear_ts_tag(ts)
    end if
    if exists_ts_tag(ts) then
      add_TSS_identifier_to_tag_tail(ts)
    end if
  end for
  packet_message(tuples)
else
  if exists_msg_tag() then
    dest = get_msg_tag_tail()
    remove_msg_tail_tag()
    pass_message(dest)
  end if
end if

Figure 7.5: The pseudo-code for managing a request message within a TSS node in the N-layer

hierarchical kernel.

The functionality of the new functions used in the pseudo-code are:
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� packetmessageproduces a packet message containing all the specified tuples which is dis-

patched to the parent TSS node.

� closetuple spacereturns all the tuples that are in the specified tuple space and any state

associated with the tuple space, and removes the specified tuple space from the local TSS

node.

When the TSS node receives the request message it checks to see if the requested tuple space

resides locally. If it does then the tuple space is packed into a packet message, and all the tuples

are checked for tuple space handles. If any exist they are updated appropriately. If there are any

tuples pending from a bulk tuple movement then this information (state) is transfered with the tuple

space. If the tuple space does not reside locally then the message is passed to another TSS node

by removing the next TSS node’s name from the message tag and passing the request message to

that TSS node.

packet message

This message is a packet of many tuples used for moving multiple tuplesup the tree structure. The

message takes the form:

[packet

identifier

; destination

tuple space

; tuples]

wherepacket
identifier

is a field which allows the TSS node to recognise that the message is a

packet message,destination
tuple space

is the tuple space into which the tuples are to be placed,

andtuples are the tuples that are being moved up the tree. The pseudo-code for a packet message

is shown in Figure 7.6.

if is_local(destinationtuple space) then
  insert_tuples(tuples, destinationtuple space)
  if is_tuple_space then 
    reset_ts_tuples_pending(destinationtuple space)
  end if
else
  for all tuple in tuples do  
    for all tuple space handles in tuple do
      ts = get_next_ts(tuple)
      if is_local(ts) then
        create_ts_tag(ts)
      end if
      if exists_ts_tag(ts) then
        add_TSS_identifier_to_tag_tail(ts)
      end if
    end for
  end for
  add_ts_pass_table(destinationtuple space) 
  pass_message(parent_TSS)
end if

Figure 7.6: The pseudo-code for managing a packet message within a TSS in the N-layer hierar-

chical kernel.

The functionality of the new functions used in the pseudo-code are:
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� insert tuplesinserts a number of tuples into the specified tuple space.

� is tuple spacechecks to see if the tuples represent an entire tuple space movement or just a

number of tuples.

� resetts tuplespendingalters a tuple space to indicate that the tuples pending havearrived.

� add ts passtableadds the specified tuple space to the pass through table.

When the TSS node receives the packet message it checks to seeif the destination tuple space

is local. If it is local, the tuples are inserted. If the tuples represent a tuple space then the states

of the tuple space is altered to indicate that a reply from a request message has arrived. A tuple

space can potentially be waiting the arrival of more than onepacket of tuples marked as a tuple

space (from different request messages). If the destination tuple space is not local all the tuples

are checked and any tuple space handles detected are updatedaccordingly. The destination tuple

space is placed in the pass-through table because the tuple space has passed through the TSS node.

This ensures that any references to the tuple space locationwithin any tuple space tags stored on

the TSS node can be detected as being no longer valid.

collect message

This message represents acollect primitive. The message takes the form:

[collect

identifier

; source

tuple space

; destination

tuple space

; template] : message tag

where collect
identifier

is a field which allows the TSS node to recognise that the message is

a collect message,source
tuple space

is the source tuple space used in thecollect primitive,

destination

tuple space

is the destination tuple space into which the tuples are to beplaced and

template is the template to be used to match the tuples. The message hasa message tag to allow

a count of the number of tuples moved to be returned to the userprocess. The pseudo-code for a

collect message is shown in Figure 7.7.

The functionality of the new functions used in the pseudo-code are:

� find matchingfinds all tuples within a tuple space that match the specified template.

� sendpacketdowncauses a packet down message to be dispatched to the destination TSS

node containing a number of tuples for the specified tuple space, and the packet down mes-

sage is given the specified message tag.

� sendcreply dispatches a c-reply message to the specified TSS node containing the value

specified by the second field and the c-reply message is given the message tag as specified

by the third field.
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if is_local(sourcetuple space) then
  tuples = find_matching(sourcetuple space, template)
  if is_local(destinationtuple space) then
    insert_tuples(tuples, destinationtuple space)
  else
    if not exists_ts_tag(destinationtuple space) then
      for all tuple in tuples
        for all tuple spaces handles in tuple do
          ts = get_next_ts(tuple)
          if is_local(ts) then
            create_ts_tag(ts)
          end if
          if in_pass_table(ts) then
            clear_ts_tag(ts)
          end if
          if exists_ts_tag(ts) then
            add_TSS_identifier_to_tag_tail(ts)
          end if
        end for
      for all
      packet_message(destinationtuple space, tuples)
    else
      for all tuple in tuples do      
        for all tuple space handles in tuple do
          ts = get_next_ts(tuple)
          if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
            if get_ts_tag_tail(ts) <> get_msg_tag_tail() then
              create_ts_local(ts)
              mark_ts_tuples_pending(ts)
              send_request(get_ts_tag_tail(ts), ts, remove_ts_tag_tail(ts))
              clear_ts_tag(ts)
            else
              ts = remove_ts_tail_tag(ts)
            end if
          end if
        end for
      end for
      dest = get_ts_tag_tail(destinationtuple space)

      msg_tag = remove_ts_tag_tail(destinationtuple space)

      send_packet_down(dest, destinationtuple space, tuples, msg_tag) 
    end if
  end if
  send_creply(get_msg_tag_tail(), cardinality(tuples), remove_msg_tag_tail())
else
  if is_local(destinationtuple space) then
    create_ts_tag(destinationtuple space)
  end if
  if exists_ts_tag(destinationtuple space) then
    add_TSS_identifier_to_tag_tail(destinationtuple space

)

  end if
  add_TSS_identifier_to_msg_tag()
  pass_message(parent_TSS)
end if

Figure 7.7: The pseudo-code for managing a collect message within a TSS node in the N-layer

hierarchical kernel.

When the TSS node receives a collect message it checks to see if the source tuple space is local.

If the source tuple space is local it retrieves all the tuplesthat match the specified template from the
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source tuple space. If the destination tuple space is local then the tuples are inserted into it, and a

c-reply message is dispatched to the calling process. If thedestination tuple space does not reside

locally then all the matched tuples are checked for tuple space handles, and updated appropriately

depending on whether the destination tuple space is above orbelow the current TSS node in the

tree. The position of the destination tuple space can be determined by checking if the destination

tuple space has a tuple space tag associated with it. If so thetuple space resides below the current

TSS node, if not the tuple space resides above the current TSSnode. If the destination tuple space

resides below the current TSS node the tuples are dispatchedin a packet down message. If the

destination tuple space resides above the TSS node the tuples are dispatched in a packet message,

which is marked to show that this isnot an entire tuple space being moved (the destination tuple

space remains on this TSS node).

copy-collect message

This message represents acopy-collect primitive. The message takes the form:

[copy-collect
identifier

; source

tuple space

; destination

tuple space

; template] : message tag

wherecopy-collect
identifier

is a field which allows the TSS node to recognise that the message is a

collect message,source
tuple space

is the source tuple space used in thecopy-collectprimitive,

destination

tuple space

is the destination tuple space into which the tuples are to beplaced, and

template is the template to be used to match the tuples. The message hasa message tag to allow

the counter of the number of tuples copied to be returned to the user process. The pseudo-code

for the copy-collect message is the same as for a collect message, except that thefind matching

function does not remove the matching tuples from the sourcetuple space.

packet down message

This message is a packet of many tuples and is used for moving multiple tuplesdown the tree

structure. The message takes the form:

[packet-down
identifier

; destination

tuple space

; tuples]

wherepacket-down
identifier

is a field which allows the TSS node to recognise that the message

is a packet down message,destination

tuple space

is the tuple space used into which the tuples are

to be placed andtuples are the tuples. The pseudo-code for a packet down message is shown in

Figure 7.8.

When a TSS node receives a packet down message it checks to seeif the destination tuple space

resides locally. If it does the TSS node inserts the tuples. If the tuple space does not reside locally

all the tuples are checked for tuple space handles. Each of the tuples is treated as though it was a

matched tuple in a reply message. Therefore, if the packet down message is to be sent to a child
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if is_local(destinationtuple space) then

  insert_tuples(tuples,destinationtuple space)

else
  for all tuple in tuples
    for all tuple space handles in tuple do
      ts = get_next_ts(tuple)
      if not is_local(ts) and not in_pass_table(ts) and exists_ts_tag(ts) then
        if get_ts_tag_tail(ts) <> get_msg_tag_tail() then
          create_ts_local(ts)
          mark_ts_tuples_pending(ts)
          send_request(get_ts_tag_tail(ts), ts, remove_ts_tag_tail(ts))
          clear_ts_tag(ts)
         else
           ts = remove_ts_tail_tag(ts)
         end if
       end if
    end for
  end for
  if exists_msg_tag() then
    dest = get_msg_tag_tail()
    remove_msg_tail_tag()
    pass_message(dest)
  end if
end if

Figure 7.8: The pseudo-code for managing a packet down message within a TSS node in the

N-layer hierarchical kernel.

of the TSS node, and there are tuple space handles for tuple spaces stored on, or as descendants

of, a different child TSS node, the tuple space is moved to this TSS node. Once any necessary

movement of tuple spaces has been initiated the packet down message is passed to the next TSS

node as specified by the message tag.

c-reply message

This message is used for returning the count of the number of tuples either copied or moved by a

copy-collect or collect primitive. The message takes the form:

[c-reply
identifier

; count] : message tag

wherec-reply
identifier

is a field which allows the TSS node to recognise that the message is a

collect or copy-collect reply message,count is a count of the number of tuples that were copied

or moved. The message has a tag which represents the path downthe tree that the message is to

take to reach the user process which performed thecollect or copy-collect primitive. The

pseudo-code for a reply message is shown in Figure 7.9.

When the TSS node receives a c-reply message it checks to see if the message was intended

for one of its user processes which occurs when either the message tag is empty or the tail element

of the tag represents a user process attached to the TSS node.If the message is for a user process
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if exists_msg_tag() and (get_msg_tag_tail() <> my_user_process) then
  dest = get_msg_tag_tail()
  remove_msg_tail_tag()
  pass_message(dest)
else
  pass(integer, user_process)
end if

Figure 7.9: The pseudo-code for managing a c-reply message within a TSS node in the N-layer

hierarchical kernel.

attached to the TSS node, then the result for thecollect orcopy-collectprimitive is passed

to the user process. If the TSS node does not recognise the endof the message tag as a user process

and the message tag is not empty, the TSS node passes the message the TSS node specified as the

tail element of the message tag, and removes it from the tail of the message tag.

create message

This message is used to create a tuple space. The tuple space will always be created on the TSS

node to which user process is attached. The message takes theform:

[create

identifier

]

wherecreate
identifier

is a field which allows the TSS node to recognise that the message is a

create message. The TSS node creates a unique tuple space name (see Section 5.5 for details of

how unique tuple space names could be created), and returns the handle to the user process.

These are the only messages that a TSS node can receive or produce.

7.7 Demonstration of the N-layer hierarchical kernel

In order to show how the concept of a N-layer hierarchical kernel works a simple example is used.

The example processes are shown in Program 7.4. It is assumedthat the kernel is configured as a

five layer hierarchy as in Figure 7.1. The user processtest1 which is attached to TSS nodeL,

creates a tuple space and then places a tuple containing the handle of that tuple space intoUTS.

The other user processtest2 which is attached to TSS nodeD, then retrieves a tuple containing

a tuple space handle. The Figures 7.10 to 7.13 show the distinct stages that will occur and the

messages that flow around the kernel.

Figure 7.10 shows the first operation of the processtest1 which is the creation of a tuple

space. The tuple spaceUTS already exists as a shared universal tuple space which implies that it

resides on the root node of the tree. The user process communicates with its host TSS nodeL to

create a tuple space. The node TSSL creates a tuple space which has a unique name for the entire

kernel. For the sake of clarity a token name ofTS1 is used for this tuple space in this example.

The tuple space is stored on TSS nodeL.
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Program 7.4Example processes for showing the inner workings of the N-layer hierarchical kernel.
test := func();

local ts_result;

ts_result := tsc();

out(uts,[ts_result]);

return 0;

end func;

test2 := func();

in(uts,|[?ts]|);

return 0;

end func;

Figure 7.11 shows the next operation, anout primitive which places a tuple containing the

tuple space handle forTS1 into tuple spaceUTS. TSS nodeL receives the out message. This TSS

node checks to see if the destination tuple space (UTS) resides locally. AsUTS does not reside

locally, the TSS node prepares to pass the message to its parent. But before doing so it checks

the tuple to see whether there are any tuple space handles present within it. For each tuple space

handle the TSS node checks if the tuple space resides locallyand if the tuple space does, the TSS

node creates a tuple space tag containing the TSS nodes name (.L) and associates the tag with the

tuple space handle. If a tuple space tag existed previously it is cleared. TSS nodeL then sends

the out message to its parent, TSS nodeJ . TSS nodeJ performs the same checks, as though

it had received the out message directly from a user process.When checking the tuple for tuple

space handles the handle for tuple spaceTS1 is found. As the tuple space does not reside locally,

TSS nodeJ checks for a tuple space tag associated with the tuple space handle, and if it exists it

adds to the tail of the tag its TSS node name. TSS nodeJ then sends the message to TSS node

E , its parent. The message continues up the tree, with each TSSnode processing it, and finally

the message arrives at TSS nodeA, which recognises the tuple spaceUTS as a tuple space which

resides locally. The tuple is then inserted in the local tuple storage data structure. The tuple will at

this point contain the tuple space handleTS1 with an associated tag of.L.J.E.B. This indicates

the tuple spaces position from the TSS node on which the tupleis stored.

The second user process then performs thein primitive which is shown in Figure 7.12. TSS

nodeD receives an in message requesting a tuple from the tuple space UTS. It checks to see if
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L TS1

ts_result := tsc();

A

UTS

B

D E

KJI

Figure 7.10: Creating the tuple space.

the tuple spaceUTS resides locally. As it does not and a reply is needed (anin primitive returns

a tuple) it adds a message tag to the message. The message tag is of the form.P1.D whereP1

represents the identifier for the user process that TSS nodeD uses. The addition of theP1 to the

message tag is optional. For example, if the TSS node is linked into the user process then there is

no need to have this field (the.P1), as only one process can ever access the TSS node. Whenever

a result message arrives at the TSS node it has to be for the user process which is linked into the

TSS node.

As with the out message, the in message is passed up the tree until a TSS node recognises the

tuple space. This will again be TSS nodeA which recognises that the tuple spaceUTS resides

locally and performs the search ofUTS which finds the tuple that has just been inserted.

Figure 7.13 shows the second stage of the in message, where the matched tuple is returned

to the blocked user process. TSS nodeA examines the tag attached to the in message, which

will be .P1.D.B. The tail of the tag indicates the child TSS node to which the tuple should be

sent. However, before the tuple is dispatched it is checked to see if it contains any tuple space

handles. For each tuple space handle in the matched tuple, TSS nodeA examines the tuple space

tag attached to the tuple space handle. In this example the tuple space tag attached to tuple space

TS1 is .L.J.E.B.

As there is a tuple space handle with a tag in the tuple, TSS nodeA checks to see if the tuple

space resides locally and if so sets the tag to empty. It also checks its table of tuple spaces that
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out(uts,[ts_result]);
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Figure 7.11: Performing theout primitive.

have passed through, and if the tuple space name resides in this table the tag is also reset to empty.

This is because the tuple space may have moved above the TSS nodesincethe tuple was inserted.

If the tuple space has moved above the current TSS node itmusthave passed through this current

TSS node. In this example it neither resides locally nor has passed through so the tag is valid. The

TSS nodeA checks the tail elements of message tag (.P1.D.B) and the tuple space handle tag

(.L.J.E.B). As the tail element of both tags are the same (B), TSS nodeA removes both the tail

elements from both tags and sends a reply message to TSS nodeB.

TSS nodeB receives the reply message (denoted bya in Figure 7.13). TSS nodeB then

performs the same checks for tuple space handles as TSS nodeA. It finds the tuple space handle

and checks that it is neither stored locally nor is present inthe pass through table. After not finding

it, TSS nodeB compares the message tag with the tuple space handle tag. Themessage tag is

P1.D and the tag associated with the tuple space handle is.L.J.E. TSS nodeB checks the tail

elements of the tags, which do differ indicating that a tuplespace has to be moved. TSS nodeB

immediately creates a tuple space locally with the same nameas the tuple space in the tuple (TS1)

which is marked to indicate that a transfer of tuples into it is expected resulting from a request

message. TSS nodeB then creates a request message for a tuple space to be moved. This request

message contains the tuple space name that is required (TS1) and the request message is given the

message tag that was the tag associated with the tuple space (.L.J) with the tail element removed.

The tail element of the tuple space tag identifies to which child TSS node the message should be
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Figure 7.12: The first stage of performing thein primitive.

sent (TSS nodeE). This is represented as messageb in Figure 7.13. TSS nodeE receives the

message, checks to see if the tuple space has been moved locally, and as it does not find the tuple

space, forwards the message to the TSS node specified by the last element of the message tag, and

removes the tail element from the message tag. TSS nodeL receives the message, and finds the

tuple space locally. TSS nodeL then dispatches the entire tuple space to its parent. The parent

checks to see if the tuple spaces exist locally, and if not sends the message to its parent.Eachtuple

moved must be checked for tuple space handles and these updated accordingly. The message for

the movement of the tuples is represented byc in Figure 7.13.

Concurrently with messagesb andc TSS nodeB sends the reply message for the user process

to the next TSS node name in the message tag (D) from the reply message denoted bya, with the

tail element of the message tag removed. The tuple space handle tag for the tuple spaceTS1 is

removed from within the tuple being sent by TSS nodeB. TSS nodeD receives the reply message.

The only element left in the message tag is the name of the userprocess which requires the result

tuple (P1). TSS nodeD detects this and passes the tuple to the user process. When the user process

receives the result tuple it becomes unblocked and continues executing. The tuple space movement

can occur concurrently with the user process computation and other tuple space accesses.
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Figure 7.13: The second stage of performing thein primitive.

7.8 Conclusions

In this chapter the extension of the classification of tuple spaces to allow the development of

hierarchical kernels which provide support for many workstations which are geographically diverse

has been described. Before such a kernel could be implemented there are many other questions

which need to be answered (see Chapter 8). In this chapter a detailed proposal of how tuple space

movement would be used in such a kernel has been given. The classification of a tuple space within

the hierarchical kernel is based on its position within the hierarchical kernel rather than on how an

individual process perceives it. In the York Kernel II the LTSM was able to classify a tuple space

as either a LTS or RTS. In this kernel a TSS node only knows if a tuple space resides locally or

not. If it does not reside locally it must reside on a TSS node higher up the kernel.

In order to test the concepts a simple simulator has been created (written in ISETL[BDL89]).

The simulator allows a tree structure for the kernel to be defined, and for the operations to be

performed. It does not support the insertion and removal of tuples, but allows the insertion and

removal of tuple space handles into and from tuple spaces. Messages can be inserted into TSS node

message queues, simulating user processes sending messages to the TSS nodes. These messages

can be observed moving through the hierarchical kernel, andtuple spaces are moved appropriately.

The aim of the simulator was to allow the basic concepts of howand when tuple space movement

occurs to be examined and checked.



Chapter 8

Conclusions and Future research

8.1 Introduction

In Chapter 1 two issues were raised:

� The sufficiency or otherwise of the original set of Linda primitives (given multiple tuple

spaces), and

� how can the bulk primitives ofcollect andcopy-collect be implemented efficiently

within anopenLinda implementation?

The aim of this dissertation has been to address these issues. The answer to the first is that

there is the need for two extra primitives to be added to Linda. The first of these is thecollect

primitive which was proposed and justified by Butcher et al.[BWA94] and was introduced when

the issue was first posed, the second primitive required is thecopy-collect primitive which is

proposed and justified within this dissertation in Chapters3 and 4.

The second issue is answered by the development of a Linda run-time system using a novel

technique to track and dynamically move tuples and tuple spaces. Because of the close relationship

between thecollect andcopy-collect primitives and multiple tuple spaces the technique

has allowed for the efficient implementation of these bulk primitives. The technique is described in

detail in Chapter 5. Chapter 6 presented the experimental results obtained using a Linda run-time

system (York Kernel II) which uses the techniques. The performance of the York Kernel II was

shown to be better than the performance both of an open implementation which does not use the

technique and of a closed implementation. In both cases a “real world” example was used.

Chapter 7 considered the shortcomings of the current implementation and a proposal for a

more graduated approach to classifying tuple spaces by their position within a hierarchical kernel

was presented. The proposed kernel supports many more geographically diverse workstations (and

processes) than the York Kernel II. In the proposed kernel the cost of accessing a tuple space is

linked to its position within the hierarchical kernel. The proposed kernel should provide similar
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performance for LAN based computing compared with the York Kernel II with the LTSM enabled,

and support WAN based computing which is something the York Kernel II does not. A direct

comparison of the proposed hierarchical kernel and the YorkKernel II is unfair due to the different

intended uses of the kernels, one is to provide support for LAN based computing (York Kernel II)

and the other (hierarchical kernel) is to provide support for WAN based computing.

The work described within this dissertation has shown that the current Linda model is un-

able to perform a particular operation, called a multiplerd, efficiently. The addition of the

copy-collect primitive has been shown through the use of experimental results to overcome

the multiplerd problem.

The ability of the implementation to track tuple spaces and tuples, and then move them around

in single operations, has led to a large performance improvement over traditional implementation

techniques. The idea of moving tuples within a kernel is largely considered a bad approach by the

Linda community. However, by moving the multiple tuples around the system in single operations,

in a sensible and logical fashion the bulk movement of tupleshas been shown to be advantageous.

This is achieved by ensuring that, for most of the time, tuples are only moved within the kernel

when the cost of retrieving those tuples is reduced for at least one user process. The intelligent

movement of tuples can and will have to be used in future open kernels to ensure performance of

the kernels are to be comparable with the performance of closed implementations.

The demand for geographically distributed computing, or Internet computing, is driving the

need for systems that can handle thousands of workstations,and share information between them.

The hierarchical kernel proposed in the Chapter 7 is potentially able to support many more work-

stations than traditional kernels. Although not implemented a detailed proposal was presented.

8.2 Future research

The specific research problems that follow on from this dissertation are:

� A formal semantics for thecopy-collect primitive.

There are no widely accepted formal semantics of Linda, and consequently there are no

formal semantics for thecopy-collect primitive. There is a need for a formal frame-

work and a deeper understanding of the interaction ofcopy-collectprimitive with other

primitives.

� The control of tuple space handle passing.

Throughout this dissertation the assumption has been that tuple space handles are passed

through tuple spaces. Is this a fair assumption? If a processwants to pass a tuple space

handle to another process how can this be performed reliably? In open systems the passing

of tuple space handles through a global tuple space (such asUTS) is perhaps unacceptable.

Further work is required to answer these questions. Following on from this should it be
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possible to control what the other processes do to that tuplespace? Should it be possible to

make tuple spaces read only, write only, etc.?

� A bettereval mechanism.

In the York Kernel II theeval primitive is mapped on to the spawn function of PVM.

A better eval mechanism could be developed, which uses the concepts ofeval

servers[HKCG91, RA95], but for open implementations rather than closed implemen-

tations.

� The N-layer hierarchical kernel poses many questions whichrequire future research.

– TSS node distribution.

Can the TSS nodes in the hierarchical tree be distributed as is the tuple space server in

the York Kernel II, and indeed is it desirable? The reason whydistributed kernels are

currently used is because the kernels become bottlenecks, they are unable to process

all the messages that they receive fast enough. The hierarchical kernel presents a new

way of distributing tuples, based on the tuple space in whichthey reside. If the TSS

nodes run on dedicated hardware and have high bandwidth network connections will

they be able to service all the requests without being distributed themselves?

– Caching and migration

If distributed TSS nodes are used within the hierarchical kernel then the movement of

tuples within the processes that combined make a single TSS node may provide in-

creased performance. How to cache and migrate tuples efficiently within a TSS node

has not been investigated as it is pointless within the context of a LAN implementa-

tion, but within the context of a WAN implementation it will have to be considered, if

distributed TSS nodes are used.

– Fault tolerance

A hierarchical kernel with several thousand workstations would require some sort of

fault tolerance, at least for the kernel. Current work on fault tolerance and Linda[Jeo96,

JS94] provides an insight into how this may be achieved, but many questions still

remain unanswered.

8.2.1 A “Linda” for distributed computing?

A more fundamental questioning of Linda and its suitabilityfor “open” systems is perhaps needed,

based on experiences gained from profiling the kernel and observations made whilst gathering the

experimental results. Linda can be considered as having twoparts; a tuple space model and a set

of access primitives. Many of the desirable features of Linda are associated within the tuple space

model. The spatial and temporal separation of processes andthe asynchronous nature of Linda is
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provided by the tuple space model rather than the access primitives to the tuple spaces. Are the

Linda primitives suitable for open implementations for a network of workstations?

To date Linda has primarily been used for small scale distributed processing. A small number

of workstations connected by a local area network. The characteristics of Linda are that processes

have asynchronous communication and are both spatially andtemporally separated so this should

make it ideal for geographically distributed processing ormultiprogramming.

In Chapter 1 it is stated that:

The only way that two processes can communicate is via a tuplespace, and therefore

Linda provides asynchronous communications between processes.

This is correct as between user processes there is asynchronous communication. A process

places a tuple in a tuple space and continues with the user’s program. Another process then reads

this tuple, and the two user processes have communicated asynchronously. However, the access to

the tuple space is not asynchronous (except for anout primitive if out ordering is not supported).

The descriptions of the Linda primitives state that the onlyprimitives that block are thein and

rd primitivesif a tuple isnotavailable. This implies that a process which uses the Linda primitives

should only block if either anin or a rd primitive is performed and the required tuple is not

available. Pragmatically, in any practical Linda system, aprocess will always “wait” even if the

required tuples are available because of the overheads associated with finding the matching tuple

and, as far as the process is concerned,waitingandblockingare indistinguishable. Therefore, most

of the Linda primitives “block” unnecessarily. While the user processes are blocked they cannot

perform computation, so the current Linda primitives provide synchronous tuple space access. To

overcome this, Linda should be split into two distinct sections, the Linda primitives and the tuple

space model. The tuple space model represents the concept ofshared tuple spaces containing

tuples. The primitives which are used to interface to the tuple space model should be tailored to

requirements of the user and the environment. Therefore, for distributed computing, where the

communication times can be large and subsequently the timesthat primitives spend “waiting” can

be large, a new set of access primitives should be defined, such as the BONITA primitives[RW97],

which embody the idea of asynchronous tuple space access.

8.3 Contributions

8.3.1 Multiple rd operation

A multiplerd operation is where more than one process wishes to non-destructively access a subset

of all the tuples in a tuple space which match the same template. In Chapter 3 an experimental

study of the multiplerd operation was presented. The use of the “stream” approach and the use

of semaphores (lock tuples) were shown to overcome the problem, although not in a satisfactory
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manner. The semaphore approach was a sequential solution, and the stream approach required the

checking of all tuples in a tuples space, regardless of whether they were actually required.

8.3.2 Proposal for the adoption of thecopy-collect primitive

In Chapter 4 a new primitive was proposed, which overcomes the multiplerd problem. Experi-

mental results, using a naive implementation of thecopy-collect primitive were given which

show that thecopy-collect primitive can be used to provide an efficient solution to the mul-

tiple rd problem. Some simple performance models of the different approaches to overcoming

the multiplerd problem were presented, in order to show that in general, theperformance of the

method using thecopy-collect primitive will be better.

8.3.3 A novel kernel for Linda

The York Kernel II is presented which uses dynamic movement of tuples and tuple spaces to

improve performance. The kernel usesimplicit information provided within Linda programs, rather

than expecting the user to provide explicit information. Chapter 6 shows that the performance

of the kernel, when using the multiple tuple spaces, and thecollect andcopy-collect

primitives to be better than a traditional implementation.A “real life” program was used to show

the performance gain over a commercial closed C-Linda implementation.

8.3.4 Detailed description of a hierarchical kernel

In Chapter 7 the shortcomings of the York Kernel II and a detailed description of the structure of a

generalised hierarchical kernel which overcomes these problems was presented. The kernel should

support greater numbers of workstations than current implementations.

8.4 Closing remarks

The work in this dissertation represents the foundation forfuture work on distributed run-time sys-

tems providing shared tuple spaces for inter-process communication and coordination that support

large numbers of workstations and computing devices.
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Appendix A

Overview of the Linda implementations

Feature York Kernel I York Kernel II SCA C-Linda

Primitives

in ? ? ?

out ? ? ?

rd ? ? ?

inp ? ?

rdp ? ?

collect ? ?

copy-collect ? ?

Platform Meiko / LAN LAN LAN

Multiple tuple spaces ? ?

Open implementation ? ?

Closed implementation ?

Compile-time analysis ?

Distributed tuple storage ? ? ?

Bulk movement of tuples ?

Bulk movement of tuple spaces ?

out ordering ?

Table A.1: A comparison of the three Linda implementations used within this dissertation.

Multiple tuple spaces

The original Linda model included only one tuple space, referred to as the Global Tuple Space

(GTS). More recent implementations allow multiple tuple spaces. More information can be found

in Section 2.3.1.
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Open implementation

Implementations which are open allow processes and programs to join and leave the system at will.

Open implementations embody the ideas of persistence, where once a tuple space is created it will

remain within the system. They also allow the notions of temporal and spacial separation present

within Linda. A process can communicate with another process (program) that has not yet been

written before the first process terminates. More information can be found in Chapter 5.

Closed implementation

A closed implementation does not allow processes to join andleave freely. In its weakest form

information about all the processes that wish to communicate must be present when the system

starts. However, normally with closed implementations compile time analysis (see next section) is

used, therefore all the source code for the processes which wish to communicate must be available

at compile/link time. More information can be found in Chapter 5.

Compile time analysis

Compile time analysis is used by some closed implementations to gain information that allows

more efficient run-time support. In the simplest case this may be transforming recognisable coor-

dination structures into more efficient ones. Within the context of closed implementations compile-

time analysis would be used to calculate the most efficient tuple distribution strategies. In many

cases the use of tuples between different processes, can be reduced to passing a message directly

between the two processes, rather than using tuple spaces. More information can be found in

Chapters 5.

Distributed tuple storage

In a run-time system using distributed tuple storage the tuples are not stored on a single server, but

distributed over a number of processors (or workstations).This is done because a single server can

become a bottleneck. More information can be found in Chapter 5.

Bulk movement of tuples and Bulk movement of tuples spaces

This is where the implementation is able to dynamically and intelligently move blocks of tuples

and tuple spaces in order to achieve better performance. If this approach is not adopted tuples

remain in the same physical position within the run-time system from insertion by a user process

until they are requested by another user process. More information can be found in Chapters 5, 6

and 7.
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Source code for experimental results

This appendix contains the C-Linda source code for each of the experiments one to six presented

in Chapter 6.

B.1 Experiment one

Program B.1 Program used for experiment one.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

start_timer(); /* Initialise the timer */

for (lp = 0; lp < 1000; lp++)

out(UTS, lp); /* Place 1000 tuples into UTS */

timer_split("Done outs."); /* Note current time */

for (lp = 0; lp < 1000; lp++)

in(UTS, ?tmp); /* Retrieve 1000 from UTS */

timer_split("Finished."); /* Note current time */

print_times(); /* Print timings */

return 0;

}
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B.2 Experiment two

Program B.2 Program used for experiment two.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

TS ts;

start_timer();

ts = tsc(); /* Create a LTS */

for (lp = 0; lp < 1000; lp++)

out(ts, lp); /* Place 1000 tuples into LTS */

timer_split("Done outs.");

for (lp = 0; lp < 1000; lp++)

in(ts, ?tmp); /* Retrieve 1000 from LTS */

timer_split("Finished.");

print_times();

return 0;

}
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B.3 Experiment three

Program B.3 Program used for experiment three.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

TS ts;

start_timer();

ts = tsc(); /* Create a LTS */

for (lp = 0; lp < 1000; lp++)

out(ts, lp);

timer_split("Done outs.");

out(UTS, ts); /* LTS becomes a RTS */

timer_split("Done out.");

for (lp = 0; lp < 1000; lp++)

in(ts, ?tmp);

timer_split("Finished.");

print_times();

return 0;

}
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B.4 Experiment four

Program B.4 Program used for experiment four.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

char *ts;

start_timer();

ts = tsc();

for (lp = 0; lp < 1000; lp++)

out(ts, lp);

timer_split("Done outs.");

copycollect(ts, UTS, ?int); /* LTS -> RTS */

timer_split("Done copy-collect.");

for (lp = 0; lp < 1000; lp++)

in(UTS, ?tmp);

timer_split("Finished.");

print_times();

return 0;

}
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B.5 Experiment five

Program B.5 Program used for experiment five.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

char *ts;

start_timer();

ts = tsc();

for (lp = 0; lp < 1000; lp++)

out(UTS, lp);

timer_split("Done outs.");

copycollect(UTS, ts, ?tmp); /* RTS -> LTS */

timer_split("Done copy-collect.");

for (lp = 0; lp < 1000; lp++)

in(ts, ?tmp);

timer_split("Finished.");

print_times();

return 0;

}
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B.6 Experiment six

Program B.6 Program used for experiment six.
#include <linda.h>

int main(int argc, char *argv[])

{

int lp, tmp;

char *ts;

start_timer();

ts = tsc();

for (lp = 0; lp < 1000; lp++)

out(ts, lp);

timer_split("Done outs.");

collect(ts, UTS, ?tmp); /* LTS -> RTS */

timer_split("Done collect.");

copycollect(UTS, ts, ?tmp); /* RTS -> LTS */

timer_split("Done copy-collect.");

for (lp = 0; lp < 1000; lp++)

in(ts, ?tmp);

timer_split("Finished.");

print_times();

return 0;

}
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