
Using the Bonita primitives: A case study

Antony Rowstron

�

Computer Laboratory, Cambridge University,

New Museums Site,

Pembroke Street,

Cambridge CB2 3QG, UK

Abstract

The co-ordination language Linda has been used for parallel process-

ing for many years. Linda uses a shared tuple space and a number

of primitives to provide access to the tuple space and thereby enabling

communication between processes executing concurrently. Linda provides

asynchronous communication between processes, but synchronous access

between the processes and the tuple spaces. The Bonita primitives are

a di�erent set of primitives that provide asynchronous access to the tuple

spaces. The Bonita primitives can emulate the primary Linda primitives

and therefore provides both asynchronous access and synchronous access

to tuple spaces. It has been previously claimed[15] that asynchronous

tuple space access primitives are required to provide new co-ordination

constructs and to improve performance for geographically distributed pro-

cesses which are required to co-ordinate distribute processes (or agents).

In this paper a talk program is used as an example to demonstrate that

the concept of tuple spaces are well suited for process co-ordination for

distributed processes (or agents), and to provide a comparison between

the use of Linda primitives and the Bonita primitives. It is shown that

asynchronous tuple space access is essential for such process co-ordination.

1 Introduction

The concept of shared tuple spaces for parallel process co-ordination has been

being used successfully for many years, and is the foundation of the Linda[4] co-

ordination language. A tuple space is an unordered collection of tuples, and the

Linda primitives provide the access mechanisms for the tuple space. Although

Linda provides asynchronous process communication it provides primarily

1

syn-

�

E-Mail: Antony.Rowstron@cl.cam.ac.uk

1

The out primitive may be seen as either a synchronous or asynchronous primitive depend-

ing on whether the implementation supports out ordering (see Section 7.2).

1



chronous tuple space access. The Bonita[15] primitives are a set of asyn-

chronous access primitives for shared tuple spaces.

In distributed environments the need for asynchronous primitives is driven

by both functionality and performance concerns. The Bonita primitives can be

used to emulate the Linda primitives

2

and therefore provide both asynchronous

and synchronous tuple space access.

A detailed description of the Bonita primitives can be found in Rowstron

et al.[15], and the only di�erence is that another primitive has been added to

the Bonita primitives, called cancel. This new primitive described in detail

in Section 3.

A justi�cation in terms of performance of the Bonita primitives is presented

in detail in Rowstron et al.[15] and will not be reiterated in this paper. In this

paper a comparison of the use of C-Linda and C-Bonita for an interactive talk

tool for use over a WAN is presented, rather than a LAN. The implementation of

the C-Bonita uses the run-time system used in the York Linda Kernel II[13, 12].

The original Linda primitives are described in Section 2. The Bonita are

described (informally) in Section 3. The general structure and functionality of

the talk program is described in Section 4, and the C-Linda version is described

in detail in Section 5, and the C-Bonita version is described in detail in Sec-

tion 6. A comparison (partly based on experimental results) is presented in

Section 7 and �nally a review of other relevant work is presented in Section 8.

2 The Linda primitives

The Linda model is now well known and a detailed description can be found in

Carriero et al.[5]. The main primitives are:

� out(ts, tuple)

This places the tuple (tuple) into a tuple space (ts).

� in(ts, template)

This removes a tuple from a tuple space. The tuple removed is associa-

tively matched using the template and the tuple is returned to the calling

process. If no matching tuple exists then the primitive (and subsequently

the calling process) is blocked until one becomes available.

� rd(ts, template)

This primitive is identical to in except the matched tuple is not removed

from the tuple space, so a copy is returned.

� eval(ts, active-tuple)

2

Except inp and rdp.

2



The active-tuple contains one or more functions, which are evaluated in

parallel with each other and the calling process. When all the functions

have terminated a tuple is placed into the tuple space with the results of

the functions as its elements.

Some Linda systems support two other primitives, inp and rdp. These are

non-blocking versions of in and rd. Instead of blocking they return a value to

indicate no tuple was found. For a number of (semantic) reasons many systems

do not support them.

Over the last ten years there have been a number of proposed extensions

to both the Linda primitives and the underlying tuple space model. Of these

the most important is the extension of the of the tuple space model with mul-

tiple tuple spaces. Schemes based on hierarchies of tuple spaces have been

suggested[7, 8] as well as one with a mixture of 
at and hierarchical tuple

spaces[9]. The work described here is not a�ected by the exact relationship

of the multiple tuple spaces. In a distributed environment it is important to

have multiple tuple spaces, however no assumptions are made about there rela-

tionship with each other.

There are two new primitives which have been proposed that are of particular

interest; collect[3] and copy-collect[14]. The collect primitive (collect(ts1,

ts2, template)) moves all available tuples from ts1 that match template into

ts2, returning a count of the number of tuples moved. The copy-collect

primitive (copy-collect(ts1, ts2, template)) is similar to collect except it copies

all available tuples that match the given template in the source tuple space

(ts1) to the destination tuple space (ts2). As with collect it returns a count

of the number of tuples copied.

3 The Bonita primitives

There are many properties of the tuple space model which makes it a good

model for distributed systems. It allows asynchronous inter-process communi-

cation and allows communicating processes to be both spatially and temporally

separated, which is important for distributed systems. This is achieved because

the tuple spaces are persistent; a tuple space exists even when the process which

creates it has terminated. This in fact provides what is known as orthogonal

persistence[2]. We are proposing a new set of primitives which use the tuple

space model (with multiple tuple spaces). The primitives provide a mechanism

for placing tuples in a tuple space, retrieving them from tuple spaces and the

bulk movement of tuples between tuple spaces. These primitives provide a bet-

ter interface for using tuple spaces in geographically distributed environments

than the Linda primitives. Because these primitives are only an interface with

the tuple space model they use the same concepts of tuple spaces, tuples and

templates as the Linda primitives. Further more the same tuple and template

3



matching is used. The matching criteria are summarised here; a tuple is matched

by a template, if the tuple has the same cardinality as the template, and if each

of the �elds in the tuple has the same type as the same �eld in the template,

and if an actual is speci�ed in the template it exactly matches with the same

�eld in the tuple

3

.

Here are the informal semantics of the Bonita primitives:

� rqid = dispatch(ts, tuple j [template, destructive j nondestructive])

This is an overloaded primitive which controls all of the accesses to a

tuple space which require a tuple to be either placed in a tuple space or

removed from a tuple space. The tuple space to be used is ts. If a tuple

is speci�ed then this tuple is placed in the tuple space. If a template

is speci�ed then this indicates that a tuple is to be retrieved from the

speci�ed tuple space. If this is the case then an extra �eld is used to

indicate if the tuple retrieved should be removed (destructive) or not

removed(nondestructive) from the tuple space ts. This primitive is

non-blocking and returns a request identi�er (rqid) which is subsequently

used with other primitives to retrieve the matched tuple. The primitive

is non-blocking.

� rqid = dispatch bulk(ts1, ts2, template, destructive j nondestructive)

This initiates the movement of tuples between tuple spaces. Tuple space

ts1 is the source tuple space and the destination tuple space is ts2 and the

tuples are either moved (destructive) or copied (nondestructive). A

count of the number of tuples copied or moved is returned. This is achieved

by again the primitive returning a request identi�er (rqid) which is subse-

quently used with other primitives to get a count of the number of tuples

moved or copied. The number of tuples moved or copied depends on the

stability of the tuple space. If the tuple space is stable (there are no opera-

tions which are destructive being performed in parallel with this primitive)

then all the available tuples are copied or moved. The semantics of the

primitive, when other primitives are being performed concurrently can be

found in the description of the copy-collect primitive in Rowstron[12].

The primitive is non-blocking.

� arrived(rqid)

This primitive checks to see if the result associated with rqid is available. If

the result is available then the primitive returns the result. The primitive

is non-blocking and returns false if the result associated with rqid is not

yet available. The result will either be a tuple (the result of a dispatch)

or an integer (the result of a dispatch bulk).

3

We recognise that there are many proposals for the extension of the matching, some of

which may be more suited to a distributed domain. However, the matching algorithm used

does not e�ect the proposed primitives, just the tuples they retrieve.

4



� obtain(rqid)

This primitive is similar to the arrived primitive except it blocks waiting

for the result associated with rqid to become available if it is unavailable.

� cancel()

This primitive is used to inform the system that all pending dispatches

are to be cancelled. The primitive is non-blocking.

� ts = tsc()

This primitive creates a new tuple space and returns a handle which uniqly

identi�es the created tuple space.

The exact syntax of each of the primitives depends upon the host language

being used. For example, the syntax of the obtain and arrived primitives

may include variables to be used to store the information returned. Also the

primitives may return error values, for example if an invalid rqid is used. In the

C-Bonita version we assume that the template provides a number of variables

into which the returned tuple �elds are placed when an obtain or arrived is

performed for a rqid. In the ISETL-Bonita version tuples are �rst class objects

so the obtain primitive returns a tuple, and the arrived primitive returns either

a tuple or false.

The current primitives use a request identi�er to enable the returned tuple

to be found by the other primitives. Such an approach has the advantage that

it is implementationally cheap, but has the disadvantage that the management

of request identi�er can be more complex. Another approach, which is currently

under evaluation is to allow the obtain and arrived primitives to use templates

(and tuple space names) to retrieve the desired tuples. However, the problem

is that it is possible to use di�erent templates in the dispatch and arrived or

obtain primitives, which can lead to unintentional deadlock in the programs.

This is because a tuple which matches a template given in an obtain primitive

need not have been requested using a dispatch and therefore can never arrive.

Therefore, currently, request identi�ers are still being used.

It should be noted that the non-deterministic nature of the tuple space usage

is preserved. If there are many tuples in a tuple space that match a template

then the choice is non-deterministic, and if there are many processes competing

for the same tuple which process gets the tuple is non-deterministic.

There is an extra property that the Bonita primitives provide, and that

is one of tuple ordering. If a single process performs several dispatchs the

dispatch primitive guarantees that tuples appear in the tuple spaces in the

same order as the process produces them. The guarantee is enforced across tuple

spaces. This is important to ensure that the behaviour of the dispatch bulk

primitive is correct. For more information refer to the out ordering details in

Section 7.2.

5



4 The talk program

In the following sections the implementation of a simple talk tool using both

C-Linda and C-Bonita is considered. The talk program is very simple and

the requirements are that an arbitrary number of people should be able to

communicate concurrently (interactively) using the talk program and the text

that makes the conversation should be stored for future reference. The people

involved in the conversation can dynamically alter.

Figure 1: Screen shot of the C-Bonita talk program.

For the both the versions the basic architecture of the talk program is the

same. The talk program consists of an initialisation section and a main section.

The initialisation stage displays the conversation to date, and the main section

allows the user to participate in the conversation.

A simple X front end

4

has been developed. A screen shot of the C-Bonita

version is shown in Figure 1. The main window contains the conversation, with

messages being typed in by the user in the Line window. Whenever a new talk

tool is started, or a talk tool exists, a comment is inserted within the current

4

Using the XForms package.

6



conversation. It is also possible for a user to request to know who is currently

active within the conversation, using the Who? button.

A talk program was chosen primarily because one of the main uses of ge-

ographically distributed computing is to support human collaboration. A talk

tool embodies two of the requirements: multiple users (many users concurrently

using many instantiations of the talk program) and the talk program is interac-

tive. The talk tool also has the advantage that it is simple enough to be easily

understood and demonstrate the advantages of the Bonita primitives.

5 C-Linda version

Initially the C-Linda implementation is considered. The initialisation section is

shown in Figure 2 and the main section is shown in Figure 3.

5.1 C-Linda initialisation section

1 out(con, user_name);

2

3

in(con, ?num_lines); /* Get the line counter */

4 out(con, num_lines, user_name, "Joining");

5 out(con, ++num_lines);

6

7

init_window(); /* Set up the window */

8

9 for (pos = 0; pos < num_lines; pos++)

10 {

11 rd(con, pos, ?name, ?text);

12 print_screen(name,text);

13 }

Figure 2: The initialisation section of the talk program written in C-Linda.

This initialisation code shown in Figure 2 assumes that each conversation

uses a unique tuple space (in this case represented by a tuple space handle

called con), and this has been initialised and a tuple representing a counter of the

number of messages in the conversation is present. Each line of the conversation

is a simple tuple of the form [index

integer

; name

string

; textline

string

], and the

counter tuple contains the value of index for the next line to be inserted. The

�rst thing the initialisation section does is to insert a tuple with the users name

7



into the conversation tuple space (line 1, Figure 2). This is so other users can

ask who is currently active in a conversation. When a user exits the tuple

containing the name is removed (line 16, Figure 3). The initialisation section

then inserts a line in the conversation to indicate that the a new person has

joined the conversation (lines 3-5, Figure 2). This is achieved by removing the

counter tuple (line 3), and then inserting a new conversation line (line 4), and

then replacing the incremented counter tuple (line 5). Next each line of the

conversation is read

5

and printed on the screen (lines 9-13, Figure 2).

5.2 C-Linda main section

1 next = num_lines;

2

3 while (!exit_status)

4 {

5

/* If the next line of conversation here then display it */

6 if (inp(con, next, ?name, ?str))

7 {

8 print_screen(name,text);

9 next++;

10 }

11

12 if (ready_line(text_input))

13 {

14 in(con, ?num_lines);

15 out(con, num_lines+1);

16 out(con, num_lines, user_name, text_input);

17 }

18 }

19 in(con, user_name);

Figure 3: The main section of the talk program written in C-Linda.

The main section code shown in Figure 3 of the C-Linda program uses polling

for detecting the tuple containing the next line of the conversation in the tuple

space and for getting user input text. An inp primitive is used to keep checking

if a tuple containing a new line of the conversation has been inserted into the

tuple space (line 6, Figure 3), and if a tuple has been inserted it is displayed

and the counter incremented thus enabling checking for the next tuple (lines

5

The last n lines could be read and displayed rather than all the lines.

8



8 and 9, Figure 3). The function ready line manages the input of text from

the keyboard and checks if a line of text is ready. If a line of text is ready it

is inserted into the conversation by retrieving the counter (line 14, Figure 3),

reinserting it incremented (line 15, Figure 3), and then adding the new tuple to

the conversation (line 16, Figure 3).

It should be noted that the inp primitive is used. In Section 7 the implica-

tions of not using inp are discussed.

6 C-Bonita version

Having considered the C-Linda version of the talk tool, the C-Bonita version

is now considered. The initialisation section is shown in Figure 4 and the main

section is shown in Figure 5.

6.1 C-Bonita initialisation section

1

dispatch(con, user_name); /* Place name in tuple space */

2

3

in(con, ?num_lines); /* Get the line counter */

4 dispatch(con, num_lines, user_name, "Joining");

5 dispatch(con, ++num_lines);

6

7

init_window(); /* Set up the window */

8

9

/* Get the lines of text - pipelining the tuple space access */

10

11 for (pos = 0; pos < num_lines; pos++)

12

ref_arr[pos] = dispatch(con, pos, ?name, ?text, NONDEST);

13

14 for (pos = 0; pos < num_lines; pos++)

15 {

16 obtain(ref_arr[pos]);

17 print_screen(name,text);

18 }

Figure 4: The initialisation section of the talk program written in C-Bonita.

9



The initialisation code for the C-Bonita version functionally does exactly

the same as the C-Linda version. Indeed the �rst lines are identical, except

for the out is replaced with a dispatch (line 1, Figure 4). Because the Linda

primitives can be emulated using the Bonita primitives where appropriate they

can be used, and indeed in the current version of the C-Bonita the Linda

primitives are macros containing the pairs of Bonita primitives. However,

the second part of the initialisation code uses the Bonita primitives to obtain

pipelining of the tuple space accesses. A request for all of the tuples required

is made �rst, then each of the tuples is actually retrieved and dispatched. The

requesting of all tuples is achieved within the for loop (line 11, Figure 4) and

the dispatch primitive (line 12, Figure 4). The request identi�er for each of

the dispatch primitives is stored (in an array), to be used when retrieving the

results. The for loop (line 14, Figure 4) and the obtain primitive (line 15,

Figure 4) retrieve the requested tuples, and the retrieved conversation text is

displayed on the screen (line 17, Figure 4).

6.2 C-Bonita main section

As with the C-Linda version the C-Bonita version uses polling to check if

the next line of the conversation is available or if there is user input ready. The

polling of the next line of the conversation does not use inp but instead requests

the tuple using a dispatch primitive (line 2 and 11, Figure 5) and checks for the

tuples arrival using the arrived primitive (line 7, Figure 5). It should be noted

that the dispatch primitive on line 2, Figure 5 is used to request the �rst tuple

containing a text line that was not displayed during the initialisation section,

and subsequent tuples containing text lines are requested by the dispatch on

line 11, Figure 5. If the tuple is available then the arrived primitive retrieves it,

and the text within the tuple is displayed (line 9, Figure 5). Again the function

ready line is used to manage and check the text input by the user. If a line of

text is available, as with the C-Linda version, the counter is retrieved (line 16,

Figure 5), and then incremented and reinserted (line 17, Figure 5) and then the

tuple with the line of text is inserted (line 18, Figure 5). As with the C-Linda

version the users' name is removed from the tuple space (line 21, Figure 5) and

�nally a cancel is performed to terminate all pending dispatch primitives.

These sections have outlined the code for the talk program in both C-Linda

and C-Bonita. In the next section a comparison of the di�erent programs is

presented to demonstrate the advantages of using the Bonita primitives.

7 Comparison of the C-Linda and C-Bonita pro-

grams

By examining the two programs it is clear to see that the C-Linda version ap-

pears more compact and in some ways more elegant. First the two initialisation

10



1 next = num_lines;

2 ref = dispatch(con, next, ?name, ?text, NONDEST);

3

4 while (!exit_status)

5 {

6

/* If the next line of conversation here then display it */

7 if (arrived(ref))

8 {

9 print_screen(name,text);

10 /* Request the next line */

11 ref = dispatch(con, ++next, ?name, ?text, NONDEST);

12 }

13

14 if (ready_line(text_input))

15 {

16 in(con, ?num_lines);

17 dispatch(con, num_lines+1);

18 dispatch(con, num_lines, user_name, text_input);

19 }

20 }

21 in(con, user_name);

22 cancel();

Figure 5: The main section of the talk program written in C-Bonita.

sections are compared, and then the two main sections are compared.

7.1 Comparison of initialisation sections

The fundamental di�erence between the two initialisation sections, Figures 2

and 4, is the way in which the tuples representing the text of the past conver-

sation is retrieved. In the C-Linda version this is achieved by the repeated use

of the rd primitive, and in the C-Bonita version by the repeated use of the

of dispatch and obtain. The C-Bonita version provides pipelined access to

the tuple space, where as the C-Linda version does not. The pipelining of the

tuple space access cannot lead to the C-Bonita version taking longer than the

C-Linda version, and in most cases will provide a speed-up, which in a WAN

environment could be considerable. This is because when using a rd primitive,

a message is dispatched to a run-time system, the run-time system processes the

message, and returns a reply message. When the reply message is received the

rd has completed and the program continues to perform the next rd primitive.

11



In the C-Bonita version the communication between the run-time system and

the process is pipelined, the request for another tuple is not dependent upon

one request being completed before the next request can be sent.

The experimental results shown in Table 6 are an example of the speed

up that can be achieved. The table shows the time taken for the retrieval of

a number of tuples. These results were produced using a network of Silicon

Graphics Indy workstations connected by a non-dedicated 10Mbit/s Ethernet

LAN network. The tuple space kernel

6

was placed on a single Indy Workstation.

The kernel used for the C-Linda test programwas the York Kernel II[13, 12], and

for the C-Bonita test program a slightly modi�ed York Kernel II. None of the

modi�cations to the kernel were to increase e�ciency of the kernel, just simply

to support the new primitives. The York Kernel II is a kernel which supports the

distribution of tuple spaces over many workstations, therefore allowing parallel

access to a single tuple space (because the tuple spaces are distributed over

all the nodes of the kernel). However, the kernel was con�gured to act as

a single server running on a single workstation and therefore did not provide

parallel access to the tuple spaces. The test programs were run on another Indy

Workstation. The C-Linda test program was lines 9-13 of Figure 2, and the

C-Bonita test program was line 11-18 of Figure 4.

Number of C-Linda C-Bonita C-Bonita speedup

tuples retrieved (seconds) (seconds) over C-Linda

1 0.004 0.004 0 seconds (0%)

10 0.033 0.019 0.014 seconds (42%)

100 0.362 0.197 0.165 seconds (46%)

1000 4.645 2.683 1.962 seconds (42%)

Figure 6: Timings for retrieving tuples from a tuple space as in the initialisation

section.

The results for the C-Bonita version demonstrate the speed advantage of

pipelining the tuple space accesses. There are a number of factors that will

further in
uence the performance of the Bonita primitives:

� Using a distributed kernel. If the kernel is distributed then it is possible

to have multiple requests serviced concurrently by the kernel. Therefore,

when using the Bonita primitives there is the potential to have di�erent

dispatch primitives being serviced concurrently. This is assuming that

the time taken to pack the message is less than the time taken for the run-

time system to decode the message and check if a suitable matching tuple

exists. If this is true, then the dispatch messages sent to a centralised

kernel will be queued at the kernel. If the kernel is parallel then it will

potentially be able to service them concurrently.

6

The run-time system which stores the tuples.

12



Process one Process two

{ { int x;

out(ts1, 10); in(ts1, "DONE");

out(ts1, "DONE")); inp(ts1, ?x);

} }

Figure 7: out ordering/inp example.

� The experimental results presented here are obtained using a LAN. If the

primitives were to be used over a WAN (eg. the Internet) then the com-

munication times could increase dramatically. However, the computation

times to create the message and computation time at the kernel should

not increase (these are independent of communication times). If the com-

munication time increases the e�ect of pipelining the tuple space accesses

will be to increase the speedup of the pipelined access (Bonita primitives)

over the non-pipelined access (Linda primitives).

It should be noted that if the underlying communication system does not

support asynchronous message passing then the C-Bonita version will

not perform signi�cantly better than the C-Linda version.

7.2 Comparison of main sections

The fundamental di�erence between the two main sections, Figures 3 and 5, is

the way in which the tuples representing the next line of text in a conversation

are retrieved. In the C-Linda version this is achieved using the inp primitive

to check for the next tuple, and in the C-Bonita version this is achieved by

requesting the tuple using a dispatch and then using an arrived primitive to

check if it is available.

The inp primitive is not widely supported in Linda implementations. There

are a number of perceived \semantic problems" associated with these primitives

which are used as the primary reason for their removal[11], replacement[3] or,

when implemented, behaviour which can potentially lead to unintentional pro-

gram behaviour[1]. The problem is based on the semantics of the out primitive.

Given the example code fragments in Figure 7, can the inp in process two fail?

Some implementations[1] of Linda state that it is possible for the inp to

fail, because out is an asynchronous primitive and therefore completion of the

primitive does not indicate that the tuple is present within the tuple space.

On the other hand, if it is assumed that the out primitive is synchronous

then the inp can not fail

7

because the two processes synchronise on the tuple

[\DONE"

string

]. Therefore, the previous out primitive must have completed

7

Assuming there are no other process using the tuple space which ts1 refers to.

13



before the [\DONE"

string

] is inserted, so the tuple [10

integer

] will be present.

If this is not true then this allows implementations to create inp as a function

that always returns false. A detailed description of the problem can be found

in Leichter[11] and Rowstron[12]. Here, it is assumed that out primitives are

ordered.

The C-Linda approach of using inp has a disadvantage over the C-Bonita

approach. The disadvantage is the level of communication between the user

process and the run-time system. The C-Bonita approach requires two mes-

sages to pass between the user process and the run-time system. One message

associated with the dispatch primitive, and one associated with the reply for

that dispatch primitive. The use of the arrived primitive is simply a local

check within the user process to see if the reply message has arrived. If it has

not there is no need to pass information to the run-time system. Whereas, in

the C-Linda version whenever and inp is performed a message is passed to the

run-time system, and a message is required back before the primitive completes.

The reply message will either contain a tuple or an indication that the tuple

does not exist. Each time an inp is performed this will require the run-time

system to check all potential tuples for a match, so not only increasing the

communication load within the system, but also increasing the computational

load within the kernel. Even if the kernel is distributed this extra load could be

very signi�cant, particularly if there are many instantiations of the talk program

running concurrently.

There is also the fact that whilst the inp is being performed the user process

is blocked. In an LAN environment this is not a problem because the time

taken for the inp is relatively small. However, if a WAN was being used the

time taken to perform an inp could potentially become noticeable. A human

expects to interact with the talk program and therefore continual delays could

be a problem if, for example, this caused the input and display of text the user

was writing to be keep pausing. This can be overcome, by e�ectively running

the routines which manage the user input as a separate process. This has two

disadvantages however, requiring the system to support multiple processes on

the same computer and increasing the complexity of the program. The two

processes comprising the talk program can communicate via a tuple space using

the Linda primitives

8

. The question is how do I know that the time taken by

the inp primitive is going to e�ect the interaction of the program with the user?

It is an arbitrary decision which must be made by the programmer. The style

of programming o�ered by Bonita is often more independent of the cost of

communication.

7.3 Summary

Therefore, to summarise the advantages of using the Bonita primitives are:

8

In my opinion the introduction of another inter-process communication method should

be avoided.

14



� speed improvement, providing by being able to pipeline tuple spaces access

(shown in the initialisation section);

� reduction in both communication load and run-time system load by the

Bonita primitives allowing a more e�cient polling than the Linda inp

primitive provides. In the C-Bonita two messages are required to retrieve

a tuple containing a line of text. In the C-Linda version an unbounded

number of messages is potentially required (with a minimum of two); and

� programs written using the Bonita primitives often are more independent

of the e�ects of the communication characteristics of the system being

used. The same talk program will work on a LAN as over the Internet,

without a�ecting the interaction with the user.

As an aside, one thing that has not been demonstrated in the C-Bonita

talk program is that the Bonita primitives can also allow pipelining of tuple

space accesses and computation. It is possible to insert computation between a

dispatch primitive and a obtain or arrived primitive.

8 Other work

One of the most interesting recent developments in Linda-like systems is the

PageSpace project[6] which has been examining the use of Linda-based systems

for co-ordination via the WWW. It is based on Java embedding of Linda, called

Jada

9

. This appears to use modi�cations of the current Linda primitives, but

maintains the synchronous nature of tuple space access. It is within this type

of system that the asynchronous access primitives will be most valuable.

There has been other work looking at the development of primitives for use

in open distributed systems[10, 16]. Objective Linda[10] presents a number of

extensions to the Linda primitives, to make them more suitable for a distributed

and open environment. The primitives retain the synchronous nature of the

Linda primitives, but provide bounds for both time a primitive can take and the

number of tuples retrieved. Therefore, an in and a rd can retrieve many tuples,

rather than a single tuple. The bounding concept could easily be incorporated

into the Bonita primitives. The primitives are also given timeouts, which

are appear to be relative to when the run-time system begins to process the

operation. When using asynchronous access primitives it is possible to allow

the user process to decide how long to wait for a reply.

9 Future work

The run-time system used for the C-Bonita is based on an extension of the York

Kernel II[13, 12]. The York Kernel II is a run-time system which supports the

9

D. Rossi, Department of Computer Science, University of Bologna.

15



Linda primitives and collect and copy-collect. However, the York Kernel II

is essentially a LAN based run-time system. An extension of the concepts behind

the York Kernel II for WAN based computing is described in Rowstron[12], but

have not yet been implemented.

Current work on Bonita is concentrating on trying to extend the underlying

tuple space model to make it more 
exible for the needs for geographically

distributed computing. There are three fundamental concerns:

Tuple space handle passing Both the programs assume that the tuple space

handle or name is known to each instance of the talk program. How-

ever, these have to be passed to the processes in some manner. Laura[16]

presents one way of overcoming this type of problem, by using the concepts

of services (which is also used in PageSpace[6]).

Tuple space permissions In a distributed environment it is necessary to add

read/write etc. permissions to tuple spaces. Currently a form of tuple

space access control is being added to the York Kernel II (which with

modi�cations is now called CamKernel 1.0).

Tuple shadowing It is often the case that a structure is imposed on the tuples

stored in a tuple space. In the case of the talk program the tuples con-

taining the text that makes up a conversation are ordered into a stream,

with the �rst �eld representing a tuples position within the stream. When

these structures are used within a tuple space usually other tuples are

used to store information about the data structure. In the case of the talk

program a tuple containing a counter representing the �nal element of the

stream. In order for the stream to be updated this is destructively read

from the tuple space and then updated and reinserted. Unfortunately,

once it is removed no other talk programs can start up and read the ini-

tial conversation because they need to access it in order to know how many

tuples are in the stream.

Therefore, tuple shadowing is being considered for C-Bonita. This is

where a new operation descriptor for use with templates and the dispatch

primitive is added. The operations descriptor can be either DESTRUC-

TIVE, NON-DESTRUCTIVE or SHADOW. A SHADOW is similar to

DESTRUCTIVE except the tuple is not removed from the tuple space

but no destructive operations (either DESTRUCTIVE or SHADOW) can

be performed on it. If a destructive operation is performed and there are

no other matching tuples the template will be added to the queue with

other unsatis�ed templates. When a new tuple is inserted which matches

the template used to match the shadowed tuple then the shadowed tuple

is removed and the new tuple is inserted. If there are any destructive

operations waiting that could be satis�ed by the inserted tuple then the

inserted tuple will be used.

16



This is useful because it allows the state of the data structure to be looked

at by other process whilst it is being updated by anther process. Therefore,

in the C-Bonita talk program the line 16, Figure 5 would be replaced by

obtain(dispatch(con, ?num lines, SHADOW));. When the dispatch

on line 17, Figure 5 is performed and the kernel receives the message the

shadowed tuple will be removed. This is currently also being added to the

CamKernel 1.0.

10 Conclusions

A simple talk program has been used to compare the di�erences between the

Linda primitives and the Bonita primitives. Through some experimental re-

sults it has been shown how some operations are quicker when expressed using

the Bonita primitives, rather than the Linda primitives even when using a

LAN based implementation.

It has also been shown how the Bonita primitives reduce the amount of

communication necessary when using polling to watch tuple spaces. Because of

the nature of the communication that tuple spaces provide it is often necessary

to use polling to watch state stored in a tuple space.

A true demonstration of the Bonita primitives and their advantages will be

only truly possible as kernels supporting thousands of geographically distributed

processes are created, which is beginning in the form of kernels like the one

used in the PageSpace project, and the one described in Rowstron[12]. As such

kernels become available there will be many optimisations that will have to be

used, some will be explicit (such as tuple shadowing) and others will be implicit.

However, the use of asynchronous primitives in one form or another is, in my

opinion, ensured.

11 Acknowledgements

The author would like to thank Andy Hopper and the Olivetti & Oracle Research

Laboratory, Cambridge for current �nancial support, and Stuart Wray at the

Computer Lab, Cambridge University. The author would also like to thank Alan

Wood and Ronaldo Menezes of the University of York, and Andrew Douglas

for their useful comments and discussions on Bonita. Also to the reviewers

Rowstron et al.[15] for their comments and suggestions.

References

[1] Scienti�c Computing Associates. Linda: User's guide and reference man-

ual. Scienti�c Computing Associates, 1995.

17



[2] M. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence. An

orthogonally persistent Java. ACM SIGMOD Record, 1996. To appear.

[3] P. Butcher, A. Wood, and M. Atkins. Global synchronisation in Linda.

Concurrency: Practice and Experience, 6(6):505{516, 1994.

[4] N. Carriero. Implementation of Tuple Space Machines. PhD thesis, Yale

University, 1987. YALEU/DCS/RR-567.

[5] N. Carriero and D. Gelernter. How to write parallel programs: A �rst

course. MIT Press, 1990.

[6] P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali. PageSpace: An

architecture to coordinate distributed applications on the web. Computer

Networks and ISDN Systems, 28:941{952, 1996. Proceedings of the Fifth

International World Wide Web Conference.

[7] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and J.-

C. Syre, editors, PARLE '89: Parallel Architectures and Languages Europe.

Volume II: Parallel Languages, volume 366 of Lecture Notes in Computer

Science, pages 20{27. Springer-Verlag, 1989.

[8] S.C. Hupfer. Melinda: Linda with multiple tuple spaces. Technical Report

YALEU /DCS/RR-766, Yale University, 1990.

[9] K.K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis, Aalbrog

University, Department of Mathematics and Computer Science, 1993.

[10] T. Kielmann. Designing a coordination model for open systems. In Paolo

Ciancarini and Chris Hankin, editors, Coordination Languages and Models,

Proceedings of Coordination '96, volume 1061 of Lecture Notes in Computer

Science, pages 267{284. Springer-Velag, 1996.

[11] J. Leichter. Shared tuple memories, shared memories, buses and LAN's

{ Linda implementations across the spectrum of connectivity. PhD thesis,

Yale University, 1989. YALEU/DCS/TR-714.

[12] A. Rowstron. Bulk Primitives in Linda Run-Time Systems. PhD thesis,

Computer Science Department, University of York, 1996.

[13] A. Rowstron and A.Wood. An e�cient distributed tuple space implementa-

tion for networks of workstations. In L. Boug�e, P. Fraigniaud, A. Mignotte,

and Y. Robert, editors, Euro-Par'96, volume 1123 of Lecture Notes in Com-

puter Science, pages 510{513. Springer-Verlag, 1996.

[14] A. Rowstron and A. Wood. Solving the Linda multiple rd problem. In

Paolo Ciancarini and Chris Hankin, editors, Coordination Languages and

Models, Proceedings of Coordination '96, volume 1061 of Lecture Notes in

Computer Science, pages 357{367. Springer-Velag, 1996.

18



[15] A. Rowstron and A. Wood. Bonita: A set of tuple space primitives for

distributed coordination. In Hesham El-Rewini and Yale N. Patt, editors,

Proceedings of the 30th Hawaii International Conference on System Sci-

ences, volume 1, pages 379{388. IEEE Computer Society Press, January

1997.

[16] R. Tolksdorf. Coordinating services in open distributed systems with

Laura. In Paolo Ciancarini and Chris Hankin, editors, Coordination Lan-

guages and Models, Proceedings of Coordination '96, volume 1061 of Lecture

Notes in Computer Science, pages 386{402. Springer-Verlag, 1996.

19


