State- and Event-based Reactive Programming
in Shared Dataspaces

Nadia Busi', Antony Rowstron? and Gianluigi Zavattaro!

! Dipartimento di Scienze dell’Informazione, Universita di Bologna,
Piazza di Porta S. Donato 5, I-40127 Bologna, Italy.
E-mail: {busi,zavattar}@cs.unibo.it

2 Microsoft Research, 7 J J Thomson Avenue, Cambridge, CB3 0FB
E-mail: antr@microsoft.com

Abstract. The traditional Linda programming style, based on the in-
troduction and consumption of data from a common repository, seems
not adequate for highly dynamic applications in which it is important
to observe modification of the environment which occur quickly. On the
other hand, reactive programming seems more appropriate for this kind
of applications. In this paper we consider some approaches recently pre-
sented in the literature for embedding reactive programming in shared
dataspaces, we present a possible classification for these approaches, and
we perform a rigorous investigation of their relative advantages and dis-
advantages.

1 Introduction

The development of Linda-like coordination languages [Gel85] for use over wide-
area networks has driven the consideration of new primitives being added to
allow new styles of coordination. One set of such primitives are those that allow
reactive-programming, essentially allowing a program to be notified on the inser-
tion of tuples into particular tuples spaces, or dataspaces. Examples of Linda-
like coordination languages including such primitives are JavaSpaces [WT98],
TSpaces [WMLF98] and WCL [Row98].

One interesting observation is that the primitives incorporated within the
coordination languages, whilst all aiming to provide support for reactive pro-
gramming, have different (informal) semantics. Indeed, it is possible to classify
the primitives incorporated as being: (1) state-based, (2) event based, and (3)
hybrid.

In this paper we provide a formal semantics to be used to compare the ex-
pressive power and the interchangeability of these reactive mechanisms, where
by interchageability we mean the possibility to substitute one mechanism in
place of the others without affecting the internal behaviour of the coordinated
components.

For each of the classes we consider a typical coordination primitive, for clarity
we assume there is a single dataspace:

(1) forEach(a,P): spawns an instance of process P for each occurrence of a
currently in the dataspace;

(2) notify(a, P): produces a listener, that we denote with on(a, P), which will
spawn an instance of P each time a new a is produced;

(8) monitor(a, P): spawns an instance of process P for each occurrence of a
currently in the dataspace, and produces a listener on(a, P) which will spawn
an instance of P each time a new a is produced.

Furthermore, for event-based mechanisms we consider a dereg(a, P) primitive
which removes one occurrence of listener on(a, P).

The primitive notify has been proposed as a coordination operations by
JavaSpaces [W198], monitor has been introduced for the first time by one of
the authors in WCL [Row98], while forEach is an adaptation to our context
of the so-called copy-collect operation [RW98]: this primitive, proposed as
a solution for the typical multiple-read problem of Linda, has the ability to
atomically copy all the data satisfying a certain pattern from one dataspace to
another.

In this paper we demonstrate that the three approaches are equivalent by
showing how each of the approaches can be reproduced in terms of the others.
However, only some of these translations are adequate for open environments
(new components may be introduced in the system at run time and therefore
dynamically); in particular, the mapping from the state- to the event-based
approach and vice versa are valid only for closed applications (where the com-
ponents involved in the system are a priori known and therefore statically).

In Section 2 we further motivate the introduction of reactive primitives. In
Section 3 we present a process calculus used to perform a rigorous investigation
of the three reactive primitives; the results of this comparison are reported in
Section 4. Finally, Section 5 contains some conclusive remarks.

2 Reactive Programming in Shared Dataspaces

In order to demonstrate why reactive programming primitives are attractive in
Linda-like coordination languages, let us consider some of the functionality of
a simple instant messenger type tool: the functionalities that allows a user to
display a list of “buddies” and their current status (e.g., in meeting, at lunch,
busy and so forth).

Each user runs a buddy list agent which enables them to signal to other users
what their current status is, and to observe the status of the other users. A user
can change their state by pressing buttons on the buddy list agent. Although
this example is simple, it demonstrates the power of reactive programming.

A simple way to create the buddy list agent is to create a shared dataspace
into which the buddy list agents place tuples representing their status. Whenever
a user starts a buddy list agent, it inserts a status tuple into the shared dataspace,
containing the user’s name and their initial status. When a user changes their
status in the buddy list agent, the agent removes their status tuple and inserts a

new tuple with the user’s name and their new status. When the agent starts, a
list of all users with a status tuple is displayed, also showing their current status.
As other users change their states, these changes are reflected on all the users
buddy lists.

The state tuples in the shared dataspace at any one time represent the global
status of (most of) the users and a buddy list agent can examine these tuples to
determine who is currently available and their status. This means the application
does not involve a centralised coordinator. It should be noted that the tuple space
does not necessarily contain the entire global state because tuples are removed
to be updated. Therefore, if a buddy list agent is updating their user’s status
tuple, the user will not be represented by a tuple in the tuple space.

The implementation of such a scheme using the standard Linda primitives is
not easy, requiring shared counters and so forth. However, reactive programming
primitives should be able to enable this programming style.

So, let us consider how the monitor primitive can be used in this example.
When a buddy list agent is started it performs a monitor on the shared tuple
space. This has the effect of returning all the current state tuples and any ones
that are inserted in future. In the description of the buddy list agent it was de-
scribed how it is possible for the shared dataspace not to contain all state tuples
as one or more of the agents may be updating their status tuple. However, this
does not matter because any agent updating their status tuple will reinsert the
status tuple. When this occurs the monitor primitive will consider the inserted
tuple and return it. When a buddy list agent receives the tuple it is able to check
the users name locally and discover whether the tuple represents the status of
as yet unseen user or if it is an update of an existing user’s status.

The monitor primitive was introduced in WCL [Row98]. It explicitly returns
the tuples that match the template in the dataspace, as well as tuples subse-
quently inserted (until a dereg is performed). JavaSpaces, in contrast, provides
a notify primitive which does mot return tuples that are already in the tuple
space which match the template, simply tuples inserted subsequently'. This has
several side effects, one is that the notify primitive can not be used in the same
way as the monitor primitive in the buddy list example. From a programmer’s
perspective, the issue is how to ensure that each status tuple is read once. If all
matching tuples in the dataspace are retrieved prior issuing the notify primitive
(for example using a forEach primitive), a tuple can be inserted once the forEach
has completed but before the notify has been started, and therefore, be missed.
Alternatively, if the notify is issued first, and after a forEach is performed, a
single tuple can be returned twice (and there is no explicit ordering). Therefore,
from a programmers perspective the use of a monitor appears more powerful
and flexible.

! It actually returns a notification that a tuple has been inserted not the tuple, and
the process must explicitly retrieve the new tuple.

3 The Calculus

In this section, we introduce a process calculus based on the Linda coordination
primitives plus the reactive mechanisms discussed in the Introduction,

By borrowing typical techniques from the tradition of process calculi for
concurrency (e.g., Milner’s CCS [Mil89]), an agent is described as a term of an
algebra where the basic actions are typical Linda coordination primitives or one
of the considered reactive based coordination operations.

To be general, we consider a denumerable set of names for data, called Data,
ranged over by a, b, The set Prog of programs, ranged over by P, P', ..., is
the set of terms generated by the following grammar:

P i= 0| wP | (a) | on(a,P) | K| PP

uw == out(a) | in(a) | rd(a) |
forEach(a, P) | notify(a,P) | monitor(a,P) | dereg(a,P)

where p denotes an instance of one of the possible coordination primitives, and
K stands for a generic element of a set Name of program names; we assume
that all program name occurrences are equipped with a corresponding (guarded)
defining equation of the form K = P. Program names are used to support
recursive definitions as, for example, in the term Rengy = in(a).out(b).Renqp,
which represents a program able to repeatedly rename messages of the kind a in
messages of the kind b.

A term P is the parallel composition (we use the standard parallel com-
position operator |) of the active programs, plus the data which are currently
available in the data repository, and terms which denote listeners used for the
modeling of event-based reactive programming. Term 0 represents a program
that can do nothing. Term p.P is a program that can do the action p and after
behaves like P. The term (a) denotes an instance of datum a which is currently
available for rd(a) and in(a) operations; on the other hand, on(a, P) represents
a listener responsible to activate a new instance of program P each time a new
occurrence of datum a is produced.

In the following we will exploit a structural congruence relation in order to
equate terms which represents the same system even if they are syntactically
different. Let equiv be the least congruence relation satisfying:

P|Q = Q|P P|(QIR) = (P|Q)|R
Plo=P P=K ifP=K

In the following we will reason upto structural congruence, i.e., we will not make
any distinction between P and () whenever P = ().

We use the following notation: P ¢ R (to indicate that P is not a subterm of
program R), [],, P (to denote the parallel composition of n instances of program
P), and [, P; (to denote the parallel composition of the indexed programs F;).

The operational semantics is defined by the transition relation (Prog, —)
defined as the least relation satisfying the axioms and rules reported in Table 1.

in(a).P|(a)|R — P|R

rd(a).P|{a)|R — P|(a)|R

forBach(a, P).QITL, (@)|R — QITL, PITL, (@)IR (a) & R
notify(a, P).Q|R — Q|on(a, P)|R

monitor(a, P).Q| [T ()R — Q| T, Plona, P)|TL, (a)|R (a) ¢ R
dereg(a, P).Qlon(a, P)|R — Q|R

for any S,

out(a).P|[]; on(a, P;)|R — P|(a)| [, Pi|I]; on(a, P;)|R on(a,S) & R

Table 1. The operational semantics.

In the following we denote by P —* P’ the fact that either P = P’ or there
exist Py ... P, such that Py = P, P, = P', and P; — P;;, (for 0 <i < n).

The first two axioms deal with the in(a) and rd(a) coordination operations:
both operations require the presence of a term (a); in the second case the result
of the execution of the operation is that this term is consumed.

The third axioms describe the forEach(a, P) operation: the result of its ex-
ecution is the spawning of a new process P for each instance of (a) (observe
that this is ensured by the side condition (a) ¢ R). The result of the execu-
tion of the notify(a, P) operation is the spawning of the listener on(a, P). The
monitor(a, P) primitive combines the two above operations: a new process P is
spawned for each instance of (a) and a new listener on(a, P) is produced.

The dereg(a, P) requires the presence of a listener on(a, P), and this term is
removed as effect of the execution of this operation.

The out(a) operation produces a new term (a); moreover, for each listener
on(a, P) in the environment, a new program P is spawned (observe that this is
ensured by the side condition: for any S, on(a, S) € R).

In the following we will focus on three variants of the calculus, in which
only one among the three reactive primitives forFEach, notify, and monitor
is considered. The three calculi are denoted with L[forEach], L[notify], and
L[monitor], respectively. We will also consider a fourth subcalculus in which
both the notify and the forFEach operations are considered: this calculus is
denoted by L[forEach,notify].

4 Comparing the Reactive Mechanisms

In this section we compare the expressive power of the different reactive mecha-
nisms by investigating the encodability of one mechanism in terms of the others.
We will show that in general, for each pair of calculi there exists an encoding
function from the first calculus to the second.

Two kinds of encodings are used: one adequate for closed systems only, and
one suitable for open systems too. In the first case, indeed, it is necessary to
assume that all the programs involved in the system are a priori known; on the
other hand, the second class of encodings does not make this kind of assumption.

To be more precise, we state that an encoding function [[J] from one calculus
to another is open if the following costraints are satisfied:

1Pl = [PN,p R
[PIQ1 = [P1I[Q]

where n(P) denotes the set of names of data which occur in the program P, and
R, denotes a program (depending on the considered encoding) used to manage
the name a occurring inside P.

We refer to this class of encodings as “open” because the addition of a new
program () in parallel with P does not require to recompute the overall encoding
of P; indeed, given P, its encoding [[P]] and a program @ to be added in parallel
with P, we have that the new encoding

[P1Q1 = [PNIQN I Tn(pyun(@) Ba = IPTIQN T, (0p\n(p) Ra

can be obtained simply by adding new programs in parallel with the initial
encoding [[P]

monitor ——S— open encoding

—_ ym Non-open encodin

forEach -

Fig. 1. Summary of the encodings.

The results presented in the rest of this section are summarized in Figure 1. In
Subsection 4.1 (resp. 4.2) we show the existence of an open encoding of Linotify]
(resp. L[forEach]) in L[monitor]. This means that the monitor primitive is ex-
pressive enough to model both the notify and the forFEach operations. We
show the existence of an open encoding of L[monitor] in L[forEach,notify] in
Subsection 4.3.

As far as static systems are concerned, also the notify and the forFEach
primitives are interchangeable: we show the existence of non—open encodings of
Lnotify] in L[forEach] (and vice versa) in Subsection 4.4 (resp. 4.5). By compos-
ing each of these encodings with the open encoding of the monitor primitive in
the language containing both the notify and the for Each operations, we obtain
a non—open encoding of L{monitor] in L[notify] (and in L[forEach]).

4.1 Encoding L[notify] in L[monitor]

In this section we show that it is possible to model the event-based reactive
mechanism of the notify primitive using the monitor operation.

The hybrid approach of the monitor primitive observes all the data already
available at the instant in which the operation is performed, as also the fu-
ture incoming entries. On the other hand, the notify operation observes only
the incoming entries. In order to overcome this difference, for each datum (a)
we exploit an auxiliary datum (a'); this kind of data are produced and subse-
quently removed every time an out(a) operation is performed. In this way the
auxiliary data (a’) are not persistent in the dataspace, but they are stored only
temporarily.

When we need to model a notify(a, P) operation, we use monitor(a’, P)
which observes the auxiliary data only; as these data are not persistent, only
subsequent productions will be observed.

Formally, the encoding function is defined as [[P]] = [P] where [P] is induc-
tively defined as follows:

[0] =0 [{a)] = (a)

[on(a, P)] = monitor(a’,[P]) [K]=K'

[Ple] = [P]ITQ] [1-P] = p.IP] p # notify(a,Q), out(a)
[notify(a, P).Q] = monitor(a’, [P]).[Q]

[out(a).P] = out(a').in(a').out(a).[P]

where, for each program name K in L[noti fy] with definition K = P, we assume
the existence of a corresponding K’ in L[monitor] with definition K’ = [P].
Moreover, we assume that for each encoding [P] the auxiliary names a’ are
different from each of the names of data occurring in P.

This encoding satisfies the above contraints; thus it is open. Moreover, we
have that it is also homomorphic with respect to the parallel operation, i.e.,
IP|Q] = [TPTIIQ]- In the terminology of [dBP91] this property is called modu-
larity with respect to the parallel composition operator.

The correctness of this encoding is formally stated by the following theorem
which states that, given a program P of L[notify], each computation step of P
can be simulated by [P], and that each computation of [P] can be extended
in such a way that it corresponds to an equivalent computation of P. Due to
space limit we do not report the proof of this theorem (as also the proofs of the
theorems in the following sections).

Theorem 1. Given a program P of L[notify] we have that:

— if P — P’ then [P] —7 [P'];
— if [P]] —T Q then there exists P' such that Q —* [[P']] and P —* P'.

An interesting property of this encoding concerns the use of the auxiliary
names a'. As stated above, data (a') are produced (and subsequently removed)
simply to notify the execution of out(a) operations. Observe that this production
and subsequent consumption operations could be executed in interleaving with

other operations performed by concurrent processes. As an example consider the
encoding [notify(a, P)|out(a)] = monitor(a’,[P])|out(a’).in(a’).out(a). Con-
sider now the computation of the encoding in which first {(a') is produced and
consumed, after the monitor operation is performed, and finally, the out(a)
primitive is executed.

This computation is particularly of interest because no reaction is activated
even if the output of {a) is executed after the execution of the program repre-
senting the notify(a, P) process. However, this is not a problem for the encoding
because this particular computation corresponds to the computation of the ini-
tial program in which the notify operation is executed only after the output of

().

4.2 Encoding L[forEach] in L[monitor]

Now we concentrate on the modeling of the state-based primitive forEach using
the hybrid approach adopted by monitor. The difference between the two oper-
ations is that monitor observes not only the data already available, but is also
activates a listener which observes the future incoming entries. This difference
can be covered simply by removing this listener immediately after its activation:
following this approach, a for Each operation is modeled by a monitor primitive
followed by a dereg. Formally, the new encoding can be defined as follows

[Pl = [P1] (tocka)

a€n(P)
where [P] is inductively defined as above, with only two non-trivial cases

[forEach(a, P).Q] = in(lock,).monitor(a,[P]).
dereg(a, [P]).out(lock,).[Q]
[out(a).P] = in(lock,).out(a).out(lock,).[P]

where we assume that for each encoding [P]] the auxiliary names lock, are all
distinct from the names a occurring inside P.

Also in this case the correctness of the encoding is stated by a theorem similar
to Theorem 1; the difference here is in the fact that we have to consider also the
data (lock,).

Theorem 2. Given a program P of L[for Each] we have that:

— if P — P’ then [P] —* [P aen(py\n(py(locka);
— if [P]] —™ Q then there exists P' such that P —* P’ and
Q —* [P'N Maen(py\n(pr) (locka).

The encoding exploits, for each name of datum a occurring in the source
program P, the auxiliar datum (lock,), to implement mutual exclusion between
the execution of the programs corresponding to the output operation out(a)
and the reactive operations forFach(a). Mutual exclusion is achieved simply by

forcing the withdrawal (and subsequent release) of the datum (lock,) before (and
after) each sequence of critical operations to be executed in mutual exclusion.
This locking policy is necessary in order to ensure that the listener produced
by the execution of a monitor(a) operation is deregistered before a subsequent
output operation out(a) is performed (e.g., by some other concurrent process).
Consider, as an example, the encoding of (a)|for Each(a, out(a)) if we do not
use mutual exclusion. In this case the target program becomes

(a)|monitor(a, out(a)).dereg(a, out(a))

This program could activate an infinite computation in the case the dereg op-
eration is delayed indefinitely: this could happen if a loop is activated in which
first the reaction out(a) is executed, and after the listener on(a, out(a)) reacts
by spawning a new instance of out(a). On the other hand, the source program
(a)| forEach(a,out(a)) has no infinite computation.

Observe that the locking policy involves only operations on the same name;
the concurrent execution of operations modeling an out(a) and a forEach(b, P)
primitive, for example, is allowed because the two operations consider the two
distinct data (lock,) and (locks), respectively. Finally, observe that the encoding
is open even if it is not modular.

4.3 Encoding of L{monitor] in L{forEach,notify]

In this section we investigate the possibility to model the hybrid approach ex-
ploiting both the state- and the event-based approaches. Intuitively, this can be
done simply by modeling the monitor operation with a forFach immediately
followed by a notify operation.

Following this approach, we react to the data currently present in the repos-
itory as also to those data which will be introduced subsequently. The unique
problem that may happen, occurs if new interesting data are produced between
the execution of the forFEach and the notify operations; in this case, the pro-
duced instance of the datum does not activate the expected reaction. To avoid
this problem we could exploit a locking policy similar to the one adopted in the
previous subsection.

Formally, we define the new encoding as

[P1 = [PIl] (locka)
a€n(P)
where [P] is inductively defined as above, with only three significant cases
[monitor(a, P).Q] = in(lock,).for Each(a, [P]).
noti fy(a, [P]).out(lock,).[Q]

[on(a, P)] = on(a, [P])
[out(a).P] = in(lock,).out(a).out(lock,).[P]

where we assume that for each encoding [P]] the auxiliary names lock, are all
distinct from the names a occurring inside P.

The correctness of this encoding is a consequence of a theorem corresponding
to Theorem 2 where the language L{monitor] is considered instead of L[for Each].
This encoding exploits a locking policy which avoid the concurrent execution of
operations representing monitor and out operations executed on the same name
a: these operations must be executed in mutual exclusion in order to avoid that
some events are not observed (then some reactions could be lost).

As an example of undesired computation consider out(a)|monitor(a, LOOP),
where LOOP is any program which performs an infinite computation. This
program has only infinite computations as it is ensured that the reaction LOOP
is activated, both in the case that out(a) is executed before monitor and in the
case it is executed after. Consider now the encoding of this program in the case
the locking policy is not adopted:

out(a)|for Each(a, [LOOP]).notify(a, [LOOP])

This second program has at least one finite computation; indeed consider the
case in which out(a) is scheduled exactly between the execution of the forEach
and the notify operations.

One could think to solve this problem simply by changing the order of the
two reactive operations obtaining the new encoding:

out(a)|notify(a, [LOOPY]).forEach(a, [LOOP])

This new program has only infinite computations; however, it could activate
the undesired computation in which two reactions are activated in the case the
out(a) operation is executed in interleaving with the two reactive primitives.

Also in this case, the locking policy involves only concurrent operations per-
formed on the same name. Similarly to the previous subsection, the encoding is
open even if not modular.

4.4 Encoding L[notify] in L[forEach]

In the previous subsections we have formally proved the intuitive result that the
hybrid paradigm is powerful enough to model both the event- and the state-based
reactive approaches; moreover, we showed that the notify and the forEach
primitives permit to emulate the hybrid monitor operation (at the price of in-
troducing some locking mechanism). It is also interesting to observe that all the
encodings that we have presented are suitable for open applications.

In this section we start the investigation of the modeling of the event-based
approach using the state-based one. The interesting result is that even if an en-
coding exists, it is not suitable for open applications; namely, it does not satisfy
the constraints we have fixed for open encodings. The problem is that the encod-
ing that we present requires the a priori knowledge of all the possible programs
that will be executed in the system. This is against the basic requirements of
open applications in which we usually assume that there exist components of
the system which are added at run-time.

The encoding is based on the idea that listeners can be represented by auxil-
iary data; namely, for each possible listener on(a, P,,) we use an auxiliary datum
(a;) which is introduced in the dataspace. Whenever an output operation out(a)
is performed, the presence of these auxiliary data {(a;) is checked, and for each
of them the corresponding reaction is activated; this operation can be obtained
simply by executing a sequence of operations forFach(a;, P,;) for all possible
reactions P,,. The drawback of this approach is that it is necessary to know a
priori all the possible reactions P,, which could be involved.

Formally, let P be a program of L[notify] to be encoded in L[forEach]; for
each name a occurring in P, i.e., a € n(P), we denote with ONp(a) the programs
P,,,..., P, which could be the possible reactions associated to a in P, i.e., all
those programs P, appearing in operations notify(a, P,) or terms on(a, P,). For
each of the programs P,, € ONp(a), we consider an auxiliary name a; and a
program name K,,. With ONp we denote the function which associates to each
a € n(P) the programs in ONp(a).

The encoding is defined as follows

[r] = [[P]]ONP| H (locka)

a€n(P)

where [P],y, is inductively defined with only three non-trivial cases

[notify(a, Pa;)-Qlon, = in(lock,).out(a;).out(locks)-[Q]on,
[on(a, Pu)]on, = (ai)
[out(a).Plon, = in(lock,).forEach(a1, K,).forEach(as, K,,) - . -
forEach(a, K,,).out(a).out(lock,).[Ploy,
if ONp(a) = Py, ... P,

where we assume that for each encoding [[P]] the auxiliary names lock, are all
distinct from the names a occurring inside P, and that the program names K,,
are all distinct from the other program names K occurring in P. For each of this
program name K,,, with P,, € ONp(a), we consider the following definition
Ko, = [Pai]]ONp'

The program names K, are used to model the corresponding reactions P,,.
This appraoch is necessary, e.g., to model programs of L[noti fy], see for example
notify(a,out(a)).out(a), which have an infinite behaviour even if they are not
recursively defined. This cannot happen in L[forFEach] where only recursively
defined programs could give rise to infinite computations. As an example, con-
sider the following program corresponding to [[notify(a,out(a)).out(a)] which
exploit a recursive definition for the program name K,,:

in(lock,).out(ay).out(lock,).in(lock,).for Each(ay, K,,).out(lock,)
K,, = in(lock,).forEach(ay, K,,).out(lock,)

It is worth noting that this encoding does not satisfy the constraints we have
fixed for open encodings; this because the inner encoding function [] depends on
the initial term considered by the outer encoding [[JJ. For example, encoding P

in parallel with @ is usually different from encoding P in parallel with a different
program R.

In this case, the theorem proving the correctness of the encoding should be
rephrased in order to manage the new kind of non-open encoding.

Theorem 3. Given a program P of L[notify] we have that:

— if P — P" then [P] —7 [P'lon, | [aen(r) (locka);
— if [P]] —T Q then there exists P' such that P —* P and
Q —" [[Pl]]ONp| Haen(P) (lockq,).

Also this encoding adopts mutual exclusion among the execution of opera-
tions performed on the same name. In order to undertand the importance of
this locking policy consider the program notify(a, notify(a, LOOP)).out(a) in
which it is ensured that only one reaction can be activated (i.e., LOOP cannot
be activated). On the other hand, if we consider its encoding without the locking
policy we obtain

out(ay).forEach(ay, K,,).forEach(as, K,,).out(a)
K., = out(as)
K,, = LOOP'

where LOOP' is the encoding of LOOP. This program could give rise to an
undesired infinite computation in the case the first reaction K,, is executed in
interleaving with the two forFach operations.

4.5 Encoding L[forEach] in L[notify]

In this section we consider the problem of encoding the state-based reactive
programming approach in the event-based one. Also in this case we show that
the encoding exists, but it is not suitable for open applications.

The idea on which the encoding is based is to associate to each datum (a) a
group of listeners on(a;, P,,;), one for each possible reaction P,,. In this context,
if we want to model the execution of a forFEach(a, P;) operation it is sufficient
to produce a datum (a;): as reaction to the production of this datum a num-
ber of reactions P;, corresponding to the number of occurrences of the listener
on(a;i, P,;), corresponding to the number of occurrences of {a), are activated.

Formally, let P be a program of L[forFEach] that we want to encode in
L[notify]; for each name a occurring in P, i.e., a € n(P), we denote with REp(a)
the programs P,,,. .., P,, which could be the possible reactions associated to a
in P, i.e., all those programs P, appearing in operations forEach(a, P,). For
each of the programs P,, € REp(a), we consider an auxiliary name a; and a
program name K,,. With REp we denote the function which associates to each
a € n(P) the programs in REp(a).

The encoding is defined as follows

[r1 = [[P]]REP| H (lock,)

aen(P)

where [P] g, is inductively defined with only the following non-trivial cases

[[(a'>]]REp = <a’>|0n(a’17 Ka1)|0n(a'2’ Ka2)| s |On(a'la Kaz)
if REp(a) =P,, ... P,
lout(a).Plpp, = in(lock,).notify(ay, K,,).notify(az, Ka,) . ..

noti fy(ar, Ka,)-out(lock,).out(a).[P] g,
if REp(a) =P,, ... P,
[forEach(a, P.,;).Q] gp, = in(lock,).out(a;).out(lock,).[Q] g,
[in(a).Plgg, = in(a).in(lock,).dereg(ar, K,).dereg(az, Ka,) - - -
dereg(ar, K,).out(lock,).[Pl g,
if REp(a) =P,, ... P,
where we assume that for each encoding [P]] the auxiliary names lock, are all
distinct from the names a occurring inside P, and that the program names K,,
are all distinct from the other program names K occurring in P. For each of these
program names K,,, with P,, € REp(a), we consider the following definition
Ko, = [Pu]n 5, For the same reasons discussed in the previous subsection, also
this encoding is not open.
The theorem proving the correctness of the encoding should be rephrased as
follows.

Theorem 4. Given a program P of L[for Each] we have that:

— if P — P’ then [P] —" [P']pp, | Tl,cncp)(locka);
— if [P]] —™ Q then there exists P' such that P —* P’ and
Q —* [P gg,| Hacn(r) (locka).

Also this encoding adopts mutual exclusion among the execution of opera-
tions performed on the same name. In order to understand the importance of this
locking policy consider the program out(a)|for Each(a, for Each(a, LOOP)); ob-
serve that if this program activates the first reaction, then also the second one
will be executed (in this case the program has an infinite computation).

Consider now the corresponding encoding in the case we do not exploit the
locking policy. There are two possible reactions associated to the datum (a) that
we denote with P,, = forEach(a, LOOP) and P,, = LOOP. The encoding is

noti fy(ay, K,).notify(as, K,,).out(a)|out(ay)
K, = out(as)
K,, = LOOP'

where LOOP' is the encoding of LOOP. This program could give rise to an
undesired computation in which only the first reaction is activated; consider
the computation in which the first notify is executed, after the datum (a,) is
produced, the reaction K, is activated, and finally (a») is produced without pro-
ducing any reaction (because the second notify operation has not been executed
yet). In this case even if the first reaction is activated the overall computation
in finite.

5 Conclusion

In this paper we have investigated three possible primitives for reactive pro-
gramming to be embedded to Linda-like languages: forEach (reactions depend
on the current state of the repository), notify (reactions depends on the future
output operations), and monitor (which combines both the kind of reactions).

We have showed that the three approaches are interchangeable: namely, we
have presented a possible way to translate any application developed following
an approach, in an equivalent one based on a different kind of reactive mech-
anism. The interesting fact is that some of the translations are not adequate
for open applications, this because they require to know a priori all the possible
programs involved in the system. The lesson we have learned is that the monzitor
operation appears as the more powerful because it permits to model the other
two primitives in a more flexible way.

Putting together the results proved in this paper and in a previous pa-
per [BZ00] investigating the notify primitive only, we obtain the interesting
result that there exists a significant gap of expressiveness between a reactive
Linda (Linda extended with at least one of the three reactive primitives) and
the basic Linda (with only input, output, and read operations). Indeed, in [BZ00]
two of the authors proved that a process calculus with only ¢n and out opera-
tions is not Turing-powerful, while it becomes (weakly) Turing-powerful in the
case the notify operation is added to the calculus. In this paper we showed
that notify can be modeled also with monitor and forEach, thus the same
expressiveness result holds also for these reactive primitives.

References

[BZ00] N. Busi and G. Zavattaro. On the Expressivenes of Event Notification
in Data-Driven Coordination Languages. In Proc. of ESOP 2000, volume
1782 of Lecture Notes in Computer Science, pages 41-55. Springer-Verlag,
Berlin, 2000.

[dBP91] F.S. de Boer and C. Palamidessi. Embedding as a Tool for Language Com-
parison: On the CSP Hierarchy. In Proc. of CONCUR’91, volume 527,
pages 127-141. Springer-Verlag, Berlin, 1991.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Row98] A. Rowstron. WCL: A web co-ordination language. World Wide Web
Journal, 1(3):167-179, 1998.

[RW98] A. Rowstron and A. Wood. Solving the Linda multiple rd problem using the
copy-collect primitive. Science of Computer Programming, 31(2-3):335—
358, 1998.

[WT98] J. Waldo et al. Javaspace specification - 1.0. Technical report, Sun Mi-
crosystems, March 1998.

[WMLF98] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T spaces. IBM
Systems Journal, 37(3):454-474, 1998.

