
Mobile Co-ordination: Providing fault tolerance

in tuple space based co-ordination languages.

Antony Rowstron

Laboratory for Communication Engineering, Engineering Department,

University of Cambridge, Trumpington Street, Cambridge, UK

aitr2@eng.cam.ac.uk,

http://www-lce.eng.cam.ac.uk/�aitr2

Abstract. In this paper we describe the concept ofmobile co-ordination,

a general purpose approach to overcoming failure of agents when using

distributed tuple spaces. We demonstrate why mobile co-ordination is

better than using existing techniques such as transactions, how mobile

co-ordination can provide extra functionality in the form of agent wills,

and how the framework to provide this can be implemented in Java

and can be used with multiple di�erent tuple space co-ordination lan-

guages. Experimental results are presented to show performance gains

made when mobile co-ordination is used.

1 Introduction

Early tuple space based languages, such as Linda[1], su�ered from poor agent

fault tolerance. Since Anderson et al.[2] �rst proposed the idea of using of trans-

actions in Linda it has become widely adopted, for example in PLinda[3], Par-

adise[4], JavaSpaces[5] and more recently in TSpaces[6]. In this paper we advo-

cate the use of mobile co-ordination instead of transactions.

A tuple space based system needs two fault tolerance mechanisms, one at the

system level for server fault tolerance and one at the user level for application

writers to provide fault tolerance at the application layer. In particular at the

application layer fault tolerance is required to provide protection against the

failure of an agent when the agent has removed one or more tuples from a tuple

space that are required by other agents in order for the system as a whole to

continue. For example, consider an agent fails whilst performing a series of tuple

space operations that together created a higher level co-ordination operation as

shown in Figure 1 which shows some Linda operations which increment a shared

counter.

in(\COUNTER"

string

, ?x

integer

);

out(\COUNTER"

string

, ++x);

Fig. 1. A co-ordination operation.



If the agent performing this co-ordination operation was to fail having per-

formed the in then the incremented counter would never be inserted. This would

mean that any other agents using this counter would block forever when they

next try to read it.

Transactions can be used to overcome this problem, as will be shown later,

however, neither the tuple space based co-ordination languages Bonita[7] or

WCL[8] developed by the author used transactions, because we considered trans-

actions a poor solution to the problem and at the time we left the problem

unaddressed. Here we now address the issue and argue that in many situations

resilience to failure provided by transactions is not su�cient. Our proposed solu-

tion, mobile co-ordination not only provides the kind of fault tolerance provided

by transactions, without altering the underlying semantics, but it also enables

the concept of an agent will which provides a mechanism for `tidying' a tuple

space up should an agent fail, where a traditional transaction can not be used.

Mobile co-ordination is general enough to be applied to many existing tuple

space based co-ordination languages that use Java as the host language.

Application fault tolerance is an important problem because the number of

tuple space based co-ordination languages for use over the Internet has increased

considerably in the last few years, with many companies attempting to create

such languages, eg. IBM[6] and Sun[5]. The solution presented in this paper is

not only novel in terms of overcoming this problem, but has been extended to

introduce the novel concept of agent wills.

In the next section a description of transactions as used in tuple space based

co-ordination languages is given, and the short cummings described. In Section 3

we describe the concept of Mobile Co-ordination, using a simple example, and

discuss why it provides fault tolerance. In Section 4 the use of agent wills is

described. In Section 5 we describe the implementation and discuss the perfor-

mance issues, and show how, surprisingly, the use of mobile co-ordination is far

more e�cient than the use of transactions in most cases.

2 Transactions

Transactions have been used for many years in databases and Anderson et al.[2]

proposed using this concept in Linda, and this was �rst done in PLinda and then

subsequently in many co-ordination languages. Most implementations provide a

similar approach to the transaction implementation. Two new primitives are

added to the base tuple space access primitives, which are start and commit

primitives.

The start primitive causes the server managing the tuple spaces to retain

a copy of all tuples being removed and to hold all tuples being inserted by

the agent which performed the start. When the commit command occurs all

the tuples being held because the agent removed them are discarded, and any

inserted tuples are actually placed into the tuple space and then become visible

at that point to the other agents using the tuple space. This way, if the commit is

never reached the inserted tuples do not appear in the system and any removed



tuples can be replaced. However, any inserted tuples do not appear to other

agents until the commit is performed.

The problem with this is that the use of transactions alter the underlying

semantics of the co-ordination operations they are placed around. This is shown

in Figure 2.

Fragment One Fragment Two

out(10

integer

); in(10

integer

);

in(11

integer

); out(11

integer

);

Fig. 2. Example of transaction problems.

The two fragments of pseudo code shown in Figure 2 are assumed to be

performed on the same tuple space, and represent a trivial yet important co-

ordination construct using tuple spaces. The co-ordination construct is an ex-

plicit synchronization between the two fragments. If the start and commit are

placed around the co-ordination constructs in Fragment Two then this does not

alter the semantics. However, if the start and commit are placed around the

co-ordination constructs in Fragment One the two fragments will deadlock. The

tuple inserted in Fragment One into the tuple space will not appear until after

the tuple inserted in Fragment Two has been read, but this can not occur until

after the tuple inserted in Fragment One appear, thus the fragments deadlock.

This altering of the semantics means that the outcome of the co-ordination

operations is dependent on whether they are performed inside a transaction or

outside a transaction. This is not a desirable side e�ect, and the primary reason

why transactions were not adopted in either Bonita or WCL. It also means

that a programmer can not place all the co-ordination operations required in a

transaction. For example, consider a program which needs to insert a tuple into

a tuple space to signify that the agent is present, and when the agent has �nished

it removed the tuple. An example of this can be seen in a chat tool a chat client

may place the name of the user in a tuple space, so that other users can ask

who is currently using the chat tools system. If the agent unexpectedly then this

tuple needs to be removed. The problem with a single transaction for this is that

the name tuple will never be seen by other agents, until the transaction commits

(when it terminates).

To a lesser extent there is another problem, which is how long should a

server wait in between the start and deciding that agent has died? Should this

be speci�ed by the user? Should it be assumed that the communication layer

between the agent and the server has some notion of knowing when the other

end has died?

Both these problems are clear if you look at the JavaSpaces[5] speci�ca-

tion which describes the behavior of the primitives if performed as part of a

transaction or not. Furthermore, the description of the basic primitives include

descriptions of how they interact with transactions, and a description of tim-



ing 
ags used with the primitives to control how they interact with transactions.

This increases the complexity of the language, and makes it from a simple model

into a complex one, with very subtle behavior and interaction possible.

So, transactions alter the semantics of the co-ordination constructs performed

within them, and cannot provide the level of fault tolerance required in all appli-

cations, due to the fact the tuples do not appear until the transaction commits.

We believe the idea of mobile co-ordination overcomes all these problems, and

furthermore is in general more e�cient and faster.

3 Mobile Co-ordination

Mobile co-ordination involves the movement of co-ordination primitives that

make a particular co-ordination operation to the server which stores the tuple

space. A co-ordination operation is a high-level co-ordination operation com-

posed of several tuple space access primitives. If the all the co-ordination primi-

tives reach the server before any are executed, the entire co-ordination operation

will be executed. In other words, this provides a `all or none' execution of the

primitives which make the co-ordination operation. The underlying assumption

is that the server is reliable. This provides us with a mechanism to provide fault

tolerance at an application level. By moving arbitrary (small) segments of pro-

grams containing multiple tuple space access primitives, and by ensuring that

the segment is not executed until all the segment and associated state has been

transfered to the tuple space server an application can provide fault tolerance.

The aim is to create a framework that supports this, without comprising the

simplicity of the tuple space model. At this stage it should be noted that before

creating the current implementation many other approaches were considered,

including creating some sort of scripting language in which to embed the tuple

space primitives. These would have been host language independent but given

the current prominence of the Java language for Internet computing it seems

acceptable to create a system which works only with that language.

A detailed explanation of how the framework is created in Java is given in

Section 5. However, an overview from an application developers perspective is

given now. The developer creates a class that contains the tuple space access

primitives which they wish to be performed as a single co-ordination operation.

In the agent an instance of that class is created, and any necessary information

is initialized and stored within the created object. The programmer then simply

passes this object to a method associated with the object providing access to

the tuple spaces. This manages the moving of the object (its state) and the nec-

essary class �les to the tuple space server. The class that contains the mobile co-

ordination code must implement an interface MobileCoordination which speci�es

there is a method called coordination() in the object. The tuple server server

calls this method. The interface also speci�es that the method coordination()

must return an object of the type Tuple. This is passed back to the agent. More

detail about the implementation is provided in Section 5.



The fault tolerance is provided, because from the server's point of view, it

either receives the class �le, and the object state in its entirety or it does not

receive them at all. If the socket fails before both are received then the server

does not (indeed can not) create the object because it catches the exception and

terminates the operation. If the server receives all the information correctly it

recreates the object and calls the coordination() method, thereby performing

the mobile co-ordination segment. The tuple that this method returns is passed

back to the agent. If the socket has died in between the code starting and ending

it does not matter, and the result is `lost', however, the high-level co-ordination

operation will have been executed in its full. Hence it provides either `all or none'

execution of the mobile co-ordination segment.

It should be noted that moving the co-ordination operations to the tuple

space server does not alter the semantics, because (currently) the agent thread

performing the co-ordination operation is blocked until the result from the mi-

grated code has been returned. This means that it is similar to any other blocking

primitive in Linda. It should be noted that it is quite possible to execute the mo-

bile co-ordination operation at the agent, by simply calling the coordination()

method { however this will not provide the fault tolerance. The reason why

the semantics of the tuple space access primitives performed in the mobile co-

ordination code is because the system provides `all or none' execution of the

operations not atomicity. Other agents are able to interact with and use the

tuples that the mobile co-ordination generates. Indeed, the mobile co-ordination

section can generate tuples and then subsequently consume them

1

. It is the fact

that the tuple space access primitives that compose the co-ordination operation

are not atomically executed that allows the semantics not to be altered.

The mobile co-ordination code is expected to handle all exceptions that occur.

If an exception is raised which is not handled by the code then an empty tuple

is returned to the agent which performed the operation. There are currently

no restrictions on the operations that can be performed in the code. However,

it makes no sense to perform any I/O operations. Objects can be instantiated

within the code once it is executed, however, in order to guarantee the 'all or

nothing' approach the class �les must be available locally. However, when the

object is �rst migrated, pre-instantiated objects can be transfered.

In order to demonstrate fully how mobile co-ordination performs a simple

example is used which is based loosely on the idea of a talk tool. The talk tool

does not use a chat server but instead is peer-to-peer, with each talk tool client

manipulating the conversation directly in the tuple space. A full example of such

a tool using a tuple space language is given in Rowstron[7]. Each client places a

tuple in a tuple space with the name of the user in it then it starts to add lines

to the conversation and then when �nished the tuple containing the users name

is removed.

1

At its limit the entire agent could be migrated, however, this is neither necessary nor

wanted as it would increase the load at the tuple space server and reduce performance

of the system (we discuss this further in Section 7.)



The necessary routines to manage the mobile co-ordination are, in the current

implementation, added to the class TupleSpace. As well as being able to perform

the normal Linda operations (out, in and rd) using the class a number of new

methods are added; executeSafe, createWill and cancelWill. It should be

noted that executeSafe is not equivalent to an eval operation in Linda.

Figure 3 shows the main program. A very simple centralized tuple space

kernel has been used in this example with the Linda style access primitives

of in, rd and out. These operations return objects which are instantiations of

Tuple, and the class Tuple provides a method called getField which returns the

object stored in the tuple at position speci�ed. Line 2 shows the creation of a

tuple space. Lines 5 and 6 create a will for the agent, which will be discussed in

the next section. Lines 8 and 9 create an instance of the class InsertLine, which

is our high-level co-ordination operation, and insert the necessary values in it.

Line 10 causes the object to be migrated to the server, and the result is returned.

If the user had wished to execute this locally all they would have done is replace

Line 10 with:

Tuple t = InsertLine.coordination();.

Then Lines 11 and 12 read back the tuple inserted by the mobile co-ordination

operation. Finally, in Line 14 the will is canceled, and this will be described

later.

1 public class TestMobile f

2 TupleSpace gts = new TupleSpace("ts host",8989);

3

4 public TestMobile() f

5 MyWill theWill = new MyWill(gts,"Antony Rowstron");

6 gts.createWill(TheWill);

7 gts.out(new Tuple("Antony Rowstron"));

8 InsertLine mobileCoord = new InsertLine();

9 mobileCoord.insertData(GTS,"Antony","Hello I have joined!");

10 Tuple t = gts.executeSafe(mobileCoord);

11 t = gts.rd(new Template((Integer)t.getField(0),"Antony",

12 new Formal("java.lang.String")));

13 gts.cancelWill();

14 g

15

16 static public void main(String args[]) new TestMobile();

17 g

Fig. 3. Example - Main Class.

Figure 4 shows the high-level co-ordination operation. In Figure 1 in Section 1

the example used is a global counter stored in a tuple space. This is the same idea

used to store and manage the conversation in the talk tool. Therefore, the counter



tuple is removed, incremented and reinserted, and the necessary line of text is

inserted. Lines 4 and 5 allow the object to be set up with the tuple space, and

the text for the tuple to be inserted. Lines 7 to 14 provide the method required

for InsertLine to implement MobileCoordination. This removes the counter tuple

(line 9) increments the value and reinserts it (line 11), then inserts the line we

wanted to add (line 12) and returns a tuple containing the value of the line we

inserted (line 13).

1 class InsertLine implements MobileCoordination, Serializable f

2 TupleSpace ts; String name, Text;

3

4 public void insertData(TupleSpace ts, String name, String text) f

5 this.ts = ts; this.name = name; this.text = text; g

6

7 public Tuple coordination() f

8 Tuple count; int cnt;

9 count = ts.in(new Template("C",new Formal("java.lang.Integer")));

10 cnt = ((Integer)count.getField(1)).intValue();

11 ts.out(new Tuple("C",new Integer(cnt+1)));

12 ts.out(new Tuple(new Integer(cnt),name,text));

13 return new Tuple(new Integer(cnt));

14 g

15 g

Fig. 4. Example - Mobile Co-ordination Class.

This has shown how the mobile co-ordination works, and has also demon-

strated that it is not complicated. It should be noted that the object that is sent

to the server is not strictly migrated, it is replicated. A copy of the object and

its state remain at the agent.

4 Using mobile co-ordination for Agent Wills

We have already demonstrated how mobile co-ordination can be used to provide

the sort of fault tolerance that traditionally is provided by transactions in tuple

space based systems. In the above example we are guaranteed not to loose the

counter tuple due to agent failure. However, we have not dealt with how the tuple

containing the users name can be removed on agent failure (Figure 3, line 7).

Using mobile co-ordination we have also added the concept of an agent will

for an agent. An agent will is a set of tuple space access primitives that are

executed when the tuple space server managing the tuple spaces decides that

an agent owning the will has failed. Currently, a loose interpretation of this is

taken, in so far as we allow a will for every tuple space (handle) that the agent

has. This appears to allow more 
exibility than simply allowing one. An agent



has the ability to cancel (or execute) a will it has associated with a tuple space

explicitly.

In order to demonstrate this consider the example we used in the last Section.

In Figure 3 line 5 the `will object' is instantiated and its internal values are

passed to it. Line 6 sets the will in operation. This is achieved by passing it

to the tuple space server/manager, which then stores it until required. Finally,

line 13 cancels the will. However, it should be noted that it is often the case

where the programmer actually wants the will explicitly to be executed (as in

this case) to remove the name tuple.

1 class MyWill implements MobileCoordination, Serializable f

2 TupleSpace ts; String name;

3

4 public MyWill(TupleSpace ts, String name) f

5 this.ts = ts; this.name = name; g

6

7 public Tuple coordination() f

8 ts.in(new Template(name)); return null; g

9 g

Fig. 5. Example - The Will Class.

Any high level co-ordination operation stored in a separate class can be used

as an agents' will. There is no di�erence between a will class an a normal co-

ordination operation that is to be performed fault tolerantly. Figure 5 shows

the Class used as the will. All it does is remove the tuple containing the users

name. It should be noted that it returns a null pointer. It could return a tuple,

but given that the connection to the agent has been lost in order for it to be

executed there is little point. However, currently it is possible for the agent to

request the server to execute the will. When this is done, the result is returned

to the user agent. This would be achieved by replacing line 13 in Figure 3 with

the line:

Tuple tup = gts.executeWill();.

It should be noted that if the will was not canceled explicitly then the will

would be executed anyway when the agent terminated. This means the need for

an explicit execution command may be unnecessary.

To summarize, a will is considered as a high-level co-ordination operation

that is only executed if the connection between the agent and the server (in the

servers opinion) has failed (or if the agent explicitly asks for it to be executed).

5 Implementation

In this section we present a very brief overview of how the mobile co-ordination

system is implemented. The implementation is relatively straight forward and



uses the many unique features of Java. In essence, whenever a class is instantiated

a ClassLoader is used to load the class. At the server end the implementation

subclasses the ClassLoader to provide a NetworkClassLoader which gets the

class (and the object state) from the agent. Therefore, to load a class the agent

provides to the server a socket name and a port number. The agent creates an

instance of a serializable class that contains the class �le code and the serialized

state of the object to be migrated. This is then transfered to the tuple space

server. It should be noted that the agent keeps a record of which class �les have

been passed to the tuple space server, and if the current object is an instantiation

of a class whose code has already been passed to the server, then the class �le

is omitted. This saves on the amount of information passed to the server.

In order for the server to be able to call the necessary methods in the mi-

grated object, the migrated object must implement an interface (currently called

MobileCoordination). All this speci�es is that there should be a method called

Coordination() in every object passed.

In order to allow the co-ordination operations in the migrated object to be the

same as those used locally, an object which is an instantiation of the TupleSpace

class (this holds information about where the tuple space is stored) is able to

detect whether it is at the server or at the agent using a hack. This means a

TupleSpace object is able to modify its behavior accordingly, if it is at the server

then it accesses the data structures directly, and if it is at the agent is passes the

instructions through a socket to the tuple space server where they are performed

and then the results returned.

6 Performance

Initial thoughts on the mobile co-ordination led us to believe that although the

use of mobile co-ordination would provide fault tolerance it would be more ex-

pensive (time wise) than using transactions. In the best case it may be possible to

piggyback the transaction start and transaction end messages on other messages,

therefore requiring no real overhead.

However, it turns out that using mobile co-ordination can be many times

more e�cient. In general, if more than one tuple read/removal operation is per-

formed then it is more e�cient to use mobile co-ordination. In order to demon-

strate this, consider a simple program which inserts using (an unordered) out a

number tuples each containing a counter and a random number. The code to in-

sert the tuples was written as a high level co-ordination operation which could be

performed as a mobile co-ordination operation. The inserted tuples are then read

using rd and the random numbers summed. Again, this was created as a mobile

co-ordination operation. The agent then executed the mobile co-ordination both

remotely (providing fault tolerance) and locally (not providing fault tolerance).

Hence we are able to compare the e�ect (in the absence of faults) of migrating

the mobile co-ordination.

Figures 6, 7 and 8 show the results for when between 1 and 200 tuples are

inserted, both over a LAN and over a WAN. In the case where the mobile co-



ordination is enabled the size of the class �le transferred for the Insert operations

is 784 bytes with the object state being a further 187 bytes. For the adding com-

ponent the class �le size is 887 bytes with the object state being a further 176

bytes. Therefore this is approximately 1K to be transferred. The results for a

LAN were gathered over a 10 MB/sec Ethernet, using a Pentium Pro 200 MHz

PCs running Linux. The WAN results were gathered using an Indy Worksta-

tion at York, UK to a Pentium Pro 200 MHz PC Linux running computer at

Cambridge.

It should be noted that Figures 6(a) and 8 show the same operation (Inser-

tion over a LAN) however Figure 8 shows the use of an out primitive which

provides out ordering

2

[9]. The provision of out ordering means that more mes-

sages need to pass between the server and the client. However, the approach

taken in the implementation in naive, compared to the kernel described in Row-

stron[9]. Therefore, Figure 8 represents the worst case. It should also be noted

that Figures 6(a) and 7(a) the insertion time seems to be independent of whether

a LAN or a WAN is being used. This is because there are no acknowledgements

being returned. Therefore, the time represents the time taken to insert that

number of tuples into a socket, which, given the size of the data being sent can

probably store it in local bu�ers.

In all the cases the use of mobility appears to take an almost constant time,

regardless of the number of operations performed. This can be explained by

considering the time tuple space access can be performed on the server and

across the network. On a Pentium Pro 200 MHz PC running Linux it takes

approximately 110�S to read a tuple from a tuple space in the worst case. The

time taken to send a message (containing the code and data) over a network,

and then for the Java Virtual Machine to unpack and instantiate the class is

constant regardless of the number of operations performed. The time di�erence

of performing 1 or 200 tuple space operations is insigni�cant.

The results show that if more than one single tuple space operation requiring

a tuple to be returned is to be performed (eg. not just a single or multiple out

primitives), then the mobile co-ordination will provide better performance. In

this case, because the add routine read the number of tuples inserted from a tuple

in the tuple space and then read that many tuples the mobile co-ordination is

always quicker.

This conclusion may seem a little surprising, but if we consider the Maximum

Transmission Unit (MTU) for TCP/IP is 1500 bytes

3

, and therefore, for sending

a 1K packet has much the same e�ect as sending a 200 byte packet. Given the

use of synchronous tuple space access primitives (like in and rd) the agent has

to block computation whilst the result tuple is returned. Therefore, the second

tuple space access operation can only begin when the �rst one terminates. In

the case of a mobile co-ordination segment, the operations at the server can

access the data structure directly, therefore the cost of communication is removed

2

This is where the out primitive is implemented in such a way that it requires an

acknowledgment from the server storing the tuple before the next out is performed.

3

For IPv6 the minimum size is 576 bytes.



0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
in

 m
ill

is
ec

on
ds

Number of tuples

Insert not using mobile co-ordination (LAN)
Insert using mobile co-ordination (LAN)

(a) Insert using mobility and not using mobility over a LAN.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
in

 m
ill

is
ec

on
ds

Number of tuples

Add not using mobile co-ordination (LAN)
Add using mobile co-ordination (LAN)

(b) Add using mobility and not using mobility over a LAN.

Fig. 6. The e�ect of using mobility and not using mobility over a LAN.



0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
in

 m
ill

is
ec

on
ds

Number of tuples

Insert not using mobile co-ordination (WAN)
Insert using mobile co-ordination (WAN)

(a) Insert using mobility and not using mobility over a WAN.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
in

 m
ill

is
ec

on
ds

Number of tuples

Add not using mobile co-ordination (WAN)
Add using mobile co-ordination (WAN)

(b) Add using mobility and not using mobility over a WAN.

Fig. 7. The e�ect of using mobility and not using mobility of a WAN.



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200

T
im

e 
in

 m
ill

is
ec

on
ds

Number of tuples

Insert not using mobile co-ordination (LAN)
Insert using mobile co-ordination (LAN)

Fig. 8. Insert (with out ordering) using mobility and not using mobility over a LAN.

for the tuple space access. At the tuple space server the time taken to access

the data structure is very small compared with the time taken to perform the

communication, and therefore multiple tuple space operations can be performed

in apparently the same time as a single remote tuple space operation. On a

Pentium Pro 200 MHz PC runing Linux it takes approximately 110�S to read a

tuple from a tuple space in the worst case. Therefore, 9 tuple space primitives

can be performed in under 1ms. Using the Unix ping tool between the machine

at Cambridge and the machine used at York provides the following results (for

22 packets); Min time is 11.2 ms, average is 13.7 ms and the max is 24.7 ms.

This puts the time to perform nine operations in the full context of expected

network latency.

7 Future work

This paper describes the use of mobile co-ordination to provide fault tolerance.

The work to date has concentrated on using as single tuple space server. Without

doubt multiple servers will have to be used in real implementations. However,

transactions have similar problems, and we could make restrictions on tuple

spaces which could be accessed within the co-ordination operations migrated.

This is an area which we are still considering.

Also, all the performance �gures are given from the point of view of the agent.

This does not consider extra tuple space server load. Some of this extra load will

be o�set by reducing the need to construct and deconstruct packets of tuples

being sent to the agent. Some control of the amount of CPU time a migrated

co-ordination operation can consume needs to be added, otherwise there is the

potential for abuse. This is another area still under consideration.



8 Conclusion

In this paper we have demonstrated how the concept of Mobile co-ordination

can be used to provide fault tolerance in tuple space based co-ordination lan-

guages. Mobile co-ordination provides the same fault tolerance that the use of

transactions in many tuple space languages provides, but without the drawback

of altering the semantics of the primitives. Also, the same basic technique al-

lows agents to register 'wills' with the tuple space system, that are executed if

the agent dies. This has been shown in this paper to extend the fault tolerance

support. An example program has been used to demonstrate that the addition

of mobile co-ordination does not increase the complexity of the language, and

therefore, does not extend the load placed on the programmer using it.

The ideas of of mobile co-ordination are applicable to any tuple space based

language which uses Java. The demonstration uses a traditional Linda imple-

mentation, but the same system has been used with WCL. It can easily be

introduced into either TSpaces or JavaSpaces.

It is also interesting that the mobile co-ordination uses the ideas of mobile

objects to achieve something that is not feasible without the use of mobile objects

(wills).

In the last year the importance of tuple space based co-ordination languages

has become very visible with many companies announcing systems which utilize

tuple space technology. The need to solve the few remaining drawbacks of such

systems has driven this work. The work described here presents a novel approach

to providing fault tolerance in one of the best known classes of co-ordination

language.

Acknowledgements

I would like to thank Prof. Andy Hopper and the Olivetti and Oracle Research

Laboratory for funding me. I would also like to thanks Dr. Alan Wood at York

University for allowing access to his computing facilities. I would also like to

thank Dr. Stuart Wray for his many long chats on the subject of mobile co-

ordination.

References

1. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4):444{458, 1989.

2. B. Anderson and D. Shasha. Persistent Linda: Linda + Transactions + Query

Processing. In Research Directions in High-Level Parallel Programming Languages,

LNCS 574, 1991.

3. K. Jeong and D. Shasha. Persistent Linda 2: a transaction/checkpointing approach

to fault-tolerant linda. In Proceedings of the 13th Symposium on Fault-Tolerant

Distributed Systems, 1994.

4. Scienti�c Computing Associates. Paradise: User's guide and reference manual. Sci-

enti�c Computing Associates, 1996.



5. Sun Microsystems. Javaspaces speci�cation. Avaliable from Sun Microsystems

WWW Site (http://java.sun.com/products/javaspaces), 1998.

6. P. Wycko�, S. McLaughry, T. Lehman, and D. Ford. TSpaces. To appear in IBM

Systems Journal, August, 1998.

7. A. Rowstron. Using asynchronous tuple space access primitives (bonita primitives)

for process co-ordination. In Coordination 1997, pages 426{429, 1997.

8. A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal, 1998.

9. A. Rowstron. Bulk primitives in Linda run-time systems. PhD thesis, Department

of Computer Science, University of York, 1997.


