
Optimising the Linda in primitive: Understanding
tuple-space run-times

Antony Rowstron
Microsoft Research
1 Guildhall Street

Cambridge, CB2 3NH, UK

antr@microsoft.com

ABSTRACT
In this paper we examine tuple space systems from a dis-

tributed viewpoint. We show that current implementations

are pessimistic about the timing of removal of tuples from

a tuple space when an in is performed; this leads to agents

having to unnecessarily block and to lowering systems per-

formance. After providing evidence of the problem by exam-

ining distributed execution traces we then describe an im-

plementation strategy that is highly e�cient and is more op-

timistic about tuple removal. We discuss also the generalisa-

tion of the approach to support other primitives, which have

been proposed as additions to Linda, such as the collect

and copy-collect primitives.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures|

Domain-speci�c architectures, Patterns; C.2.4 [Computer-

Communication Networks]: Distributed Systems; C.5.5

[Computer System Implementation]: Servers

General Terms
Performance, Design, Languages

1. INTRODUCTION
There is currently a resurgence in interest in tuple space

based co-ordination languages, as in Linda [3]. Examples

of the new wave of languages are WCL [11], PageSpace [7],

TuCSoN [9], Jada [6], TSpaces [16], KLAIM [8], Lime [10]

and JavaSpaces [15]. A good review of the current trends is

presented in Ciancarini et al. [5].

Like many implementations, we are interested in the de-

velopment of centralised open servers to support large-scale

enterprise wide tuple space usage by distributed agents. It

was whilst working on optimisations for centralised servers

we began to question the traditional semantics of the Linda

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2000 Villa Olmo, Como, Italy
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

in primitive. In this paper we present an interesting in-

terpretation of the semantics of the Linda in primitive, or

to generalise, of any blocking primitive that destructively

removes tuples from a tuple space.

Throughout the paper, we will refer to the components of

the system that communicate as agents, although this term

is used in its loosest possible de�nition, and therefore an

agent could either be a process, a \traditional" agent, or a

program. In addition, throughout most of the paper we will

just use the three standard Linda primitives:

out(tuple) Insert a tuple into a tuple space.

in(template) If a tuple exists that matches the template

then remove the tuple and return it to the agent. If no

matching tuple is available then the primitive blocks until a

matching tuple is available.

rd(template) If a tuple exists that matches the template

then return a copy of the tuple to the agent. If there is no

matching tuple then the primitive blocks until a matching

tuple is available.

The (informal) semantics of the in primitive leads imple-

menters to remove the tuple that is returned to the agent

from the tuple space as soon as the in primitive is com-

pleted. Our claim is that a tuple that has been destructively

removed using an in does not actually have to be removed

from the tuple space but it has to be made \partially visi-

ble". By partially visible we mean that it can be used as a

valid result for a subset of the access primitives. When a set

of further conditions is met the tuple then becomes invisible

to all agents and has to be discarded.

In Linda programs, it is common to store data structures in

the tuple spaces. This means that when parts of the data

structure being held in the tuple space are being updated,

tuples are removed from the tuple space, updated by a client

and then re-inserted.

For example, consider a list stored in a tuple space, where

the items of the list are stored as tuples. Each tuple has a

unique number as the �rst �eld which represents its position

in the list. In the tuple space there is a single tuple that

contains a shared counter. In order to add an element to

the list, the shared counter is removed using an in and the

value of counter is incremented and the tuple re-inserted,

and then a new tuple is inserted containing the number of

the counter and the data.

This is a common operation and there have been proposals

for the addition of new primitives to help perform the up-

date of the shared counter, (see e.g. Eilean [2]) and when

using compile time analysis to convert the in followed by

1

the out into a single operation [4]. These proposals were

made because once the shared counter is removed, anyone

else attempting to read the counter could not. Therefore,

even if they wished to read the elements in the list they had

to wait until the counter tuple was reinserted. This tuple is

always acting as a bottleneck, which degrades performance.

The use of compile time analysis to transform the two op-

erations into a single operation relies on complex analysis,

and many cases cannot be captured. The addition of new

primitives at �rst appears attractive; a primitive that re-

moves a tuple of a certain pattern and then inserts a new

tuple of a de�ned pattern. However, specifying the contents

of the new tuple in a generic way is di�cult. Most make it

a restriction that counter tuples be always of the same form

(e.g. they have the counter in the same position within the

tuple), and there are restrictions on the types that can be

used for the counter [2]. Given that Linda is computation

language independent it is di�cult to see it being possible to

create a primitive that can provide the functionality to deal

with arbitrary tuples. It should also be noted that these

new primitives would be there to provide support for a very

speci�c case. Therefore, these types of primitives have never

been widely adopted.

Agents using tuple space access primitives should only block

if the required tuple is not available when the agent requests

it. However, within any practical Linda system an agent

could block even if the required tuples were available be-

cause of the overheads associated with �nding the matching

tuple. The most noticeable delay is due to network latency.

However, for systems supporting tuple spaces over local area

networks (LANs) network latency is relatively small, so the

time taken to remove a tuple, update it, and reinsert it is

relatively small. However, in a wide area network (WANs)

the latency will be relatively greater and the time taken to

remove, update and reinsert a tuple is larger. This means

maximising the time a tuple is present within a tuple space

provides better concurrency. (For more information on the

costs of performing tuple space accesses see Rowstron et al.

[13]).

All this means that if we can somehow leave a tuple visible

after it should have been removed, and not alter the seman-

tics of Linda, then we can potentially overcome some of the

time cost of moving data out of the tuple space, across a

network to an agent and then back. By doing this we can

increase the level of concurrency within the system by re-

ducing the e�ect of the tuple space acting as a bottleneck.

This has increased concurrency because agents that would

have blocked accessing a tuple space do not. Figure 1 shows

an example, where there are multiple readers and multi-

ple writers for a list stored in a tuple space; in the �gure

the cloud represents the tuple space. Using a traditional

run-time system whenever the tuple [\COUNTER",int] is

removed by agents A or B if any of the readers C, D, E, F

is started they will block when accessing that tuple. In a

run-time system using the technique described in this paper

they will not block, thereby increasing concurrency.

Another advantage of not blocking the primitive is that you

do not need to deal with the overhead of blocking the prim-

itive. This increases computational load in the server and

drops the performance, the number of operations per second

that it can perform.

In Section 2, we informally show, using histories why the tu-

ple can remain visible to some tuple space primitives. Sec-

["COUNTER1",3]
[1,"Second Entry"]

[2,"Third Entry"]

[0,"First Entry"]

Agent 'A' - Writer

while (true)
 in("COUNTER",?x:int)
 out("COUNTER",x+1)
 out(x,"Entry "+string(n))
end

Agent 'B' - Writer

while (true)
 in("COUNTER",?x:int)
 out("COUNTER",x+1)
 out(x,"Entry "+string(n))
end

Agent 'F' - Reader

rd("COUNTER",?x:int)
for y = 0 to x do
 rd(y,?t:string)
 print(t);
end

Agent 'E' - Reader

rd("COUNTER",?x:int)
for y = 0 to x do
 rd(y,?t:string)
 print(t);
end

Agent 'C' - Reader

rd("COUNTER",?x:int)
for y = 0 to x do
 rd(y,?t:string)
 print(t);
end

Agent 'D' - Reader

rd("COUNTER",?x:int)
for y = 0 to x do
 rd(y,?t:string)
 print(t);
end

Figure 1: Example of multiple reader, multiple writer to a

list data structure.

tion 4 presents a set of rules that describe when a tuple is

partially visible. Section 4 describes how a prototype imple-

mentation supports this optimisation. In the �nal section,

we expand our view to consider other primitives, and the

properties a set of primitives must have in order for the op-

timisation discussed in this paper to work.

2. HISTORIES
Sequences of primitive traces representing histories (traces)

of tuple space access can be constructed according to a

global observation, a tuple space observation or an agent

observation. The di�erent observations are shown in Fig-

ure 2, where the points label observation A

n

create agent

traces, the point label observation B creates global traces,

and points labelled observation C

n

create tuple space based

traces. It should be noted that the \solid line" show the ow

of primitives when tuple space based or agent based traces

are being created, and the \dashed line" show the ow of

primitives when global traces are being created. For a global

observation the stream of all primitives is observed, for tu-

ple space observation the stream of primitives to and from a

particular tuple space is observed, and for agent observation

the stream of all primitives to and from a particular agent

is observed. It is assumed that there are no hidden commu-

nication channels between the two agents; the only way the

two agents can communicate is via a tuple space.

Agent A Agent B

Observer A1 Observer A2

TS2TS1 Observer B

Observer C1 Observer C2

Run-time system

Figure 2: The di�erent observation points in a tuple space

system.

As Figure 2 implies if observer B is being used (global trace)

then all tuple space accesses are sequential. In this case, ob-

server B must decide how to convert concurrent tuple space

requests into a sequential stream. If observers C are used

then the primitives to each tuple space are sequential. How-

ever, di�erent tuple spaces can be accessed concurrently.

Within this paper, we assume that a primitive only appears

in the trace when the primitive is completed. Given the

2

basic informal semantics of Linda (and assuming all agents

terminate) it is possible to create a �nite set of all possi-

ble traces for a set of agents. However, both these traces

enforce a sequential ordering on the primitives. In reality,

the primitives can occur in parallel and indeed many LAN

based implementations support parallel access to a single

tuple space. The observers A can capture this, by observing

the stream of operations into and out of single agents. Be-

fore considering these traces let us consider the global trace

(observer B) and tuple space trace (observer C) using an

example. In the example, let us consider two very simple

agents that interact through a single tuple space, and their

actions are represented by

Agent A Agent B

A

1

out(a) B

1

in(a)

A

2

rd(a) B

2

out(b)

A

3

rd(b) B

3

out(a)

The Petri Net and case graph for these two agents can be

seen in Figure 3. Initially, ignore the dotted links in the

�gure, and this Petri Net and case graph are created ac-

cording to the semantics for the primitives as given in the

introduction. In a Petri Net the circles represent places, and

the squares represent transitions. A transition can �re only

when all the places that are preconditions for that transi-

tion contain tokens. When a transition �res it consumes the

tokens in its preconditions and places a token in each of the

output places that are linked to it by arcs.

A2:rd(a)

A3:rd(b) B2:out(b)

B3:out(a)

A1:out(a)

B1:in(a)

A1:out(a)

A2: rd(a) B1:in(a)

B1: in(a) B2:out(b)

B2: out(b)

A3: rd(b)

B3:out(a)

B3: out(a)

A3: rd(b)

B3:out(a)

A2:rd(a)

A3: rd(b)

A2:
rd(a)

A2:
rd(a)

Figure 3: A Petri Net and case graph for Agents A and B.

In Figure 3 the token starts in the initial place, and the only

transition that can �re is A1:out(a). When this �res, a to-

ken is placed in the three output places connected to the

transition. This means that either the transitions A2:rd(a)

or B1:in(a) can �re. If B1:in(a) �res then the other can

not �re, because the token is removed from one of its precon-

ditions. This token is replaced when the transition B3:out(a)

is �red. If A2:rd(a) �res, then the precondition tokens are

consumed, but the transition is linked to one of its own pre-

conditions. So a token is reinserted in that place. However,

the same rule cannot re-�re because the other precondition

no longer has a token in it. This means that the transi-

tion B1:in(a) is the only one that can �re, as it is the only

transition that has all its' precondition places �lled with a

token. The case graph shown in the same �gure, shows the

di�erent ordering of the transition �rings that are possible.

In Figure 3 the dotted arcs represent the optimisation that

we are proposing. We allow the transition A2:rd(a) to �re

after the transition B1:in(a) �res or after the transition

B2:out(b) �res. This means that the manipulation of a tu-

ple has been suspended in the middle of the operation; agent

B has performed the in operation and has received the tu-

ple and can continue, but the tuple is not actually removed

whilst Agent A cannot know that Agent B has received the

tuple. This only occurs when there is a synchronisation

between the two agents, which happens using the tuple b.

From the global perspective, this appears to be incorrect;

it allows the reading of a tuple that should have been re-

moved. However, when a programmer is writing a program

they will assume that this can happen because of the non-

deterministic nature of Linda { if two agents perform an in

and a rd concurrently there is no way of excluding that the

rd will see the tuple and it is this property we are exploit-

ing. By looking at the agent observer traces, it is easier to

see why this is valid. The agent traces for Agent A will be:

fA

1

, A

2

, [B

1

, B

2

] A

3

g, and fA

1

, [B

1

, B

2

, B

3

] A

2

, [B

1

, B

2

]

A

3

g, and the agent trace for Agent B it will be: f[A

1

] B

1

,

B

2

, B

3

g.

The trace executions are relative to a speci�c agent and are

composed of the actions performed by an agent. The trace is

augmented to show the actions that need to have been com-

pleted by other agents in order for the agents' current action

to complete, and these appear in the [] before the action

entry in the trace. It should be noted that an agent does not

know when the other agents' primitives were performed in

relation to the primitive it has just performed, but it knows

that primitives must have been performed and completed

when the current primitive completes. It is assumed that

at any point in the trace an agent can deduce which opera-

tions it has performed (so this information is omitted). At

any point in the trace the union of the operations appear-

ing in [] before that point in the trace represents what an

agent can deduce about what other agents have done. If

there are more than two agents, then the information about

what other agents have completed (e.g. The [] entries) can

contain entries for each agent.

We believe that this representation is closer to the model

that the programmer has when working out the co-ordination

patterns of a program using tuple spaces. This trace allows

us to consider exactly what an agent (or correctly the au-

thor of an agent) can assume has occurred up to any stage.

Now let us concentrate on the operations numbered A

2

and

B

1

. These are an rd and in operation on the same tuple,

respectively. What is interesting is that Agent B does not

know whether the operation A

2

is ever performed (the two

agents never exchange tuples after B

1

and therefore agent

B can not know what has or has not been executed). Also

Agent A only knows that operation B

1

has been performed

only when it observes that B

2

or B

3

has occurred. This is

either when A

2

completes or when A

3

completes, depending

on which trace is being generated. However, the program-

mer of the Agent A cannot assume which of the traces has

occurred so must write the code in such a way to assume

3

that B

1

has de�nitely occurred only when A

3

completes.

This means that for the programmer of Agent A the op-

eration A

2

is independent of operation B

1

. When A

2

is

performed Agent A has to assume that it he does not know

whether the tuple has been removed. Therefore, even if the

tuple was destructively removed they have to assume that

this has not happened. Programmers are quite used to this

as part of the asynchronous and non-deterministic behaviour

of tuple space based co-ordination. Using this observation

we then say it is quite acceptable for a run-time system to

give the same tuple to both A

2

and B

1

regardless of whether

A

2

or B

1

is serviced �rst provided that B

3

has not been per-

formed. Traditionally, one would say that if B

1

has been

serviced then A

2

must block until B

3

is performed. How-

ever, it should be noted once the in has been performed the

tuple must become read-only as there can only ever be one

copy of a tuple destructively removed from a tuple space.

If this were not the case, we would end up with potentially

multiple copies of the same tuple.

3. WHEN SHOULD A TUPLE DISAPPEAR?

3.1 Linda primitives
Although we have shown why the tuple can reside in a tuple

space after it has been destructively removed, it is imprac-

tical in an e�cient implementation to pass the agent traces

around with the tuples (they could become very large!).

However, by generalising the principle it is possible to create

a simple set of rules that can be easily implemented, with

little overhead.

What the traces show is that an agent can read a tuple that

has been removed, provided that agent has no way of know-

ing that the other agent has removed the tuple. Therefore,

when a tuple is matched by an in primitive it will remain

in the tuple space, but:

i. It can not be returned as a result of another in.

ii. The agent which performed the in that matched the

tuple cannot see the tuple anymore.

iii. When the agent which performed the in on the tuple

inserts any other tuple or terminates the tuple must be re-

moved

1

.

If these rules are followed, the traces describing the agents

activity remain the same and the semantics of the access

primitives are preserved.

It is rule three above that enables one not to keep informa-

tion about the primitives performed by other agents ([]

in the traces). The traces contained the [] information to

describe if an agent had directly or indirectly synchronized

with another agent, and therefore, whether we could not use

a tuple the other agent had consumed. By generalising the

rule to say that whenever a tuple is inserted the tuples which

the agent has consumed are no longer available as results, we

make the use of this technique in implementations feasible,

and this will be discussed in more detail in Section 4.

It should be noted there is no de�ned relationship between

the tuple removed by the in and the tuple inserted by the

next out. Indeed, multiple tuples could be destructively

read before an out is performed and they would all remain

visible until this out is performed.

1

Termination, agent spawning and creation are examples

of potential hidden and these must cause the tuple to be

removed.

We have considered this so far in the restrictive case where

there are only three primitives. Most modern tuple space

based co-ordination languages have many more tuple space

access primitives. In the next section we generalise the work

to provide support for di�erent types of primitives.

3.2 Extensions of Linda
Many of the modern implementations use a form of transac-

tions to provide fault tolerance (although better alternatives

exist using mobile code [12]). The approach to how these

are implemented varies, but essentially, tuples that are de-

structively removed within a transaction are cached locally

and tuples inserted within a transaction are also cached and

not inserted. If the transaction aborts removed tuples are

reinserted and inserted tuples are discarded. If the trans-

action completes the inserted tuples are actually placed in

to the tuple space and the cached read tuples are discarded.

The optimisation described here works with transactions.

Inserted tuples are considered inserted at the end of the

transaction (when they become accessible to other agents)

and the destructively read tuples are partially visible un-

til this point. The rules as outlined in the previous section

apply.

The introduction of other primitives is commonplace, and

it is important that any realistic optimisation should work

with the current generation of tuple space languages. Each

language has its own particular set of tuple space access

primitives but it is possible to create a generic set of rules

that potentially cover all sets of possible tuple space access

primitives. In order to create them we need to consider

the information that these primitives add. As an example,

let us consider the inp and rdp primitives, although not

necessarily widely supported they represent a di�erent class

of access primitive (non-blocking). Consider the two agents,

sharing a tuple space with no other agents able to access

that tuple space:

Agent D Agent E

while (rdp(a)); in(a)

out(b) in(b)

In this case Agent D uses the rdp primitive to poll the tuple

a. Whilst the tuple exists the tuple b will not be produced.

With the rules outlined in the previous section Agents D

and E would never terminate, because the tuple b would

not be produced, as the tuple a would remain visible. The

problem is caused because rdp is not a blocking primitive.

However, this can easily be solved, by adding another state-

ment to when the tuple should be removed:

iv. If a rdp is performed and the matched tuple has been

tagged as read-only then the tuple should not be used as the

result for the primitive. Furthermore, if there are no other

matching tuples available then the marked tuple should be

discarded. If another matching tuple is available as the re-

sult then the read-only tuple can be left.

At this point it now makes more sense to describe tuples

as being marked rather than read-only (as rdp is a non-

destructive primitive). Also, some implementations support

primitives beyond the basic Linda primitives and inp and

rdp. It is possible, to generalise the rule yet further:

iv. If any primitive is performed which does not block the

user thread of execution until a matching tuple is found,

and a tuple which is to be the result (or part of the result)

of that primitive is a marked tuple then the marked tuple

4

should not be used as the result or part of the result. If the

marked tuple is the only available result or should be part

of the result it must be removed, otherwise it can remain.

This rule generalisation is slightly conservative, in that some-

times tuples will disappear before they need to, but ensures

that the rules should work with any set of access primitives.

Bellow all the rules are shown, rewritten in general terms to

provide a set of rules for when a tuple can be returned and

when a tuple should be discarded.

When a tuple is to be used as a result or part of a result for

a primitive and the tuple has been the result or part of a

result for a destructive primitive then the tuple can still be

used as a result to another primitive providing the following

are all true:

i. The primitive being performed is not destructive.

ii. The primitive is not being performed by the same agent

that performed the destructive primitive.

iii. The agent that performed the destructive primitive has

not inserted any tuple nor caused the insertion of any tuple

into any tuple space.

iv. The primitive being performed blocks the agents thread

of execution until a result is returned, where a result is either

a tuple or an indication of completion of some movement of

tuples

2

.

The system must subsequently discard this tuple when:

i. The agent that performed the primitive that removed the

tuple inserts any tuple into any tuple space or performs a

primitive that causes any tuple to be inserted into any tuple

space.

ii. The agent that performed the primitive that removed

the tuple terminates.

iii. The current non-destructive primitive does not block the

user thread of execution until a matched tuple(s) is found

or operation on a set of tuples is complete, and is forced to

use the tuple to provide the results correctly.

It is assumed that there are no hidden communication chan-

nels between the agents communicating. The only way to

agents can communicate is via a tuple space. The second

rule covers hidden communication, by an agent knowing

something has happened because of when it was created.

It should be noted that this optimisation does not inter-

fere with the asynchronous \event" style primitives added

in many new versions of Linda which propagate inserted tu-

ples to agents automatically. When a tuple is inserted, it can

be propagated provided the out is treated as an insertion of

a tuple for discarding tuples.

4. IMPLEMENTATION
We have implemented the scheme outlined in the last sec-

tion, and the implementation has proved simple and e�-

cient. A Java based kernel has been extended to use this

optimisation. It is a centralised kernel, as are most of the

kernels currently being used for the new set of co-ordination

languages. It supports the standard Linda primitives and

collect [1] and copy-collect [14]. The collect primi-

tive moves all tuples matching a given template from one

tuple space to another and returns a count of the number

of tuples moved (therefore, it is a blocking primitive). The

2

Primitives such as rdp fail this rule, because they do not

block the thread of execution { it returns false if a tuple

is not available. However, a primitive like copy-collect

passes the rule because it copies tuples and then returns a

counter.

out in rd

Normal 0.193 0.122 0.271

Optimised 0.194 0.122 0.146

Table 1: Tuple space access times (ms).

copy-collect primitive is the same except it copies rather

than moves the tuples. Therefore, it is based on the ex-

tended rule set given in the previous section.

Every agent using the run-time system has a Globally Unique

Identi�er (GUID) created dynamically as it starts to exe-

cute. When the agent registers with the run-time system

the GUID is passed to the run-time server and it creates

a counter associated with the agent. Each time an agent

performs either an out or collect the counter associated

with the agent is incremented by one (before the primitive

is performed). When an agent requests a tuple using an in

or when a set of tuples are moved from one tuple space to

another tuple space using a collect the e�ected tuples are

marked as \special" and tagged with the identity tag of the

agent that removed or moved the tuple and with the cur-

rent value of the primitive count associated with the agent.

Any other agent can then perform a rd or copy-collect

and have this tuple as the result or part of the result. How-

ever, whenever the tuple is matched the system checks the

current primitive count associated with the GUID attached

to the tuple with the primitive count attached to the tuple.

If the primitive counts di�er or if the agent has terminated

then the tuple is discarded, and not used as a result for the

rd or copy-collect.

Checking of the tuples is performed on the y, and the data

structure is so organised that newest inserted tuple will be

found �rst therefore maximising the chances that the tuple

found as a result for a primitive is unmarked. If it is feared

that tagged tuples will remain in the system for some time

then some form of garbage collection can be added. This

garbage collection can be run as a background task, or per-

formed when the data structure becomes too large.

Table 1 show the performance results for the data struc-

tures used within the Java kernel. The kernel is written

in Java and is not written to be optimal and therefore the

performance is not very good. However, the relative speeds

demonstrate some interesting things about the implementa-

tion. The results were gathered on a 450MHz Pentium III

processor running Windows NT by timing individually the

insertion (out), then reading (rd) and then removal (in) of

10000 identical tuples. The average was worked out for each

task over 10 executions, and then the results were scaled

down from 10000 operations to individual tuple space ac-

cess times. The test program was embedded into the ker-

nel, so removing communication overheads and marshalling

costs. The row labelled Normal represents the results when

the optimisation is not used (and the code for providing

the optimisation is removed) and the row marked Optimised

represents the results when the optimisation is being used.

All timings are given in milliseconds.

As one would expect the time taken to insert and read the

tuples are the same regardless of whether the optimisation

is being used. This is because the overhead of accessing the

counter on insertion is negligible and the rd only has to per-

form an extra check to see if the tuple is ghosted (and in the

results shown in the table a tuple is never ghosted.). The

5

time taken to perform an in drops when the optimisation

is being used. This is because in the tuple is not removed

from the data structure; it is simply marked as ghosted. In a

more optimal kernel (written in C++) we would expect the

time taken to perform a rd and an in would be similar in

both the optimised and normal senarios. In the current ver-

sion there is an overhead of no more than 0.153 ms added

to a rd primitive for every ghosted tuple that it removes

from the data structure because it is no longer valid. So

if, a single tuple is being checked and removed in a rd it

takes 0.275 ms, which is the same as a in (we have passed

the expense of removing tuples from the data structure from

the in primitive to the rd primitive). We created two ver-

sions of the rd one that left the invalid ghosted tuples in

the data structure and one that removed them, and added

an explicit process that performed garbage collection on the

tuple structure. The ideal may be an adaptive data struc-

ture that adapts its use based on the way a set of tuples

is being accessed. Switching between dynamically garbage

collection of the data structure and waiting for periods of

low load and perform a static garbage collection.

We created a simple demonstration program based on the

example given in Figure 1, where the reader agents repeat-

edly read the counter and printed all elements in list. When

the technique described in this paper was enabled, none of

the readers blocked awaiting a tuple, and regularly a tu-

ple was returned when the primitive should have blocked.

When the technique described in this paper was disabled,

the readers blocked a signi�cant number of times. However,

the number of times a single reader is blocked is highly de-

pendent on each experimental run, because of the impact

of network latency on the interleaving of when primitives

arrive.

5. CONCLUSIONS
We have described a method by which a run-time system

can transparently optimise when tuples should be removed

from a tuple space that does not alter the semantics of the

access primitives. We have described the algorithm using

the standard Linda primitives as an example and then gen-

eralised it to other primitives. We then described how the

algorithm is implemented, cheaply and e�ciently and pre-

sented performance results to support our claim.

This optimisation increases the level of concurrency in the

system because primitives which would normally block no

longer block. It also reduces the load in the server by re-

ducing the number of primitives that need to be blocked.

The optimisation can be used with asynchronous noti�ca-

tion primitives and with transactions. It works with arbi-

trary tuples, and is not dependent on one particular coordi-

nation pattern (although one is used as the example in this

paper). The optimisation is performed on-the-y and does

not require compile time analysis or the addition of other

primitives.

Tuples are left partially visible until a set of rules is no longer

satis�ed and then they are discarded. It is not necessary that

a in is followed by a out for this optimisation to work.

Although the optimisation is clearly correct we are currently

working on a process algebra with formal proofs to show this

is indeed the case.

6. ACKNOWLEDGEMENTS

I would like to thank Cedric Fournet and Rocco de Nicola

for their detailed comments and corrections (and Rocco for

his Petri-net diagram and case graph).

7. REFERENCES
[1] P. Butcher, A. Wood, and M. Atkins. Global synchroni-

sation in Linda. Concurrency: Practice and Experience,

6(6):505{516, 1994.

[2] J. Carreria, L. Silva, and J. Silva. On the design of

Eilean: A Linda-like library for MPI. Technical report,

Universidade de Coimbra, 1994.

[3] N. Carriero and D. Gelernter. Linda in context. Com-

munications of the ACM, 32(4):444{458, 1989.

[4] N. Carriero and D. Gelernter. Tuple analysis and partial

evaluation strategies in the Linda precompiler. In Lan-

guages and Compilers for Parallel Computing, pages

114{125. MIT Press, 1990.

[5] P. Ciancarini, A. Omicini, and F. Zambonelli. Coordi-

nation technologies for internet agents. Nordic Journal

of Computing, 6(3):215{240, 1999.

[6] P. Ciancarini and D. Rossi. Coordinating Java agents

over the WWW.World Wide Web Journal, 1(2):87{99,

1998.

[7] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and

A. Knoche. Coordinating multiagent applications on

the WWW: A reference architecture. IEEE Trans. on

Soft. Eng., 24(5):362{366, 1998.

[8] R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM:

A kernel language for agents interaction and mobility.

IEEE Trans. on Soft. Eng., 24(5):315{330, 1998.

[9] A. Omicini and F. Zambonelli. Coordination for inter-

net application development. Autonomous Agents and

Multi-agent Systems, 2(3):251{269, 1999.

[10] G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda

meets mobility. Technical Report Technical report

WUCS-98-21, Washington University, Department of

Comp. Sci., St. Louis, Missouri, 1998.

[11] A. Rowstron. WCL: A web co-ordination language.

World Wide Web Journal, 1(3):167{179, 1998.

[12] A. Rowstron. Mobile co-ordination: Providing fault-

tolerance in tuple space based co-ordination languages.

In Coordination Languages and Models: Coordina-

tion99, volume 1594 of LNCS, pages 196{210. Springer-

Verlag, 1999.

[13] A. Rowstron and A. Wood. Bonita: A set of tu-

ple space primitives for distributed coordination. In

HICSS-30, volume 1, pages 379{388, 1997.

[14] A. Rowstron and A. Wood. Solving the linda multiple

rd problem using copy-collect. Science of Computer

Programming, 31(2-3), July 1998.

[15] Sun Microsystems. Javaspace speci�cation, revision 0.4.

Final Speci�cation., 1997.

[16] P. Wycko�, S. McLaughry, T. Lehman, and D. Ford.

TSpaces. IBM Systems Journal, 37(3):454{474, 1998.

6

