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Abstract

We describe attempts to build an application-
independent model to support reconciliation of di-
verged replicas of shared objects. While replicas are
disconnected from one another, actions on the shared
objects are recorded in a log. An action is composed
of a precondition, an operation and a postcondition.
When reconnecting, the system attempts to reconcile
the divergent replicas, in several phases. A symbolic
phase merges the separate logs, creating one or more
schedules, such that preconditions from one log re-
main true despite the postconditions introduced by
the other. Then, a simulation phase checks the pos-
sible outcomes by actually applying the schedules to
scratch copies of the shared objects. Finally, a selec-
tion phase allows users or applications to select one
of the candidate schedules.

Our approach supports sharing general objects,
where one update may reference multiple objects (not
just a single file or database). Compared to previ-
ous work on log-based reconciliation, our logs capture
more semantic information and provide the applica-
tion with more powerful and finer control over the
outcome of reconciliation.

1 Introduction

In mobile computing there is often the need for dis-
connected operation. The user works on a local repli-
ca of shared data; updates cause replicas to diverge,
and later they must be reconciled. Cooperative ap-
plications are particularly affected because multiple
users may simultaneously update the same data with
no mutual synchronisation.

There is no fully automatic solution to reconcilia-
tion, since it depends strongly on application seman-
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tics and on users’ intents. However we are designing
a middleware platform to take some of the burden
away from applications. We extend the Bayou [6]
model of logs that store application-specific informa-
tion but are reconciled according to an application-
independent protocol. Our model provides greater
opportunity for the application to express its seman-
tics and to influence the outcome of the reconcilia-
tion process. We believe this will reduce the load on
the application programmer. Our reconciliation algo-
rithm takes into consideration a larger set of possible
schedules, thus providing more flexibility.

The management of shared data occurs in several
distinct phases. In the disconnected phase, the user
(through an application) reads and writes local repli-
cas of shared objects.! User actions are logged in a
log with a graph structure. A node of this graph con-
tains an operation, along with assertions describing
its meaning. When two devices meet, they exchange
their logs (starting from a previous common check-
point). A symbolic phase generates a new log, com-
posing the two submitted logs under the constraints
imposed by the assertions, of which multiple possible
schedules can be deduced. A simulation phase com-
putes the possible outcomes from this schedule, and
a selection phase lets the application decide between
them. The rest of this paper focuses on the symbolic
phase.

This paper proceeds as follows. Section 2 compares
this with previous work. Section 3 discusses some
experiments that brought us to our current design,
which is explained in detail in Section 4. In Section 5
an example shows the power of this new approach.
Finally Section 6 concludes with open issues.

I It is assumed that the local application is correct, in the
sense that it takes the local replicas from a consistent state to
another consistent state, i.e., updates respect some integrity
constraints.
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2 Background

Lotus Notes [3] is well-known as providing support
for collaborative computing while disconnected. It
detects and resolves update conflicts. However, it on-
ly supports a fixed set of applications. Its resolution
policies are hard wired; for instance, an update/delete
conflict always gives priority to the delete operation.

The CVS [2] is a source code versioning tool. De-
velopers manage their own replicas, and a repository
holds the master copy of each file. Coherence is man-
aged by developers themselves, so when they wish
to synchronise with the repository, they retrieve the
master from the repository and attempt to integrate
their modifications. CVS detects conflicts (the same
part of the file has been updated by two different user-
s) but then requires the user to solve them.

Bayou [6] provides an application-independent rec-
onciliation protocol for a single replicated database
supporting mobile users. Replicas eventually con-
verge towards the same value. Each write operation is
logged and timestamped. During reconciliation, the
timestamp is used to generate an order in which the
updates are applied to the replicated databases. Bay-
ou allows an application to choose within a catalogue
of coherence constraints, called session guarantees,
and to apply dependency checks, called preconditions,
at reconciliation time. A precondition is a procedure
that the application stores in the log. However, this
is not sufficient to capture application semantics.

Jrep [1] manages the replication of arbitrary Java
objects for asynchronous collaborative applications.
Jrep is based on a log of write operations (create,
delete, update). Multiple updates on a single object
are coalesced into a single equivalent operation. Lam-
port clocks [4] are used at reconciliation time to pro-
vide a causally-consistent merging of the logs. Con-
flicts on a same object are detected and solved ac-
cording to a application-defined strategy. However,
the same strategy is applied for all shared objects of
an application. Inter-object conflicts are detected but
their resolution requires the assistance of the applica-
tion.

3 Experimental work

In order to understand the design space better for
log-based reconciliation, we first developed a simple
prototype system. Some of the issues we wished to
evaluate were what information the log needs to cap-
ture, and what approaches to ordering the merged
logs can be used. In this section, we outline some of
our experiences, and what impact these have had on
our current design.

This initial prototype uses a log similar to Bay-
ou. Each log record represents an update to a shared
replicated object. A record is composed of a precon-
dition, an operation and a failure handler. All three
are opaque Java procedures, i.e., their semantics are
not known to the system. If the precondition evalu-
ates to true the update can be applied, otherwise it
cannot be performed and the error handler is called.

Reconciliation combines two logs to produce a
merged log. The merged log is replayed from a com-
mon initial state of the shared objects, to yield a new
common state. We investigated different strategies
for log merging. Initially, we investigated using well-
defined orderings of the logs, such as concatenation,
or using time to order.

3.1 Ordering the logs

For a given set of updates to shared information, there
will be one or more orderings of these updates that
minimise the number of those that can not be ap-
plied. However, this ordering may not be the gener-
ated by concatenation of the logs, or the time or-
dering of the records within logs. Let us consid-
er an example. For instance, consider two shared
variables z and y, and logs A {write(z); delete(y)}
and B {write(y); delete(x)}. Assuming that write
has a precondition that the shared variable exist-
s, then these two logs need to be interleaved as
{write(x); write(y); delete(x); delete(y)} or, some per-
mutation of this such that the write operations
are performed before the delete operations, such as
{write(z); delete(x); write(y); delete(y)}. This means
that all the updates are performed, and there is no
conflict between any of them.

In contrast, an approach that concatenates logs A
and log B would yield a log where one of the write
operations cannot be performed, because the variable
being accessed has been removed. An approach based
on real time or Lamport clocks [4] gives unpredictable
results. Vector clocks [5] capture the true causal or-
dering, but are not adapted to systems with large or
unknown numbers of replicas.

We conclude that the simple approaches to ordering
the logs miss potential orderings of the log that reduce
conflicts. However, if we allow log merging to consider
arbitrary orderings of the records, searching for the
best one suffers combinatorial explosion. Brute-force
algorithms are untractable.

3.2 Capturing semantics

The second conclusion is the need to capture the ap-
plication expectations regarding the outcome of the
reconciliation phase. In the last example, a more
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satisfactory schedule might be {write(z); write(y)}
(omitting the deletes). The user should be able to
specify which outcome is the correct one. In order
to allow the application to control the behaviour of
the reconciliation phase, more semantic information
is required than can be captured with an opaque pre-
condition.

In summary, our main conclusions are that: (i) sim-
ple orderings often fail unnecessarily, (i) the appli-
cation should be able to control the outcome of the
reconciliation process, and (iii) the potential combi-
natorial explosion needs to be controlled.

4 System model

The system model considers several phases. In the
disconnected phase applications at a site record their
actions in that site’s log. The other phases con-
cern reconnection and reconciliation. The symbol-
ic phase combines two logs symbolically, detecting
constraints between separate logs, which prune the
schedule space. The simulation phase goes through
the possible schedules from the combined log, com-
puting their actual outcome. Finally, in the selection
phase, the application (and ultimately the human us-
er) chooses among the outcomes remaining from the
symbolic phase: removing schedules whose results are
deemed unsatisfactory; editing the logs and resubmit-
ting them to reconciliation; or selecting one of the
outcomes as definitive.

It is possible to specify a policy to prioritise choices.
It is applied during both the symbolic and simulation
phase. It specifies criteria to reduce the number of
possible outcomes, potentially reducing the search s-
pace. Example policies might be “I want schedules
which maximise the number of records in a log”, or
“I prefer schedules that maximise the number of en-
tries made by Antony over Marc”.

In what follows, we focus exclusively on the sym-
bolic phase.

4.1 Schedules

Our log is a graph structure that can be traversed ac-
cording to one or more schedules. A schedule is a pro-
gram for bringing the shared objects from their initial
state (nominally, at disconnection time) to their final
state (nominally, just before reconnection). Order-
ings between records are scheduling constraints. The
initial and final states are assumed correct.

In the symbolic phase, the system combines two
logs. The combined log contains all the records of the
original two, connected by composition operators (to

be presented in Section 4.3). Its schedules are com-
patible with the original schedules and satisfies inter-
log dependencies, as will be explained in Section 4.4.
A schedule of the combined log is a program that can
be executed (at either site) to bring the shared ob-
jects, from their common initial state, to a final state
that incorporates the updates made independently at
each site.

The symbolic phase succeeds if one or more satis-
factory schedules can be found. A conflict between
the two logs may cause it to fail. In this case the sys-
tem presents the application with an explanation of
the conflict. The application may then edit the input
logs to remove the conflict and submit to reconcilia-
tion again.

4.2 Actions

A log is composed of a set of records connected by a
dependency graph, whose operators will be defined in
Section 4.3.

Each log record describes an action performed by
the user while disconnected. A log record is composed
of:

Precondition: an assertion about the expected
state of the objects before executing the operation.

Operation (with arguments and results): a
subprogram that accesses the shared objects in some
way.

Postcondition: an assertion about the effect on
the state of the objects after the method has finished
executing.

Assertions are written in a first-order logic lan-
guage. Symbolic assertions are evaluated symbolical-
ly against a model of the system; the code is unused.
In the simulation phase, the assertions are checked a-
gainst, and the code is executed on, scratch copies of
the actual shared objects. In contrast to previous sys-
tems, our assertions are not opaque procedures, but
instead provide input to the symbolic phase.

Some examples of assertions are z < 5 or after(a),
where a is another action. In a calendar program,
Marc.free(27-mar-2000-11:00) asserts that the 11:00
slot on 27 March 2000 is free in Marc’s calendar.

4.3 Dependencies

A log is an acyclic directed graph. Nodes represent
actions. An edge represents a constraint: sequentiali-
ty (noted “<” hereafter), independence (noted “@®”)
or choice (noted “0”). If a < b then a appears before
b in any schedule. If a & b then both a and b must
appear in any schedule, but there is no ordering con-
straint between them. If aOb then any schedule must
contain either a or b.
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If some action b in a log depends on the results or
side effects of action a of the same log, assertions pro-
vide the way to express this dependency. For instance
b might contain precondition after(a); or a could con-
tain postcondition z = 10 and b precondition z > 5
(assuming no intervening postcondition changes ).

Although two logs represent work done indepen-
dently, dependencies may appear between them. For
instance if log A contains an action a with precon-
dition z < 10 and log B contains an action b with
postcondition x > 20, then in the combined log b may
not be scheduled before a (assuming no other actions
modify z).

The clause last() in a precondition forces that ac-
tion to occur last in any schedule. This can force a
particular outcome by asserting it in the postcondi-
tion. For instance, suppose a user writes a cheque for
£50 on a shared bank account z. Other users of the
account should not cause the cheque to bounce, i.e.,
he wants to ensure z remains positive despite what
other users do. The following log will do the trick:

Log X {

action cheque-action {
pre: dzo:x =10 Axo > 50
op: write-cheque(x, 50)
post: = zo — 50

}

action no-overdraw {
pre: last()
op: no-op
post: z >0

}

}

A log may contain multiple last() actions connected
by the “®” operator.

4.4 Reconciliation

We now examine the algorithm for combining logs.
Two logs A and B are independent if:

e No precondition of one contradicts a postcondi-
tion of the other, and

e No postcondition of one contradicts a postcondi-
tion of the other.

If independent, the combined log is A & B. If
they are not independent, then possibly one may be
scheduled before the other (e.g. A < B if A’s post-
conditions are compatible with B’s preconditions).
Otherwise maybe A and B can be interleaved (e.g.
a1 < by < ... < ap < by). To avoid considering all

the possible combinations of nodes from A and B, we
repeat the test for independence to successively finer
granularities (binary search) down to individual ac-
tions. In the expected common case (few conflicts) it
should converge rapidly, but in the worse case, when
many nodes of A conflict with many nodes of B this
process suffers combinatorial explosion.

4.5 Commitment

A disconnected update is tentative, as it may be found
later that it cannot be applied due to a conflict. An
application can commit an action by marking it as
definitive, meaning that any future schedule must
contain that action. For instance, a user presented
with a set of possible outcomes in the selection phase
might decide to commit one of them, by marking the
corresponding actions definitive. An action that can-
not be undone (such as the physical issuing of a check)
is also marked as definitive. Furthermore the order-
ing between definitive actions is itself definitive. In
a definitive action, assertion last() evaluates to true
(i.e., does not influence future scheduling decisions).

In this work we do not make the policy decision
as to who has the authority to mark an action as
definitive. This might a particular authorised user
(as in Lotus Notes) or a particular site (as in Bayou).
Whatever policy is chosen, the possibility exists that
two conflicting actions are independently marked as
definitive. Although this is a serious error, we do not
attempt to provide a solution in our framework, be-
cause we consider this is an unfortunate but inherent
characteristic of disconnected work.

4.6 Parcels and transactions

The parcel construct links an set of actions together
indivisibly. Consider a reservation application, where
a user reserves transportation to a city, a hotel, and a
car rental. If any of the three fail, the trip cannot take
place. A parcel captures this all-or-nothing property.
A parcel is composed of a begin(X) operation (where
X is an arbitrary name), a set of actions with pre-
condition parcel(X), and an end(X) operation. The
following properties hold for a parcel: (i) a parcel(X)
action a is scheduled after the begin(X) and before
the end(X) (i.e., begin < a A a < end); (ii) in any
schedule, either all actions a; of the parcel appear, or
none (i.e., (begin © a1 ® as ® ... D end)Onidl); (iii) if
any action in a parcel is marked as definitive then all
must be.

Note that parcels are strictly more powerful than
traditional ACID transactions. Parcels provide the A
property (all-or-nothing), the definitive mark the D
property (durability). According to Footnote 1 the C
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property (consistency) is assumed. To provide the I
property (isolation) a number of approaches are pos-
sible. We can emulate traditional serialisability by
implementing locks as assertions. For every value z
read and not modified by an action, the action has the
precondition dzg : x = zg and postcondition x = zg.
For every value y written by an action, the action has
asserts the postcondition y = wvalue-written-to-y. If
an action uses a value such as xg, read or written in a
previous action, then its precondition would contain
the clause z = zg.

5 A nomadic shared text editor

In this section, an example is presented that is rep-
resentative of real cooperative working, and that is
poorly supported by traditional merge procedures.
We especially want to demonstrate that the postcon-
ditions used in our approach allow the capture of the
application semantics.

Consider two disconnected users A and B editing
a shared MS Word document. A replaces all occur-
rences of “red” with “white”. Meanwhile, user B in-
serts the same word “red” in the document. There are
two reasonable outcomes of reconciling these actions:
(B-Red) insert B’s “red” in the text, or (B-White)
replace B’s “red” with “white”. CVS implements the
B-Red semantics. Bayou would unpredictably choose
B-Red or B-White depending on the timing of the op-
erations by the users. Instead we want the outcome to
be predictable and application-selectable. Assuming
that the word “red” in the original document desig-
nates some concept that is now denoted by “white”
and that B is ignorant of A’s actions, then B-White
is the correct outcome. However if B really means
something different, then B-Red is desirable.

Assume that A’s log is composed of a search-and-
replace operation and log B contains a single action
“insert red”. The two possible outcomes, B-red or B-
white, are forced by the use of different postconditions
in the last() actions.

Assume find(s) returns the set of locations of string
s in the document. The respective logs of A and B
would be:

Log A {
action A; {
pre: dso : find("red") = so
op: search-&-replace("red","white")
post: find("white") C so
}
}
Log B {

action Bp {
pre: true
op: insert-at("red",l)
post: looking-at("red",l)

}

Merging the two logs with no further constraints
will yield unpredictable results (either B-Red or B-
White).

If user B wants to enforce B-Red semantics, putting
the following additional action at the end of his log
ensures that his insertion is scheduled after the re-
placements:

action B-red {
pre: last()
op: no-0p
post: looking-at("red",l)

}

The postcondition ensures that the "red" inserted
by B will survive action A. The only possible inter-
leaving is thus A; < Bj.

Similarly, for user A to enforce B-White semantics a
last() action will do the trick. A’s log should contain:

action B-white {
pre: last()
op: 1no-op
post: find("red") =0

}

The postcondition of action “B-white” ensures that
no "red" occurrence survives action A. The only way
to respect this postcondition is to schedule B < A.

If both A and B add these last actions into their
logs, their postconditions contradict each other and
they cannot be both scheduled — there is an unresolv-
able conflict. This is a true conflict between the users’
intents, not an artificial limitation of the reconcilia-
tion engine.

Our approach allows logs to be merged according to
logical constraints, not only in time order. Consider
now the following example. Log A is composed of two
independent actions:

e Operation A;: search-&-replace("red","white")
e Operation As: search-&-replace("pink","green")

Log B is composed of two independent actions as
well:

e Operation By: insert-at("pink",l;)

o Operation Bs: insert-at("red",l»)
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Assume that the user A has the same expectations
as in the first example and requires B-white semantics
whereas the user B expects his insertion of "pink" to
appear in the reconciled state. The outcome of the
reconciliation should contain the "pink" inserted by
B but not his "red". Thus, As should be scheduled
before B; and Bs before A;.

To enforce this scheduling, A and B should add the
following last() actions into their logs:

action no-red {
pre: last()
op: no-0p
post: find("red") =0

action pink-inserted {
pre: last()
op: no-op
post: looking-at("pink",l1)

}

This will yield the correct merged log (A2 < By) ®
(B2 < Ap). Thus our approach supports useful sched-
ules not allowed by approaches relying on a time or-
dering.

6 Conclusion

Working while disconnected is making a bet on the
future, so it is not surprising that reconciliation is a
difficult problem. The intended result of reconcilia-
tion depends on subtle details of application seman-
tics and on users’ intents. Our goal is to ease the
burden for applications, putting as much as possible
on the system instead, but providing for application
semantics and user policies. An application expresses
its semantics and user intents by attaching appropri-
ate assertions to each action. Our logs are richer and
more expressive than logs previously used for recon-
ciliation.

To alleviate combinatorial explosion of the search
space we came up with the three-phase approach.

This work is still at an initial phase and we don’t
claim to have solved all problems. Combinatorial ex-
plosion is an issue; however our binary-search algo-
rithm for combining logs has complexity combinato-
rial in the number of conflicts (assumed low), not in
the number of nodes. Furthermore the search can be
stopped at any level. If the number of possibilities is
too large for the simulation phase a ranking based on
some policy could help. To keep the number of con-
flicts low, we can suggest making informed decisions
(conflict avoidance) and reconciling often.

One problem not addressed here is that even if
each user’s actions are correct, their combined activi-
ty might not be. This might be addressed by checking
global integrity constraints on the shared objects at
the end of every schedule.

One big problem is getting applications to enter
faithful and meaningful records in the log. Anoth-
er is the symbolic modelling of the state space for
the symbolic phase. Some of the logic is application-
independent (e.g., that whatever P, =P contradict-
s assertion P). However some is application-specific
(for instance, in Section 5, that looking-at("red",[)
contradicts looking-at("white",l)). Although ex-
tremely powerful, such a general application-specific
logic is probably too complex for the average applica-
tion programmer. We are therefore now focusing on
a more restricted application-specific logic language,
related to Schwartz’s compatibility matrix [7].
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