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Abstract. In this paper we describe the proof of an optimisation that

can be applied to tuple space based run-time systems (as used in Linda).

The optimisation allows, under certain circumstances, for a tuple that

has been destructively removed from a shared tuple space (for example,

by a Linda in) to be returned as the result for a non-destructive read

(for example, a Linda rd) for a di�erent process. The optimisation has

been successfully used in a prototype run-time system.

1 Introduction

In this paper we present the proof of an optimisation that can be applied to

tuple space based run-time systems, which was �rst presented in Rowstron [1].

Examples of tuple space based systems are JavaSpaces [2], KLAIM [3], Linda

[4], PageSpace [5], TSpaces [6], TuCSoN [7] and WCL [8] to name just a few.

Throughout this paper we will just use the three standard Linda tuple space

access primitives:

out(tuple) Insert a tuple into a tuple space.

in(template) If a tuple exists that matches the template then remove the tuple

and return it to the process performing the in. If no matching tuple is

available then the process blocks until a matching tuple is available.

rd(template) If a tuple exists that matches the template then return a copy

of the tuple to the process that performed the rd. If there is no matching

tuple then the process blocks until a matching tuple is available.

Moreover, we shall assume that a single global tuple space is being used by all

processes.

The optimisation proved in this paper is referred to as tuple ghosting. The

(informal) semantics of the in primitive leads implementers to remove the tuple

that is returned to a process from the tuple space as soon as the in primitive

is completed. Tuple ghosting allows the tuple to potentially remain as a valid

result tuple for a non-destructive read performed by another process whilst a set

of assumptions holds.



Studying the soundness of the optimisation has been highly valuable; it

showed that the original algorithm [1] was too optimistic and allowed the re-

sult to remain visible for too long. In certain circumstances, the original rules

used for the optimisation altered the semantics of the access primitives. We are

con�dent now that the actual optimisation, modi�ed to use the semantics given

in Section 3, is sound.

1.1 Motivation for the optimisation

Optimisation of tuple removal is useful because often tuples are used to store

shared state between processes. For instance, a list is usually stored in a tuple

space so that the items of the list are stored in separate tuples, with each tuple

containing a unique number as the �rst �eld, representing its position in the list.

A single tuple is required that contains a shared counter indicating the number

of the next element that can be added. In order to add an element to the list, the

shared counter is removed using an in, the value of the counter increased and the

tuple is re-inserted, and then a new tuple is inserted containing the number of the

counter and the data as an element in the list. This is a common operation and

there have been proposals for the addition of new primitives to help performing

the update of the shared counter (see e.g. Eilean [9]), and, when using compile-

time analysis, to convert the counter updating into a single operation [10]. The

proposals were made with the intention of increasing concurrency. Additionally,

in high performance servers the cost of managing a primitive blocked waiting for

a matching tuple is greater than �nding a matching tuple and not blocking. One

of the new challenges for tuple space implementers is to create large-scale high

throughput servers, and therefore optimisations that reduce the server load are

important.

1.2 Implementation

Tuple ghosting has been implemented in a Java run-time environment and it has

proved to be clean and e�cient. To provide tuple ghosting the implementation

uses the following informal rules. When a tuple is returned as the result of an

in:

1. the same tuple cannot be returned as a result of another in;

2. the process which performed the in cannot access the tuple anymore;

3. whenever the process which performed the in performs any tuple space ac-

cess or terminates, the tuple is removed.

The kernel works by marking tuples as ghosted once they have been returned

by an in primitive. Every process using the kernel has a Globally Unique Iden-

ti�er (GUID) created dynamically as it starts to execute. When the process

registers with the run-time system, the process GUID is passed to the run-time

system that creates a primitive counter associated with the process. Each time a

process performs a tuple space access, the counter associated with the process is



incremented by one (before the primitive is performed). When a process requests

a tuple using an in, the matched tuple is marked as \ghosted" and tagged with

the GUID of the process that removed the tuple and with the current value of

the primitive counter associated with the process. Any other process can then

perform a rd and have this tuple as the result. However, whenever the tuple

is matched, the system compares on-the-
y the current value of the primitive

counter associated with the GUID attached to the tuple with the counter value

attached to the tuple. If the primitive counters di�er or if the process has ter-

minated then the tuple is discarded, and not used as a result for the rd.

All communication between the processes must occur through the shared

tuple space. Hidden communication between the processes would allow the pro-

cesses to determine that one had read a tuple after it had been destructively re-

moved by another. Process termination is an example of hidden communication

(where, for example, one process is started after another process terminates).

The starting process can deduce that any tuples removed by the terminated

process should not exist. Therefore, accounting for termination is important.

The rules that the kernel uses are described in detail in Section 3.

1.3 Performance

Table 1 shows some experimental results which, by means of the example of a

list stored in a tuple space, demonstrate the advantages of using tuple ghosting

using. In our scenario, the list is accessed by two reader processes that read the

counter 20 times, and a writer process that appends 40 elements to the end of

the list (updates the counter and adds new element).

The experimental run-time was written in Java, with the reader and writer

processes running as Java threads. The results were gathered on a Pentium II

400 MHz PC. The results shown in Table 1 are the average times of 20 execu-

tions with tuple ghosting both enabled and disabled. The execution times (with

standard deviations) are shown for the three processes. For the reader processes,

the number of blocked and ghosted rd primitives are also shown. A ghosted rd

is one that would have blocked if tuple ghosting was not enabled.

The results show (as expected) that no rd primitive leads to blocking when

tuple ghosting is enabled, but when ghosting is disabled we have that 70% of

the rd primitives do lead to a block. Tuple ghosting has therefore increased the

level of concurrency achieved in the system. In addition, the execution times

are reduced when the tuple ghosting is enabled. This is due to the overhead

associated with managing a rd that is blocked because no tuple is available.

The rest of the paper is structured as follows. In the next section the struc-

tural operational semantics for a traditional Linda implementation is outlined,

then in Section 3 the optimisation is outlined in more detail, and the structural

operational semantics for the optimised Linda implementation is presented. The

proof of correctness of the optimised version is then given in Section 4.



Ghosting disabled Ghosting enabled

Value St. Dev. Value St. Dev.

Reader 1 Time (ms) 4367 566 185 39

No. of blocking rd 15.75 1.37 0 0

No. of ghosted rd 0 0 9.75 0.64

Reader 2 Time (ms) 4281 743 194 37

No. of blocking rd 15.35 1.81 0 0

No. of ghosted rd 0 0 9.9 0.85

Writer Time (ms) 4886 670 590 71

Table 1. Performance of the implementation with tuple ghosting enabled and disabled.

2 Structural Operational Semantics for a Linda Kernel

2.1 Syntax

We assume the existence of some prede�ned syntactic categories that processes

can use. EXP , the category of value expressions, which is ranged over by e,

contains a set of variable symbols, V AR, ranged over by x, y and z, and a non-

empty countable set of value symbols, V AL, ranged over by v.

The three standard Linda tuple space primitives are the elementary actions

that processes can perform. Processes are constructed by using three composition

operators: the null process nil is a process constant that denotes a terminated

process, the action pre�x operator a: is a unary operator that denotes a process

that �rst executes action a and then behaves as its process argument, and the

parallel composition operator k is a binary operator that denotes the con-

current execution of its two arguments. Processes can also consist of evaluated

tuples (they are a separate syntactic category), that represent tuples that have

been added to the tuple space (as in [11]). An evaluated tuple is denoted by

out(v) with v 2 V AL.

To give a simpler presentation of our formal framework, we make a few

simplifying assumptions. We assume that tuples and templates consists of just

one �eld. The only di�erence between tuples and templates is that the formers

can only contain expressions (or values) while the latters can also contain formal

parameters (i.e. variables to be assigned). A parameter x is denoted by x, the

set of all parameters fx j x 2 V ARg is denoted by V AR.

By summarizing, the syntax of the language is

P;Q ::= nil j a:P j P k Q j P k O j O k P

O ::= out(v) j O

1

k O

2

a ::= out(e) j rd(t) j in(t)

t ::= e j x

Variables which occur in formal parameters of a template t are bound by

rd(t): and in(t): . If P is a process, we let bv(P ) denote the set of bound

variables in P and fv(P ) denote that of free variables in P . If bv(P ) = ; we

say that process P is closed. Sets bv( ) and fv( ) can be inductively de�ned as

follows:



fv(nil)

def

= ; bv(nil)

def

= ;

fv(a:P )

def

= fv(P ) n bv(a) bv(a:P )

def

= bv(P ) [ bv(a)

fv(P k Q)

def

= fv(P ) [ fv(Q) bv(P k Q)

def

= bv(P ) [ bv(Q)

fv(P k O)

def

= fv(P ) bv(P k O)

def

= bv(P )

fv(O k P )

def

= fv(P ) bv(O k P )

def

= bv(P )

fv(out(e))

def

=

�

feg if e 2 V AR

; otherwise

bv(out(e))

def

= ;

fv(in(t))

def

=

�

ftg if t 2 V AR

; otherwise

bv(in(t))

def

=

�

fxg if t = x

; otherwise

fv(rd(t))

def

=

�

ftg if t 2 V AR

; otherwise

bv(rd(t))

def

=

�

fxg if t = x

; otherwise

As usual, we write P [v=t] to denote the term obtained by substituting each

free occurrence of t in P with v, whenever t 2 V AR, and to denote P , otherwise.

2.2 Operational semantics

The operational semantics assumes the existence of a function for evaluating

value expressions; [[ � ]] : EXP �! V AL. So, [[ e ]] will denote the value of

expression e, provided that it does not contain variables. [[ � ]] is extended to

templates in the obvious way (i.e. [[ x ]] = x).

The operational semantics of the language is de�ned in the SOS style

[12] by means of a Labelled Transition System (LTS). This LTS is the triple

(P

1

;L

1

;�!

1

) where:

{ P

1

, ranged over by P and Q, is the set of closed processes generated by the

syntax given in Section 2.1.

{ L

1

def

= fout(v); rd(v); in(v)jv 2 V ALg is the set of labels (we shall use a to

range over L

1

and s over L

�

1

).

{ �!

1

� P

1

� L

1

� P

1

, called the transition relation, is the least relation

induced by the operational rules in Table 2 (to give a simpler presentation

of the rules, we rely on a structural relation de�ned as the least equivalence

relation closed under parallel composition that satis�es the structural rules

in Table 2). We shall write P

a

��! Q instead of (P; a;Q) 2�!

1

.

For s 2 L

�

1

and P;Q 2 P

1

, we shall write P

s

��! Q to denote that P = Q,

if s = �, and that 9P

1

; : : : ; P

n�1

2 P

1

: P

a

1

��! P

1

a

2

��! : : : P

n�1

a

n

���! Q, if

s = a

1

a

2

: : : a

n

.

Let us brie
y comment on the rules in Table 2. The structural laws simply say

that, as expected, parallel composition is commutative, associative and has nil

as the identity element. The operational rules S1-S5 should be self-explanatory.

Rules S1 and S2 just account for the intentions of processes to perform opera-

tions. They de�ne an auxiliary transition relation whose states are (not necessar-

ily closed) processes and whose set of labels is fout(e); rd(t); in(t) je 2 EXP; t 2



Structural Rules

P k nil � P P k Q � Q k P P k (Q k R) � (P k Q) k R

Operational Rules

S1 a:P

a

��! P

S2

P

a

��! P

0

P k Q

a

��! P

0

k Q

S3

P

out(e)

�����! P

0

^ [[ e ]] = v

P

out(v)

�����! P

0

k out(v)

S4

P

rd(t)

����! P

0

^ ([[ t ]] = v _ t 2 V AR)

P k out(v)

rd(v)

����! P

0

[v=t] k out(v)

S5

P

in(t)

����! P

0

^ ([[ t ]] = v _ t 2 V AR)

P k out(v)

in(v)

����! P

0

[v=t]

S6

P � Q ^ Q

a

��! Q

0

^ Q

0

� P

0

P

a

��! P

0

Table 2. Linda Operational Semantics

EXP [V ARg. The remaining rules build upon them. Rule S3 says that an out-

put operation is always non blocking, provided that the argument tuple can be

evaluated. Rule S4 says that a read operation can be performed only if there is a

tuple matching the template used by the operation. To check pattern-matching,

condition \[[ t ]] = v _ t 2 V AR" is used; it is satis�ed when either t is an expres-

sion that evaluates to v (the value stored in the tuple) or t is a parameter (a

parameter matches any value). Rule S5 di�ers from S4 just for the management

of the accessed tuple: indeed, in S5, the tuple is consumed, while, in S4, the

tuple is left untouched. Finally, rule S6 ensures that the structural relation does

not modify the behaviour of processes.

3 Structural Semantics for Optimised Linda

Having described the basic Linda structural semantics, we now consider the

structural semantics for the optimised Linda implementation that uses tuple

ghosting. In order to illustrate tuple ghosting in more detail, let us consider two



very simple processes that interact through the tuple space. Their actions are

shown in Table 3.

Process A Process B

A

1

out(a) B

1

in(a)

A

2

rd(a) B

2

out(b)

A

3

rd(b) B

3

out(a)

Table 3. Two simple example processes.

We shall use Petri Nets and their unfoldings as case graphs to describe the

di�erence between the \classical" and the \optimized" semantics. In a Petri net

the circles represent places, and the squares represent transitions. A transition

can �re only when all the places that are preconditions for that transition contain

tokens. When a transition �res it consumes the tokens in its preconditions and

places a token in each of the output places that are linked to it by arcs.

The Petri net and the case graph showing the parallel composition of our

two processes can be seen in Figure 1. If one ignores the dotted links in the

�gure, then the Petri net and the case graph are those created according to the

semantics for the primitives as given in the previous section.

A2:rd(a)

A3:rd(b) B2:out(b)

B3:out(a)

A1:out(a)

B1:in(a)

A1:out(a)

A2: rd(a) B1:in(a)

B1: in(a) B2:out(b)

B2: out(b)

A3: rd(b)

B3:out(a)

B3: out(a)

A3: rd(b)

B3:out(a)

A2:rd(a)

A3: rd(b)

A2:
rd(a)

Fig. 1. A Petri Net and case graph for processes A and B.

In Figure 1 the token starts in the initial place, and the only transition that

can �re is A1:out(a).When this �res, a token is placed in the three output places



connected to the transition. This means that either the transitions A2:rd(a) or

B1:in(a) can �re. If B1:in(a) �res then the other cannot �re, because the

token is removed from one of its preconditions. This token is replaced when the

transition B3:out(a) is �red. If A2:rd(a) �res, then the precondition tokens

are consumed, but the transition is linked to one of its own preconditions. So, a

token is reinserted in that place. However, the same rule cannot re-�re because

the other precondition does not contain a token any longer. This means that the

transition B1:in(a) is the only one that can �re, as it is the only transition that

has all precondition places �lled with a token. The case graph shown in the same

�gure shows the di�erent ordering of the possible transition �rings (of course,

the dotted arc has to be ignored).

In Figure 1 the dotted arcs represent the tuple ghosting optimisation. We

allow the transition A2:rd(a) to �re after the transition B1:in(a) �res. This

means that the manipulation of a tuple has been suspended in the middle of the

operation; Process B has performed the in operation and has received the tuple

and can continue, but the tuple is not actually removed whilst Process A cannot

know that process B has received the tuple. This only occurs when there is the

possibility of a synchronisation between the two processes, which happens using

the tuple b, when Process B inserts it.

From the global perspective, this appears to be incorrect; it allows the read-

ing of a tuple that should have been removed. We will now present the formal

semantics of the optimised version, and then show the proof that the two se-

mantics are equivalent.

3.1 Optimized operational semantics

The optimized operational semantics of the language is de�ned by means of an-

other LTS. To this aim, we assume the existence of a set of process locations, Loc,

ranged over by `, where the parallel components of processes can be allocated,

and of a distinct location, � , where evaluated tuples are placed. We denote by

Loc a disjoint set of ghost locations (where ghost tuples can be placed) which is

in bijection with Loc via the operation �. Finally, we let LOC = Loc[Loc[f�g,

ranged over by �, be the set of all locations. Locations shall be used to model

the GUID assigned to processes in the implementation.

The idea is that Linda processes are statically allocated, e.g. distributed over

a net of processors, once and for all. The names of locations and the distribution

of processes over locations can be arbitrarily chosen. Hence, for any given process

P , its distribution is determined by the number of its parallel components, i.e.

by the number of occurrences of the parallel operator which are not guarded

by any action. For instance, the process out(1) k out(2):(out(3) k out(4)) has

initially two parallel components (although, after the execution of the out(2)

operation, it is composed of three parallel processes) and can be allocated over,

at most, two processors. This means that, as far as distribution is concerned,

we have conceptually two di�erent parallel operators and it is convenient to

use di�erent notations for them: we shall use j to denote the occurrences of

the parallel operator that do not cause distribution of their components, e.g.



those occurrences guarded by some action, and shall still use k for the other

occurrences, e.g. (some of) the unguarded occurrences. Obviously, the semantics

of j is de�ned by rules analogues to S2 and to the structural ones.

To manage locations we introduce two new operators: an allocator operator

� :: P , that says that process P is allocated at location �, and a location remover

operator P n �, that says that location � (and the process located there) must

be removed from P .

The optimized LTS is the triple (P

2

;L

2

;�!

2

) where:

{ P

2

, ranged over by P and Q, is the set of closed processes generated by the

syntax given in Section 2.1 extended with the following productions

P;Q ::= : : : j P j Q j � :: P j P n �

Hence, P

2

also contains the distributed versions of processes from P

1

.

{ L

2

def

= fout(v)@�; rd(v)@�; in(v)@�; stop@�jv 2 V AL; � 2 LOCg is the set

of labels (we shall use �@� to range over L

2

and � over L

�

2

).

{ �!

2

� P

2

� L

2

� P

2

, called the transition relation, is the least relation

closed under parallel composition that satis�es the operational rules in Ta-

ble 4 (again, to give a simpler presentation of the rules, we rely on a struc-

tural relation de�ned as the least equivalence relation closed under parallel

composition that satis�es the structural rules in Table 4). We shall write

P

�@�

����! Q instead of (P; �@�;Q) 2�!

2

.

For � 2 L

�

2

and P;Q 2 P

2

, we shall write P

�

��! Q to denote that P = Q, if

� = �, and that 9P

1

; : : : ; P

n�1

2 P

2

: P

�

1

@�

1

�����! P

1

�

2

@�

2

�����! : : : P

n�1

�

n

@�

n

������!

Q, if � = �

1

@�

1

� �

2

@�

2

� : : : � �

n

@�

n

.

Let us brie
y comment on the rules in Table 4. The additional structural laws

say that the location remover distributes with respect to parallel composition

and that the removal just concerns the location (and the process located there)

explicitely named by the operator. The operational rules should be quite explica-

tive. The general idea is as follows. Tuples are initially allocated at location � .

When a tuple located at � is accessed by an in action performed by a process lo-

cated at `, the tuple becomes a ghost tuple and is relocated at the ghost location

`. Whenever a process located at ` performs an action or terminates, removal of

the ghost tuple that could have been allocated at ` takes place. In particular,

rules OS1-OS3 just account for the intentions of processes to perform opera-

tions. They de�ne an auxiliary transition relation whose states are (not necessar-

ily closed) processes generated by the extended syntax and whose set of labels

is fout(e)@`; rd(t)@`; in(t)@`; stop@` j e 2 EXP; t 2 EXP [ V AR; ` 2 Locg.

The remaining rules build upon them. Process termination is modelled by let-

ting ` :: nil perform the action stop@` (rule OS2), and, in the presence of a

stop@` action, requiring the removal of ghost tuples at ` (rule OS4). Rule OS5

deals with addition of tuples to the tuple space (located at �). Rule OS6 says

that a rd operation can access both tuples in the tuple space and ghost tuples

that are not allocated at the location of the process that performs the operation.

Rule OS7 says that an in operation can access just tuples in the tuple space



Structural Rules

P k nil � P P k Q � Q k P

P k (Q k R) � (P k Q) k R (P k Q) n ` � P n ` k Q n `

(` :: P ) n ` � nil (� :: P ) n ` � � :: P if � 6= `

Operational Rules

OS1

P

a

��! P

0

` :: P

a@`

���! ` :: P

0

OS2 ` :: nil

stop@`

�����! nil

OS3

P

�@`

����! P

0

P k Q

�@`

����! P

0

k Q

OS4

P

stop@`

�����! P

0

P

stop@`

�����! P

0

n `

OS5

P

out(e)@`

�������! P

0

^ [[ e ]] = v

P

out(v)@`

�������! P

0

n ` k � :: out(v)

OS6

P

rd(t)@`

������! P

0

^ ([[ t ]] = v _ t 2 V AR) ^ � 6= `

P k � :: out(v)

rd(v)@�

0

�������! P

0

[v=t] n ` k � :: out(v)

where �

0

=

�

` if � = �

� otherwise

OS7

P

in(t)@`

������! P

0

^ ([[ t ]] = v _ t 2 V AR)

P k � :: out(v)

in(v)@`

������! P

0

[v=t] n ` k ` :: out(v)

OS8

P � Q ^ Q

�@�

����! Q

0

^ Q

0

� P

0

P

�@�

����! P

0

Table 4. Optimized Linda Operational Semantics



(i.e., it cannot access ghost tuples). Location removal is actually performed into

two steps: �rst, a location restriction is put and, then, when applying rule OS8,

the removal actually takes place by means of the structural relation. The transi-

tion labels always refer the location of the process that performs the operation,

apart for the label in the conclusion of rule OS6 that, whenever a ghost tuple is

accessed, refers the location of such a tuple.

4 Proof of correctness

The actual proof is technically involved, although not conceptually di�cult, and

can be found in the full paper [13]. In this section, we only provide a sketch.

The two main results can be informally stated as follows:

{ each computation from a distributed version of a process P allowed by the

optimized semantics can be simulated by a computation from P within the

original semantics (Theorem 1);

{ each computation from a process P allowed by the original semantics can

be simulated by a computation from a distributed version of P within the

optimized semantics (Theorem 2).

To simplify the statement of properties, in the rest of this section we shall

use P , Q and R to range over P

1

and P

o

, Q

o

and R

o

to range over P

2

.

First, it is convenient to �x the allocation function used to distribute the

parallel components of processes. To this aim, we assume that fl; rg

�

� Loc

and use � to range over fl; rg

�

. Hence, strings of the form llr and rllrl are

valid locations. Now, by relying on locations of the form fl; rg

�

that can be

easily \duplicated" (given a �, �l and �r are two new di�erent locations), we

de�ne an allocation function that, intuitively, for any process P 2 P

1

returns

its \maximal" distribution: each parallel component is allocated over a di�erent

location.

De�nition 1. The allocation function L

�

: P

1

�! P

2

is de�ned as follows:

L

�

(nil)

def

= � :: nil L

�

(a:P )

def

= � :: a:P

L

�

(P j Q)

def

= � :: (P j Q) L

�

(P k Q)

def

= L

�l

(P ) k L

�r

(Q)

L

�

(P k O)

def

= L

�

(P ) k T (O) L

�

(O k P )

def

= T (O) k L

�

(P )

T (O

1

k O

2

)

def

= T (O

1

) k T (O

2

) T (out(v))

def

= � :: out(v)

where function T separately allocates all evaluated tuples at location � .

Correctness will be sketched in the case function L

�

(hence, maximal distri-

bution) is used for allocating processes. The proof would proceed similarly also

if a di�erent allocation function was used to initially allocate processes from P

1

.

We will also use an \inverse" function C that relates the states of P

2

to those

of P

1

.

De�nition 2. The cleaning function C : P

2

�! P

1

is de�ned as follows:



C(` :: P )

def

= P C(� :: out(v))

def

= out(v)

C(` :: P )

def

= nil C(P j Q)

def

= P j Q

C(P

o

k Q

o

)

def

= C(P

o

) k C(Q

o

)

With abuse of notation, given a label �@� 2 L

2

we write C(�@�) to denote the

action part � whenever � 2 L

1

, and the empty action � otherwise (i.e. whenever

� = stop). A similar notation shall be used for sequences of labels from L

�

2

.

We shall use �(P ) to denote the set of locations occurring in P

o

. Formally,

function � : P

2

�! LOC is de�ned inductively as follows:

�(nil) = �(a:P ) = �(out(v)) = �(P

o

j Q

o

) = ;, �(P

o

k Q

o

) = �(P

o

) [ �(Q

o

),

�(� :: P ) = f�g, �(P

o

n �) = �(P

o

) n f�g.

As a matter of notation, we shall use P

o

[`

0

=`] to denote the term obtained

by substituting each occurrence of ` in P

o

with `

0

. Finally, we use the notation

�

`

i

2L

`

i

:: out(v

i

) as a shorthand for `

1

:: out(v

1

) k : : : k `

n

:: out(v

n

) (the

order in which the operands `

i

:: out(v

i

) are arranged is unimportant, as k is

associative and commutative in both the two operational semantics considered

in the paper); and when n = 0, this term will by convention indicate nil.

We �rst outline the proof that the original semantics can simulate the op-

timized one. To this aim, we introduce the following preorder over traces (i.e.

sequences of actions) in L

�

2

.

De�nition 3. Let � be the least preorder relation over L

�

2

induced by the two

following laws:

tp1 �

0

� rd(v)@� � in(v)@` � � � �

0

� in(v)@` � rd(v)@` � �

tp2 �

0

� �@� � in(v)@` � � � �

0

� in(v)@` � �@� � � if � 6= `; `

The intuition behind the trace preorder � is that if P

o

�

��! Q

o

and �

0

� �

then it also holds that P

o

�

0

��! Q

o

, hence �

0

can simulate �. Law tp1 permits

exchanging the execution order of two operations accessing the same evaluated

tuple in order to avoid accessing ghost tuples. Law tp2 permits exchanging the

execution order of operations that are not causally related. Its simple presenta-

tion relies on the observation that there cannot be two ghost tuples at the same

location, hence if L

�

(P )

�

��!

in(v)@`

������!

�@`

����! Q

o

then it should be � = rd(v)

and we would fall in the case dealt with by law tp1. Note that operations that

take place at the same location can never be swapped because there is no way

to ascertain when they are causally independent.

Let us now introduce some useful notations. We shall write a 62 s to denote

that there are not s

1

; s

2

such that s = s

1

as

2

(�@� 62 � has a similar meaning).

Moreover, we write g(�) to denote the number of occurrences in � of locations

of Loc ('g' stands for 'ghost').

Intuitively, sequences of labels � 2 L

�

2

such that g(�) > 0 are obtained

from sequences of operations that also access ghost tuples and, hence, cannot



be mimicked in the original semantics. We will show that, however, for each �

with g(�) > 0 it is possible to �nd a �

0

such that (i) g(�

0

) = 0, hence �

0

is

obtained from a sequence of operations that can also be performed according to

the original semantics, and (ii) �

0

� �, hence �

0

simulates � according to the

optimized semantics.

The laws of the trace preorder can be used to reduce the number of ghost

tuples accessed during a computation. The following crucial property gives a

method for transforming a generic computation in an equivalent one (i.e. with

the same �nal state) that corresponds to a sequence of operations that never

access ghost tuples.

Proposition 1. L

�

(P )

�

��! Q

o

rd(v)@`

������! R

o

implies that there are �

1

and �

2

such that � = �

1

� in(v)@` � �

2

and �@` 62 �

2

. Moreover, if �@` 62 �

2

then there

is `

0

such that L

�

(P )

�

1

��!

�

2

��!

rd(v)@`

0

������!

in(v)@`

������! R

o

.

By repeatedly applying the previous property we have that

Proposition 2. L

�

(P )

�

��! Q

o

implies that there is �

0

� � such that

L

�

(P )

�

0

��! Q

o

and g(�

0

) = 0.

We now relate the single transitions of the optimized semantics that do not

access ghost tuples to the transitions of the original semantics. Notice that the

states of the optimized semantics may contain ghost tuples.

Proposition 3. For all L � �(L

�

(P )), L

�

(P ) k �

`

i

2L

`

i

:: out(v

i

)

a@`

���! Q

o

implies that there are R, �

0

and L

0

� �(L

�

0

(R)) such that P

a

��! R and Q

o

�

L

�

0

(R) k �

`

i

2L

0

`

i

:: out(v

i

).

Proposition 4. For all L � �(L

�

(P )), L

�

(P ) k �

`

i

2L

`

i

:: out(v

i

)

stop@`

�����! Q

o

implies that there is R such that P � R and Q

o

� L

�

(R) k �

`

i

2Lnf`g

`

i

:: out(v

i

).

We can generalize the previous two properties to sequences of transitions.

Proposition 5. L

�

(P )

�

��! Q

o

and g(�) = 0 imply that there are P

0

, �

0

, L �

�(L

�

0

(P

0

)) and v

i

such that P

C(�)

����! P

0

and Q

o

� L

�

0

(P

0

) k �

`

i

2L

`

i

:: out(v

i

).

Finally, from Propositions 2 and 5, we get that the original semantics can

simulate the optimized one. Formally,

Theorem 1. L

�

(P )

�

��! Q

o

implies that there are �

0

� � and P

0

such that

P

C(�

0

)

����! P

0

and C(Q

o

) � P

0

.

Now, we outline the proof that the optimized semantics can simulate the

original one (Theorem 2). First, we need to formalize the idea that locations

can be arbitrarily chosen and that distributed processes that only di�er for

the names of their locations behave similarly. The important point here is that



the allocation function does not preserve the structural equivalence. Indeed,

the allocation of two structurally equivalent processes gives rise to two new

processes that are not structurally equivalent. However, structural equivalence

can be recovered by appropriately renaming the locations of one of the two

processes by means of a one-to-one function. The crucial properties are

Proposition 6. If P � P

0

can be proved without using the �rst structural

law, then there is a one-to-one function � : �(L

�

0

(P

0

)) �! �(L

�

(P )) such that

L

�

(P ) � �(L

�

0

(P

0

)).

Proposition 7. Let � : �(L

�

0

(P

0

)) �! �(L

�

(P )) be a one-to-one function.

If P � P

0

can be proved without using the �rst structural law, �(L

�

0

(P

0

)) �

L

�

(P ) and �(L

�

0

(P

0

)) = �(L

�

0

(Q

0

)), then there is Q such that Q � Q

0

and

�(L

�

0

(Q

0

)) � L

�

(Q).

Now, by exploiting the above properties, we are able to relate the transitions

of the original semantics to those of the optimized one. Notice that the states of

the optimized semantics may contain ghost tuples.

Proposition 8. For all L � �(L

�

(P )), P

a

��! Q implies that there are R, ` and

L

0

� �(L

�

(R)) such that L

�

(P ) k �

`

i

2L

`

i

:: out(v

i

)

a@`

���! L

�

(R) k �

`

i

2L

0

`

i

::

out(v

i

) and R � Q.

By generalizing the previous property to nonempty sequences of transitions,

we get that the optimized semantics can simulate the original one. Formally,

Theorem 2. P

s

��! Q implies that there are R

o

and � such that L

�

(P )

�

��! R

o

,

s = C(�) and C(R

o

) � Q.

5 Conclusion

We have described a tuple ghosting optimisation that allows tuples to be still

used as the results of non-destructive tuple space accesses once they have been

destructively removed. The motivation for tuple ghosting has been brie
y out-

lined, as have some practical results from a prototype system demonstrating the

advantage of the approach.

The operational semantics of the original Linda and of the version with the

optimisation are illustrated. Using these operational semantics, we have pre-

sented a sketch of the formal proof of the tuple ghosting optimisation, and shown

that the optimisation does not alter the semantics of the primitives from a pro-

grammers' perspective. This has been achieved by proving that the optimised

semantics can simulate the original semantics, and that a sequence of transitions

from the optimised semantics can be mimicked by a sequence of transitions from

the original semantics.
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