
COPY-COLLECT: A new primitive for the Linda

model

Antony Rowstron, Andrew Douglas and Alan Wood

Department of Computer Science, University of York

Abstract

Linda is a model of communication for concurrent processes. This

paper proposes the addition of a new primitive to the Linda model, called

copy-collect. An informal semantics of the new primitive is presented

and an outline of the multiple rd problem which provides the justi�cation

for adding a new primitive. A description of how the new primitive can

be implemented on several di�erent implementations is also provided.

1 Introduction

The originators of Linda[1] describe it as a co-ordination language; its prin-

cipal purpose is to orchestrate interprocess communication. Communication

between di�erent processes involved in a (concurrent) computation can only oc-

cur through a tuple space, which can be thought of as a bag into which tuples

are inserted and withdrawn by the processes. Linda is only concerned with

process co-ordination, and thus is always embedded into some other host lan-

guage e.g. C, Prolog, Lisp, etc. which provides the conventional computational

mechanisms.

Recent work has shown a particular operation (which we call the multiple

rd problem) to be di�cult to perform using the current Linda model. The

addition of a new primitive to the model, copy-collect appears to rectify the

problem. We discuss the new primitive, the multiple rd problem and the e�ects

on implementations of the new primitive. However, �rst an overview of the

Linda model is presented.

2 The Linda Model

The Linda model is now well known and a detailed description can be found in

[2]. The main primitives are:

out(tuple) This places the tuple into a tuple space.

1



in(template) This removes a tuple from a tuple space. The tuple removed is

associatively matched using the template

1

and the tuple is returned to the

calling process. If no tuple that matches exists then the calling process is

blocked until one becomes available.

rd(template) This primitive is identical to in except the matched tuple is not

removed from the tuple space, and a copy is returned to the calling process.

eval(active tuple) The active tuple contains one or more functions, which are

then evaluated in parallel with each other and the calling process. When

all the functions have terminated a tuple is placed into the tuple space

with the results of the functions as its elements.

Some Linda systems support two other primitives, inp and rdp. These are

non-blocking versions of in and rd. Instead of blocking they return a value to

represent that no tuple was found.

The Linda model is intended to be an abstraction, and as such is independent

of any speci�c machine architecture. This has meant that alternatives and

extensions to the basic Linda model have been proposed and investigated. Two

extensions that are fundamental to this work are:

multiple tuple spaces The addition of multiple tuple spaces has been dis-

cussed for some time. Schemes based on hierarchies of tuple spaces have

been suggested[3, 4] as well as one with a mixture of 
at and hierarchical

tuple spaces[5]. The new primitive proposed in this paper, copy-collect,

requires multiple tuples spaces. However, it makes no assumptions about

the relationship between tuple spaces. All that is required is that a unique

identi�er (or handle) exists for each tuple space.

collect primitive Syntactically

2

the collect[6] primitive can be represented

as: collect(ts1, ts2, template) where ts1 and ts2 are two tuple

spaces handles and template is a template. The collect primitive moves

tuples in ts1 that match template into ts2, returning a count of the

number of tuples moved.

3 The copy-collect primitive

The copy-collect primitive represents a natural extension of the collect[6]

primitive. Where as the collect primitive moves tuples, the copy-collect

primitive copies tuples. The informal semantics of copy-collect are as follows:

copy-collect(ts1,ts2,template) This primitive copies all available tuples

that match the given template from one speci�ed tuple space (ts1) to

another speci�ed tuple space (ts2). It returns a count of the number of

tuples copied.

1

Sometimes referred to as an anti-tuple.

2

Using a C-Style syntax.

2



One of the advantages of Linda over other communication models is its

simplicity. However, the addition of new primitives is, we believe, justi�ed

it extends the expressibility of the model. The problem which copy-collect

solves is the multiple rd problem.

4 The multiple rd problem

The multiple rd problem occurs when many processes wish to concurrently read

a subset of the tuples in a tuple space. In order to demonstrate the problem a

simple example is used.

Figure 1 shows a tuple space and two processes. The tuples in the tuple space

represent a binary image, with the tuples taking the form of [x coord; y coord; value].

The two processes perform some simple image processing operation. They both

require to use only the pixels which are set (in other words the tuples where the

third �eld is one).

Tuple space

[1,1,0]
[1,2,1]

[1,3,0]

[2,1,0]
[2,2,1] [2,3,0]

[3,1,0]

[3,2,1]

[3,3,0]
Process One

Process Two

Figure 1: Example of where the multiple rd problem can exist.

The problem is how to allow the two processes to read the necessary tuples

in an e�cient manner. First thoughts would suggest the use of a rd, with a

template of the form [?integer; ?integer; 1]. However, Linda does not guarantee

that a rd will always return a di�erent tuple, and so this solution must be

rejected. Using the current Linda model there are two ways to solve this problem

{ which we call the multiple rd problem.

Streams In this approach each tuple has to have a unique �eld (or a set of

�elds). In this example, the integer pair (x coord; y coord) could be taken

to be the unique �eld. If no unique �eld is present then one has to be

added, for example numbering the tuples from one upwards, and then

storing the value of the last value used in a tuple so the consumer can

work out when all the tagged tuples in a tuple space have been checked.

All the tuples are then read using a rd using the unique �eld to generate

a template for each tuple as required. Because each tuple is unique only

one tuple will match with the template. The skeleton of the procedure

needed to do this is shown in Code 4.1, where image ts is the tuple space

handle for the tuple space depicted in Figure 1.

The example code demonstrates how the unique �elds are used. Every

tuple is read and if the third �eld contains a one (representing a set pixel)

3



Code 4.1 Example code using streams.

for (x = 1; x < 4; x++)

for (y = 1; y < 4; y++)

image_ts.rd(x,y,?value);

if (value == 1)

do_operation(x,y);

the operation is performed. In this case the size of the image has to be

known in order to allow a consumer to generate all the possible pairs for

(x coord; y coord) and either all pixels need to be present or the system

supports predicated version of rd.

Semaphores The semaphore approach is reliant on the implementation sup-

porting either inp or collect. A unique tuple is placed in the tuple

space, which acts as a lock tuple or semaphore. Before a process can use

the tuples in the tuple space it must �rst grab the lock tuple (using an in).

Once it has the lock tuple, it can destructively remove the tuples from the

tuple space either by repeated use of inp or by using collect. The re-

moved tuples are stored in another, temporary, tuple space. Once all the

matched tuples have been destructively removed from the original tuple

space, they are replaced by removing the ones that are in the temporary

tuple space. Then �nally the lock tuple is returned to the tuple space.

The skeleton of the procedure needed to do this is shown in Code 4.2.

This uses inp but could also use collect.

Code 4.2 Example code using streams.

count = 0;

image_ts.in("lock");

while (image_ts.inp(?x,?x, 1)) do {

local_ts.out(x,y,1);

count++;

}

for (i = 1; i < c; i++) {

local_ts.in(?x,?y,1);

image_ts.out(x,y,1);

do_operation(x,y);

}

out("lock");

The code given here is one of several ways of performing the operation

and is suited to �ne grained use (that is the time cost of performing

do operation(x,y) is about equivalent to a Linda operation).

The stream approach is unacceptable for two reasons. The addition of a

4



unique �eld may not be easy. If the producer of the tuples is aware of the

consumers problem then they can be added easily, but the consumer may then

have to be told how the unique �eld was generated. If the producer was not

aware of the consumers problem (because it is part of a library or it was written

by someone who was not aware that the resulting tuples would be used in such

away etc) then this involves the preprocessing of all the tuples, which can be

expensive and unnecessary. The second reason why the stream is unacceptable

is that every tuple must be rd regardless of whether it is to be used. If there

are millions of tuples and only a small percentage are required then it is very

expensive to fetch all the tuples and then use just a small number of them.

The semaphore approach is unacceptable because if there are many processes

wishing to access the tuple space, they have to do so one at a time. They will

all compete for the lock tuple. One process will get it and the others will block

until it is replaced, and then one of the other processes will get it and so on.

This clearly makes the accessing of the tuple space sequential and subsequently

completely unacceptable in a parallel system.

How does the copy-collect primitive allow the multiple rd problem to be

solved? The tuples in the main tuple space that are required are copied using

copy-collect to a local tuple space and then are destructively read from the

local tuple space. The outline of procedure needed to do this is given in Code 4.3.

Code 4.3 Example code using copy-collect.

count = copy-collect(image_ts,local_ts, (?int,?int,1));

for (lp = 0; lp < count; lp++)

local_ts.in(?x,?y,1);

do_operation(x,y);

The template used for the copy-collect matches only the tuples in the

tuple space which are required. These tuples are copied to the local tuple space.

The count of the number of tuples copied is used to control the number of tuples

destructively read from the local tuple space. The copy-collect operation can

be performed by many processes concurrently.

We have used an image processing problem as the example. However the

multiple rd problem occurs whenever a tuple space is used to store information

that is required to be read by many processes concurrently. The tuple space may

contain a list of names (such as employee names), an image or even collections

of tuples containing HTML documents!

5 Performance

Having shown how the new primitive solves the multiple rd problem in a prac-

tical way, we will now consider how the three approaches (semaphore, stream

and copy-collect) perform in a more general way.

5



In order to achieve this let us consider the general case, where there is a tuple

space, T, which contains N tuples. Given a template, t, there are n tuples which

match the template. There are P processes wishing to perform the multiple rd

concurrently. Initially, let us consider the case where P = 1. How many Linda

primitives are required in order to the process to rd all the elements n and at

the end leave tuple space T in its original state.

Stream method If there are N tuples then each tuple will be read once.

Therefore, the number of Linda primitives required is:

No. of Linda primitives = N (1)

Semaphore/lock method As already mentioned there are many ways of im-

plementing this. In the best case for a collect based implementation,

the number of primitives required is:

No. of Linda primitives = 3 + 2n (2)

and the best case for an inp based implementation, the number of prim-

itives required is:

No. of Linda primitives = 3 + 4n (3)

copy-collect method The number of Linda primitives required will be the

primitive to copy the tuples to a local tuple space (1) and the primitives

to remove the tuples from the local tuple space (n). Therefore, the number

of Linda primitives required is:

No. of Linda primitives = 1 + n (4)

Let us now consider the what happens as P becomes greater than one. Obvi-

ously the number of primitives required in total will all rise proportionally with

the number of processes. However, let us consider the number of primitives that

can not be done concurrently, or in other words let us consider the number of

primitives that are parallelizable. We will assume the we have an ideal Linda

implementation.

The stream and copy-collect versions will not alter. All the processes can

concurrently perform the operation. There is no reason why an ideal kernel

could not process many non-destructive tuple space operations concurrently.

However, the semaphore/lock version will rise proportionally with the number of

processes, as each will perform an in on the lock tuple and then P�1 will block.

Therefore, in the case of the semaphore version the number of unparallelisable

primitives is:

No. of Linda primitives = (3 + 2n)P (5)

6



Figures 2 and 3 show how the non-parallelisable primitive counts vary. In

both cases the size of T was 100, the size of P and n was varied. Figure 2 shows

how the stream and semaphore solutions perform, and Figure 3 shows how the

stream and copy-collect versions perform.

stream

0

50

100 1

1.5

2

2.5

3

0

100

200

300

400

500

600

700

n

P

Number of unparallizable Linda primitives

semaphore

Figure 2: Comparison of primitive counts for the stream and (collect) semaphore

solutions to the multiple rd problem

Simple analysis indicates that when one or more processes wish to perform

a multiple rd, a copy-collect approach is always better except when all the

tuples in a tuple space match, and in that case a stream is better. It is better

because we wish to minimise the number of tuple space operations, as each tuple

space operation has an overhead attached to it.

6 Implementation of copy-collect

When considering the addition of a new primitive to the Linda model there

are a number of important issues. The primary issue is that the new primitive

should extend the expressibility of the model to overcome a perceived problem.

The other issue is how e�ciently can the new primitive be implemented.

When considering copy-collect there are three e�ciency issues which need

considering. These are, in order of importance:

Communication It is necessary to ensure that the amount of communication

that is required is kept to a minimum. The mass movement of tuples

around a kernel would clearly be unacceptable.

Memory space The copy-collect primitive produces a copy of a number of

tuples. If there are many processes producing copies of millions of tuples

using copy-collect then there is clearly a concern about memory usage.

7



stream

0

50

100 1

1.5

2

2.5

3

0

50

100

150

n

P

Number of unparallizable Linda primitives

copy-collect

Figure 3: Comparison of copy-collect and stream solutions to the multiple rd

problem

Level of parallelism It is unacceptable to merely move the problem with the

solution at a Linda program level into the kernel in many situations. We

wish to attempt as far as possible to increase the level of parallelism.

We will now consider each of these issues in greater depth.

6.1 Communication

Implementations where communication is a consideration fall into one of a num-

ber of categories. These are:

Single server In this approach the server is a single process. Other processes

send messages to it and receive replies from it. An example of such an

implementation is Glenda. The actual copy-collect primitive requires

no more messages than an in or rd. A message to the server containing

the template, and a message back containing the number of tuples copied.

Distributed server Distributed Servers use a number of tuple space man-

agers to manage tuples and tuple spaces. These tuple space managers are

normally distributed across a number of processors. Distributed servers

generally fall into one of two sub-categories { those that allow duplication

(that is, when out(ts,t) occurs, the tuple t is duplicated a number of

times) and those that do not (that is, when out(ts,t) occurs, the tuple

t will appear only a single time).

For copy-collect to be e�cient, there is an essential requirement that

the tuple space identi�er is not used in the placement decision. This

8



way, tuples appear on tuple space managers, regardless of the tuple space

identi�er, and the lookup mechanism is also independent of the tuple space

identi�er. When this requirement is satis�ed, copying tuples between tuple

spaces becomes an operation local to a tuple space manager { there is no

communication requirement between tuple space managers.

We can make a distinction between two kinds of programming system:

open systems, where a parallel program is written which may communic-

ate with other programs, and closed systems, where the communication

pattern of the entire program is given in the one piece of code.

In the open systems context, tuple placement which uses tuple space iden-

ti�ers would be di�cult, because tuple space identi�ers must be commu-

nicated in some way to the other program. When this happens, it would

also be necessary for the hashing algorithm for that tuple space to be sent

with the identi�er. No system, at present, will do this (although it is a

consideration which must be met).

In a closed system, tuple placement which uses tuple space identi�ers is a

real possibility, as placement mechanisms are often generated at compile

time, or evolve during run time. It is quite possible, in a system which

implements copy-collect, to enforce our requirement. In fact, if compile

time optimisation is used, it may well be possible to incorporate a hybrid

approach, where our requirement is enforced on those tuple spaces where

a copy-collect might happen, but to implement a more relaxed regime

on those tuple spaces that do not interact.

Where tuple duplication is allowed, a simple mechanism is used whereby

a tuple is placed with more than one tuple space manager. Lookup is also

a simple mechanism, where a template is directed to a number of tuple

space managers in order to �nd the required tuple. Usually, some kind

of arbitration is necessary before a tuple can be returned to the process

making the request. When implementing copy-collect in such imple-

mentations, it will not be necessary to communicate tuples between tuple

space managers, assuming that placement is performed without reference

to the tuple space name (that is, tuples are always placed on particular

tuple space managers, regardless of the tuple space name). Some com-

munication may be needed for arbitration purposes, but in an e�cient

implementation, this will be no more than is required for an in or rd.

Examples of this kind of implementation are given in [7] and [8].

Where no duplication is allowed, hashing is the most commonly used

method in tuple placement and retrieval. Each outed tuple hashes to

a tuple space manager, and each template will hash to either a single

tuple space manager, or a set of tuple space managers where the tuple can

be found. Once again, making the assumption that the tuple space name

is not used in the hashing process, no tuple movement is required { the op-

eration is simply a matter of re-tagging the appropriate tuples. Examples

of this kind of implementation are given in [9] and [10]. In these imple-

9



mentations, a copy-collect primitive requires no more communication

than an in or rd operation.

It is obviously impossible and unnecessary to consider all the particular im-

plementations that have created. However, we hope that we have demonstrated

that in many cases the communication cost of adding the copy-collect prim-

itive is equal to a in or rd that blocks.

6.2 Memory space

Another important issue is memory usage. This largely depends on the data

structure being used to store the tuples. There is however, no meson why a

data structure can not be used where the tuples are tagged with the tuple space

identi�ers which contain them. In this way there is no need to actually duplicate

the tuples.

6.3 Level of parallelism

In a single server approach copy-collect acts very like the semaphore ap-

proach. The server services one primitive at a time, so in the worst case you

can have an implementation that mimics the worst aspects of both Linda level

approaches. The server locks the entire tuple space (by accessing only one

primitive at a time) and then could if a poor data structure was being used

check every tuple to see which matched the template and then duplicate them.

Therefore, every tuple is being checked and the process is sequential.

A distributed server however, can remove the sequential access to the tuple

space. If each server holds some of the tuples then the checking and duplication

can be carried out in parallel by the di�erent servers. Therefore, the sequen-

tial accessing of the tuple space is parallelised. Also better tuple storage data

structures can remove the necessity to check all the tuples, reducing the number

needing to be checked.

6.4 Conclusion

A brief overview has been given of some of the important implementational

issues. Current work on our PVM kernel[10] shows that it is possibly possible

to use extra information that copy-collect provides to increase performance

(particularly over networks where communication is expensive). This is because

copy-collect is a tuple space operation. It gives you information about which

process is likely to be using the copied tuples.

7 Conclusion

We have proposed a new primitive called copy-collect which has been added

to our Linda kernel[9, 10]. The primitive can be used to overcome the mul-

tiple rd problem. We have shown how using current implementation strategies

10



copy-collect can in many cases be implemented e�ciently. Work is currently

underway considering how copy-collect allows more e�cient implementations.

Acknowledgements

During this work Antony Rowstron was supported by a EPSRC CASE student-

ship with British Aerospace Military Aircraft Division. Andrew Douglas was

supported by an EPSRC grant number GR/J12765.

References

References

[1] N. Carriero and D. Gelernter. Linda in context. Communications of the

ACM, 32(4):444{458, 1989.

[2] N. Carriero and D. Gelernter. How to write parallel programs: A �rst

course. MIT Press, 1990.

[3] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem,

and J.-C. Syre, editors, PARLE '89: Parallel Architectures and Languages

Europe. Volume II: Parallel Languages, pages 20{27. Springer-Verlang, Lec-

ture Notes in Computer Science Volume 366, 1989.

[4] S.C. Hupfer. Melinda: Linda with multiple tuple spaces. Technical Report

YALEU /DCS/RR-766, Yale University, 1990.

[5] K.K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis, Aalbrog

University, Department of Mathematics and Computer Science, 1993.

[6] P. Butcher, A. Wood, and M. Atkins. Global synchronisation in Linda.

Concurrency: Practice and Experience, 6(6):505{516, 1994.

[7] C. Faasen. Intermediate uniformly distributed tuple space on transputer

meshes. In J.P. Banâtre and D. Le M�etayer, editors, Research Directions in

High-Level Parallel Programming Languages, volume 574 of Lecture Notes

in Computer Science. Springer Verlag, 1991.

[8] S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy. Matching

language and hardware for parallel computation in the Linda machine.

IEEE Transactions on Computers, 37(8):921{929, 1988.

[9] A. Douglas, A. Wood, and A. Rowstron. Linda implementation revisited.

In P. Nixon, editor, Transputer and occam developments, Transputer and

occam Engineering Series, pages 125{138. IOS Press, 1995.

11



[10] A. Rowstron, A. Douglas, and A. Wood. A distributed Linda-like kernel

for PVM. In J. Dongarra, M. Gengler, B. Tourancheau, and X. Vigouroux,

editors, EuroPVM'95, pages 107{112. Hermes, 1995.

12


