
Appli
ation-independent re
on
iliation for nomadi
 appli
ations

�

Mar
 Shapiro, Antony Rowstron and Anne-Marie Kermarre

Mi
rosoft Resear
h Ltd.

1 Guildhall St., Cambridge CB2 3NH, United Kingdom

mar
.shapiro�a
m.org

Abstra
t

We des
ribe attempts to build an appli
ation-

independent model to support re
on
iliation of di-

verged repli
as of shared obje
ts. While repli
as are

dis
onne
ted from one another, a
tions on the shared

obje
ts are re
orded in a log. An a
tion is
omposed

of a pre
ondition, an operation and a post
ondition.

When re
onne
ting, the system attempts to re
on
ile

the divergent repli
as, in several phases. A symboli

phase merges the separate logs,
reating one or more

s
hedules, su
h that pre
onditions from one log re-

main true despite the post
onditions introdu
ed by

the other. Then, a simulation phase
he
ks the pos-

sible out
omes by a
tually applying the s
hedules to

s
rat
h
opies of the shared obje
ts. Finally, a sele
-

tion phase allows users or appli
ations to sele
t one

of the
andidate s
hedules.

Our approa
h supports sharing general obje
ts,

where one update may referen
e multiple obje
ts (not

just a single �le or database). Compared to previ-

ous work on log-based re
on
iliation, our logs
apture

more semanti
 information and provide the appli
a-

tion with more powerful and �ner
ontrol over the

out
ome of re
on
iliation.

1 Introdu
tion

In mobile
omputing there is often the need for dis-

onne
ted operation. The user works on a lo
al repli-

a of shared data; updates
ause repli
as to diverge,

and later they must be re
on
iled. Cooperative ap-

pli
ations are parti
ularly a�e
ted be
ause multiple

users may simultaneously update the same data with

no mutual syn
hronisation.

There is no fully automati
 solution to re
on
ilia-

tion, sin
e it depends strongly on appli
ation seman-

�

Appears in: Pro
eedings SIGOPS European Workshop:

\Beyond the PC: New Challenges for the Operating System",

Kolding (Denmark), Sept. 2000.

ti
s and on users' intents. However we are designing

a middleware platform to take some of the burden

away from appli
ations. We extend the Bayou [6℄

model of logs that store appli
ation-spe
i�
 informa-

tion but are re
on
iled a

ording to an appli
ation-

independent proto
ol. Our model provides greater

opportunity for the appli
ation to express its seman-

ti
s and to in
uen
e the out
ome of the re
on
ilia-

tion pro
ess. We believe this will redu
e the load on

the appli
ation programmer. Our re
on
iliation algo-

rithm takes into
onsideration a larger set of possible

s
hedules, thus providing more
exibility.

The management of shared data o

urs in several

distin
t phases. In the dis
onne
ted phase, the user

(through an appli
ation) reads and writes lo
al repli-

as of shared obje
ts.

1

User a
tions are logged in a

log with a graph stru
ture. A node of this graph
on-

tains an operation, along with assertions des
ribing

its meaning. When two devi
es meet, they ex
hange

their logs (starting from a previous
ommon
he
k-

point). A symboli
 phase generates a new log,
om-

posing the two submitted logs under the
onstraints

imposed by the assertions, of whi
h multiple possible

s
hedules
an be dedu
ed. A simulation phase
om-

putes the possible out
omes from this s
hedule, and

a sele
tion phase lets the appli
ation de
ide between

them. The rest of this paper fo
uses on the symboli

phase.

This paper pro
eeds as follows. Se
tion 2
ompares

this with previous work. Se
tion 3 dis
usses some

experiments that brought us to our
urrent design,

whi
h is explained in detail in Se
tion 4. In Se
tion 5

an example shows the power of this new approa
h.

Finally Se
tion 6
on
ludes with open issues.

1

It is assumed that the lo
al appli
ation is
orre
t, in the

sense that it takes the lo
al repli
as from a
onsistent state to

another
onsistent state, i.e., updates respe
t some integrity

onstraints.

Page 1

2 Ba
kground

Lotus Notes [3℄ is well-known as providing support

for
ollaborative
omputing while dis
onne
ted. It

dete
ts and resolves update
on
i
ts. However, it on-

ly supports a �xed set of appli
ations. Its resolution

poli
ies are hard wired; for instan
e, an update/delete

on
i
t always gives priority to the delete operation.

The CVS [2℄ is a sour
e
ode versioning tool. De-

velopers manage their own repli
as, and a repository

holds the master
opy of ea
h �le. Coheren
e is man-

aged by developers themselves, so when they wish

to syn
hronise with the repository, they retrieve the

master from the repository and attempt to integrate

their modi�
ations. CVS dete
ts
on
i
ts (the same

part of the �le has been updated by two di�erent user-

s) but then requires the user to solve them.

Bayou [6℄ provides an appli
ation-independent re
-

on
iliation proto
ol for a single repli
ated database

supporting mobile users. Repli
as eventually
on-

verge towards the same value. Ea
h write operation is

logged and timestamped. During re
on
iliation, the

timestamp is used to generate an order in whi
h the

updates are applied to the repli
ated databases. Bay-

ou allows an appli
ation to
hoose within a
atalogue

of
oheren
e
onstraints,
alled session guarantees,

and to apply dependen
y
he
ks,
alled pre
onditions,

at re
on
iliation time. A pre
ondition is a pro
edure

that the appli
ation stores in the log. However, this

is not suÆ
ient to
apture appli
ation semanti
s.

Jrep [1℄ manages the repli
ation of arbitrary Java

obje
ts for asyn
hronous
ollaborative appli
ations.

Jrep is based on a log of write operations (
reate,

delete, update). Multiple updates on a single obje
t

are
oales
ed into a single equivalent operation. Lam-

port
lo
ks [4℄ are used at re
on
iliation time to pro-

vide a
ausally-
onsistent merging of the logs. Con-

i
ts on a same obje
t are dete
ted and solved a
-

ording to a appli
ation-de�ned strategy. However,

the same strategy is applied for all shared obje
ts of

an appli
ation. Inter-obje
t
on
i
ts are dete
ted but

their resolution requires the assistan
e of the appli
a-

tion.

3 Experimental work

In order to understand the design spa
e better for

log-based re
on
iliation, we �rst developed a simple

prototype system. Some of the issues we wished to

evaluate were what information the log needs to
ap-

ture, and what approa
hes to ordering the merged

logs
an be used. In this se
tion, we outline some of

our experien
es, and what impa
t these have had on

our
urrent design.

This initial prototype uses a log similar to Bay-

ou. Ea
h log re
ord represents an update to a shared

repli
ated obje
t. A re
ord is
omposed of a pre
on-

dition, an operation and a failure handler. All three

are opaque Java pro
edures, i.e., their semanti
s are

not known to the system. If the pre
ondition evalu-

ates to true the update
an be applied, otherwise it

annot be performed and the error handler is
alled.

Re
on
iliation
ombines two logs to produ
e a

merged log. The merged log is replayed from a
om-

mon initial state of the shared obje
ts, to yield a new

ommon state. We investigated di�erent strategies

for log merging. Initially, we investigated using well-

de�ned orderings of the logs, su
h as
on
atenation,

or using time to order.

3.1 Ordering the logs

For a given set of updates to shared information, there

will be one or more orderings of these updates that

minimise the number of those that
an not be ap-

plied. However, this ordering may not be the gener-

ated by
on
atenation of the logs, or the time or-

dering of the re
ords within logs. Let us
onsid-

er an example. For instan
e,
onsider two shared

variables x and y, and logs A fwrite(x); delete(y)g

and B fwrite(y); delete(x)g. Assuming that write

has a pre
ondition that the shared variable exist-

s, then these two logs need to be interleaved as

fwrite(x);write(y); delete(x); delete(y)g or, some per-

mutation of this su
h that the write operations

are performed before the delete operations, su
h as

fwrite(x); delete(x);write(y); delete(y)g. This means

that all the updates are performed, and there is no

on
i
t between any of them.

In
ontrast, an approa
h that
on
atenates logs A

and log B would yield a log where one of the write

operations
annot be performed, be
ause the variable

being a

essed has been removed. An approa
h based

on real time or Lamport
lo
ks [4℄ gives unpredi
table

results. Ve
tor
lo
ks [5℄
apture the true
ausal or-

dering, but are not adapted to systems with large or

unknown numbers of repli
as.

We
on
lude that the simple approa
hes to ordering

the logs miss potential orderings of the log that redu
e

on
i
ts. However, if we allow log merging to
onsider

arbitrary orderings of the re
ords, sear
hing for the

best one su�ers
ombinatorial explosion. Brute-for
e

algorithms are untra
table.

3.2 Capturing semanti
s

The se
ond
on
lusion is the need to
apture the ap-

pli
ation expe
tations regarding the out
ome of the

re
on
iliation phase. In the last example, a more

Page 2

satisfa
tory s
hedule might be fwrite(x);write(y)g

(omitting the deletes). The user should be able to

spe
ify whi
h out
ome is the
orre
t one. In order

to allow the appli
ation to
ontrol the behaviour of

the re
on
iliation phase, more semanti
 information

is required than
an be
aptured with an opaque pre-

ondition.

In summary, our main
on
lusions are that: (i) sim-

ple orderings often fail unne
essarily, (ii) the appli-

ation should be able to
ontrol the out
ome of the

re
on
iliation pro
ess, and (iii) the potential
ombi-

natorial explosion needs to be
ontrolled.

4 System model

The system model
onsiders several phases. In the

dis
onne
ted phase appli
ations at a site re
ord their

a
tions in that site's log. The other phases
on-

ern re
onne
tion and re
on
iliation. The symbol-

i
 phase
ombines two logs symboli
ally, dete
ting

onstraints between separate logs, whi
h prune the

s
hedule spa
e. The simulation phase goes through

the possible s
hedules from the
ombined log,
om-

puting their a
tual out
ome. Finally, in the sele
tion

phase, the appli
ation (and ultimately the human us-

er)
hooses among the out
omes remaining from the

symboli
 phase: removing s
hedules whose results are

deemed unsatisfa
tory; editing the logs and resubmit-

ting them to re
on
iliation; or sele
ting one of the

out
omes as de�nitive.

It is possible to spe
ify a poli
y to prioritise
hoi
es.

It is applied during both the symboli
 and simulation

phase. It spe
i�es
riteria to redu
e the number of

possible out
omes, potentially redu
ing the sear
h s-

pa
e. Example poli
ies might be \I want s
hedules

whi
h maximise the number of re
ords in a log", or

\I prefer s
hedules that maximise the number of en-

tries made by Antony over Mar
".

In what follows, we fo
us ex
lusively on the sym-

boli
 phase.

4.1 S
hedules

Our log is a graph stru
ture that
an be traversed a
-

ording to one or more s
hedules. A s
hedule is a pro-

gram for bringing the shared obje
ts from their initial

state (nominally, at dis
onne
tion time) to their �nal

state (nominally, just before re
onne
tion). Order-

ings between re
ords are s
heduling
onstraints. The

initial and �nal states are assumed
orre
t.

In the symboli
 phase, the system
ombines two

logs. The
ombined log
ontains all the re
ords of the

original two,
onne
ted by
omposition operators (to

be presented in Se
tion 4.3). Its s
hedules are
om-

patible with the original s
hedules and satis�es inter-

log dependen
ies, as will be explained in Se
tion 4.4.

A s
hedule of the
ombined log is a program that
an

be exe
uted (at either site) to bring the shared ob-

je
ts, from their
ommon initial state, to a �nal state

that in
orporates the updates made independently at

ea
h site.

The symboli
 phase su

eeds if one or more satis-

fa
tory s
hedules
an be found. A
on
i
t between

the two logs may
ause it to fail. In this
ase the sys-

tem presents the appli
ation with an explanation of

the
on
i
t. The appli
ation may then edit the input

logs to remove the
on
i
t and submit to re
on
ilia-

tion again.

4.2 A
tions

A log is
omposed of a set of re
ords
onne
ted by a

dependen
y graph, whose operators will be de�ned in

Se
tion 4.3.

Ea
h log re
ord des
ribes an a
tion performed by

the user while dis
onne
ted. A log re
ord is
omposed

of:

Pre
ondition: an assertion about the expe
ted

state of the obje
ts before exe
uting the operation.

Operation (with arguments and results): a

subprogram that a

esses the shared obje
ts in some

way.

Post
ondition: an assertion about the e�e
t on

the state of the obje
ts after the method has �nished

exe
uting.

Assertions are written in a �rst-order logi
 lan-

guage. Symboli
 assertions are evaluated symboli
al-

ly against a model of the system; the
ode is unused.

In the simulation phase, the assertions are
he
ked a-

gainst, and the
ode is exe
uted on, s
rat
h
opies of

the a
tual shared obje
ts. In
ontrast to previous sys-

tems, our assertions are not opaque pro
edures, but

instead provide input to the symboli
 phase.

Some examples of assertions are x < 5 or after(a),

where a is another a
tion. In a
alendar program,

Mar
:free(27-mar-2000-11:00) asserts that the 11:00

slot on 27 Mar
h 2000 is free in Mar
's
alendar.

4.3 Dependen
ies

A log is an a
y
li
 dire
ted graph. Nodes represent

a
tions. An edge represents a
onstraint: sequentiali-

ty (noted \� " hereafter), independen
e (noted \�")

or
hoi
e (noted \2"). If a � b then a appears before

b in any s
hedule. If a � b then both a and b must

appear in any s
hedule, but there is no ordering
on-

straint between them. If a2b then any s
hedule must

ontain either a or b.

Page 3

If some a
tion b in a log depends on the results or

side e�e
ts of a
tion a of the same log, assertions pro-

vide the way to express this dependen
y. For instan
e

b might
ontain pre
ondition after(a); or a
ould
on-

tain post
ondition x = 10 and b pre
ondition x � 5

(assuming no intervening post
ondition
hanges x).

Although two logs represent work done indepen-

dently, dependen
ies may appear between them. For

instan
e if log A
ontains an a
tion a with pre
on-

dition x < 10 and log B
ontains an a
tion b with

post
ondition x > 20, then in the
ombined log b may

not be s
heduled before a (assuming no other a
tions

modify x).

The
lause last() in a pre
ondition for
es that a
-

tion to o

ur last in any s
hedule. This
an for
e a

parti
ular out
ome by asserting it in the post
ondi-

tion. For instan
e, suppose a user writes a
heque for

$50 on a shared bank a

ount x. Other users of the

a

ount should not
ause the
heque to boun
e, i.e.,

he wants to ensure x remains positive despite what

other users do. The following log will do the tri
k:

Log X f

. . .

a
tion
heque-a
tion f

pre: 9x

0

: x = x

0

^ x

0

> 50

op: write-
heque(x; 50)

post: x = x

0

� 50

g

. . .

a
tion no-overdraw f

pre: last()

op: no-op

post: x � 0

g

g

A log may
ontain multiple last() a
tions
onne
ted

by the \�" operator.

4.4 Re
on
iliation

We now examine the algorithm for
ombining logs.

Two logs A and B are independent if:

� No pre
ondition of one
ontradi
ts a post
ondi-

tion of the other, and

� No post
ondition of one
ontradi
ts a post
ondi-

tion of the other.

If independent, the
ombined log is A � B. If

they are not independent, then possibly one may be

s
heduled before the other (e.g. A � B if A's post-

onditions are
ompatible with B's pre
onditions).

Otherwise maybe A and B
an be interleaved (e.g.

a

1

� b

1

� ::: � a

n

� b

m

). To avoid
onsidering all

the possible
ombinations of nodes from A and B, we

repeat the test for independen
e to su

essively �ner

granularities (binary sear
h) down to individual a
-

tions. In the expe
ted
ommon
ase (few
on
i
ts) it

should
onverge rapidly, but in the worse
ase, when

many nodes of A
on
i
t with many nodes of B this

pro
ess su�ers
ombinatorial explosion.

4.5 Commitment

A dis
onne
ted update is tentative, as it may be found

later that it
annot be applied due to a
on
i
t. An

appli
ation
an
ommit an a
tion by marking it as

de�nitive, meaning that any future s
hedule must

ontain that a
tion. For instan
e, a user presented

with a set of possible out
omes in the sele
tion phase

might de
ide to
ommit one of them, by marking the

orresponding a
tions de�nitive. An a
tion that
an-

not be undone (su
h as the physi
al issuing of a
he
k)

is also marked as de�nitive. Furthermore the order-

ing between de�nitive a
tions is itself de�nitive. In

a de�nitive a
tion, assertion last() evaluates to true

(i.e., does not in
uen
e future s
heduling de
isions).

In this work we do not make the poli
y de
ision

as to who has the authority to mark an a
tion as

de�nitive. This might a parti
ular authorised user

(as in Lotus Notes) or a parti
ular site (as in Bayou).

Whatever poli
y is
hosen, the possibility exists that

two
on
i
ting a
tions are independently marked as

de�nitive. Although this is a serious error, we do not

attempt to provide a solution in our framework, be-

ause we
onsider this is an unfortunate but inherent

hara
teristi
 of dis
onne
ted work.

4.6 Par
els and transa
tions

The par
el
onstru
t links an set of a
tions together

indivisibly. Consider a reservation appli
ation, where

a user reserves transportation to a
ity, a hotel, and a

ar rental. If any of the three fail, the trip
annot take

pla
e. A par
el
aptures this all-or-nothing property.

A par
el is
omposed of a begin(X) operation (where

X is an arbitrary name), a set of a
tions with pre-

ondition par
el(X), and an end(X) operation. The

following properties hold for a par
el: (i) a par
el(X)

a
tion a is s
heduled after the begin(X) and before

the end(X) (i.e., begin � a ^ a � end); (ii) in any

s
hedule, either all a
tions a

i

of the par
el appear, or

none (i.e., (begin � a

1

� a

2

� : : :� end)2nil); (iii) if

any a
tion in a par
el is marked as de�nitive then all

must be.

Note that par
els are stri
tly more powerful than

traditional ACID transa
tions. Par
els provide the A

property (all-or-nothing), the de�nitive mark the D

property (durability). A

ording to Footnote 1 the C

Page 4

property (
onsisten
y) is assumed. To provide the I

property (isolation) a number of approa
hes are pos-

sible. We
an emulate traditional serialisability by

implementing lo
ks as assertions. For every value x

read and not modi�ed by an a
tion, the a
tion has the

pre
ondition 9x

0

: x = x

0

and post
ondition x = x

0

.

For every value y written by an a
tion, the a
tion has

asserts the post
ondition y = value-written-to-y. If

an a
tion uses a value su
h as x

0

, read or written in a

previous a
tion, then its pre
ondition would
ontain

the
lause x = x

0

.

5 A nomadi
 shared text editor

In this se
tion, an example is presented that is rep-

resentative of real
ooperative working, and that is

poorly supported by traditional merge pro
edures.

We espe
ially want to demonstrate that the post
on-

ditions used in our approa
h allow the
apture of the

appli
ation semanti
s.

Consider two dis
onne
ted users A and B editing

a shared MS Word do
ument. A repla
es all o

ur-

ren
es of \red" with \white". Meanwhile, user B in-

serts the same word \red" in the do
ument. There are

two reasonable out
omes of re
on
iling these a
tions:

(B-Red) insert B's \red" in the text, or (B-White)

repla
e B's \red" with \white". CVS implements the

B-Red semanti
s. Bayou would unpredi
tably
hoose

B-Red or B-White depending on the timing of the op-

erations by the users. Instead we want the out
ome to

be predi
table and appli
ation-sele
table. Assuming

that the word \red" in the original do
ument desig-

nates some
on
ept that is now denoted by \white"

and that B is ignorant of A's a
tions, then B-White

is the
orre
t out
ome. However if B really means

something di�erent, then B-Red is desirable.

Assume that A's log is
omposed of a sear
h-and-

repla
e operation and log B
ontains a single a
tion

\insert red". The two possible out
omes, B-red or B-

white, are for
ed by the use of di�erent post
onditions

in the last() a
tions.

Assume �nd(s) returns the set of lo
ations of string

s in the do
ument. The respe
tive logs of A and B

would be:

Log A f

a
tion A

1

f

pre: 9s

0

: �nd("red") = s

0

op: sear
h-&-repla
e("red","white")

post: �nd("white") � s

0

g

g

Log B f

a
tion B

1

f

pre: true

op: insert-at("red",l)

post: looking-at("red",l)

g

g

Merging the two logs with no further
onstraints

will yield unpredi
table results (either B-Red or B-

White).

If user B wants to enfor
e B-Red semanti
s, putting

the following additional a
tion at the end of his log

ensures that his insertion is s
heduled after the re-

pla
ements:

a
tion B-red f

pre: last()

op: no-op

post: looking-at("red",l)

g

The post
ondition ensures that the "red" inserted

by B will survive a
tion A. The only possible inter-

leaving is thus A

1

� B

1

.

Similarly, for userA to enfor
e B-White semanti
s a

last() a
tion will do the tri
k. A's log should
ontain:

a
tion B-white f

pre: last()

op: no-op

post: �nd("red") = ;

g

The post
ondition of a
tion \B-white" ensures that

no "red" o

urren
e survives a
tion A. The only way

to respe
t this post
ondition is to s
hedule B � A.

If both A and B add these last a
tions into their

logs, their post
onditions
ontradi
t ea
h other and

they
annot be both s
heduled { there is an unresolv-

able
on
i
t. This is a true
on
i
t between the users'

intents, not an arti�
ial limitation of the re
on
ilia-

tion engine.

Our approa
h allows logs to be merged a

ording to

logi
al
onstraints, not only in time order. Consider

now the following example. Log A is
omposed of two

independent a
tions:

� Operation A

1

: sear
h-&-repla
e("red","white")

� OperationA

2

: sear
h-&-repla
e("pink","green")

Log B is
omposed of two independent a
tions as

well:

� Operation B

1

: insert-at("pink",l

1

)

� Operation B

2

: insert-at("red",l

2

)

Page 5

Assume that the user A has the same expe
tations

as in the �rst example and requires B-white semanti
s

whereas the user B expe
ts his insertion of "pink" to

appear in the re
on
iled state. The out
ome of the

re
on
iliation should
ontain the "pink" inserted by

B but not his "red". Thus, A

2

should be s
heduled

before B

1

and B

2

before A

1

.

To enfor
e this s
heduling, A and B should add the

following last() a
tions into their logs:

a
tion no-red f

pre: last()

op: no-op

post: �nd("red") = ;

g

a
tion pink-inserted f

pre: last()

op: no-op

post: looking-at("pink",l

1

)

g

This will yield the
orre
t merged log (A

2

� B

1

)�

(B

2

� A

1

). Thus our approa
h supports useful s
hed-

ules not allowed by approa
hes relying on a time or-

dering.

6 Con
lusion

Working while dis
onne
ted is making a bet on the

future, so it is not surprising that re
on
iliation is a

diÆ
ult problem. The intended result of re
on
ilia-

tion depends on subtle details of appli
ation seman-

ti
s and on users' intents. Our goal is to ease the

burden for appli
ations, putting as mu
h as possible

on the system instead, but providing for appli
ation

semanti
s and user poli
ies. An appli
ation expresses

its semanti
s and user intents by atta
hing appropri-

ate assertions to ea
h a
tion. Our logs are ri
her and

more expressive than logs previously used for re
on-

iliation.

To alleviate
ombinatorial explosion of the sear
h

spa
e we
ame up with the three-phase approa
h.

This work is still at an initial phase and we don't

laim to have solved all problems. Combinatorial ex-

plosion is an issue; however our binary-sear
h algo-

rithm for
ombining logs has
omplexity
ombinato-

rial in the number of
on
i
ts (assumed low), not in

the number of nodes. Furthermore the sear
h
an be

stopped at any level. If the number of possibilities is

too large for the simulation phase a ranking based on

some poli
y
ould help. To keep the number of
on-

i
ts low, we
an suggest making informed de
isions

(
on
i
t avoidan
e) and re
on
iling often.

One problem not addressed here is that even if

ea
h user's a
tions are
orre
t, their
ombined a
tivi-

ty might not be. This might be addressed by
he
king

global integrity
onstraints on the shared obje
ts at

the end of every s
hedule.

One big problem is getting appli
ations to enter

faithful and meaningful re
ords in the log. Anoth-

er is the symboli
 modelling of the state spa
e for

the symboli
 phase. Some of the logi
 is appli
ation-

independent (e.g., that whatever P , :P
ontradi
t-

s assertion P). However some is appli
ation-spe
i�

(for instan
e, in Se
tion 5, that looking-at("red"; l)

ontradi
ts looking-at("white"; l)). Although ex-

tremely powerful, su
h a general appli
ation-spe
i�

logi
 is probably too
omplex for the average appli
a-

tion programmer. We are therefore now fo
using on

a more restri
ted appli
ation-spe
i�
 logi
 language,

related to S
hwartz's
ompatibility matrix [7℄.

A
knowledgments

Thanks to Tony Hoare and Ralph Be
ket for several

illuminating dis
ussions.

Referen
es

[1℄ Olivier Dedieu. R�epli
ation optimiste pour les appli-

ations
ollaboratives asyn
hrones. PhD thesis, Uni-

versity of Marne-la-Vall�ee, To appear, fourth quarter

2000. http://www-sor.inria.fr/

�

dedieu/.

[2℄ P. Cederqvist et al. Version management with CVS,

1992.

[3℄ L. Kawell Jr., S. Be
khart, T. Halvorsen, R. Ozzie,

and I. Greif. Repli
ated do
ument management in

a group
ommuni
ation system. In 2nd. Conf. on

Comp.-Supported Coop. Work, Portland OR (USA),

September 1988.

[4℄ Leslie Lamport. Time,
lo
ks, and the ordering of

events in a distributed system. Communi
ations of

the ACM, 21(7):558{565, July 1978.

[5℄ Friedmann Mattern. Virtual time and global states of

distributed systems. In Parallel and Distributed Al-

gorithms, pages 215{226. Elsevier S
ien
e Publishers

B.V. (North-Holland), 1989.

[6℄ K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.

Theimer, and A. J. Demers. Flexible update propaga-

tion for weakly
onsistent repli
ation. In Pro
. Sym-

p. on Operating Systems Prin
iples (SOSP-16), pages

288{301, Saint Malo, O
tober 1997. ACM SIGOPS.

http://www.par
.xerox.
om/
sl/proje
ts/bayou/.

[7℄ P. M. S
hwartz and A. Z. Spe
tor. Syn
hronizing

shared abstra
t types. ACM Transa
tions on Com-

puter Systems, 2(3):223{250, August 1984.

Page 6

