
State- and Event-based Rea
tive Programming

in Shared Dataspa
es

Nadia Busi

1

, Antony Rowstron

2

and Gianluigi Zavattaro

1

1

Dipartimento di S
ienze dell'Informazione, Universit�a di Bologna,

Piazza di Porta S. Donato 5, I-40127 Bologna, Italy.

E-mail: fbusi,zavattarg�
s.unibo.it

2

Mi
rosoft Resear
h, 7 J J Thomson Avenue, Cambridge, CB3 0FB

E-mail: antr�mi
rosoft.
om

Abstra
t. The traditional Linda programming style, based on the in-

trodu
tion and
onsumption of data from a
ommon repository, seems

not adequate for highly dynami
 appli
ations in whi
h it is important

to observe modi�
ation of the environment whi
h o

ur qui
kly. On the

other hand, rea
tive programming seems more appropriate for this kind

of appli
ations. In this paper we
onsider some approa
hes re
ently pre-

sented in the literature for embedding rea
tive programming in shared

dataspa
es, we present a possible
lassi�
ation for these approa
hes, and

we perform a rigorous investigation of their relative advantages and dis-

advantages.

1 Introdu
tion

The development of Linda-like
oordination languages [Gel85℄ for use over wide-

area networks has driven the
onsideration of new primitives being added to

allow new styles of
oordination. One set of su
h primitives are those that allow

rea
tive-programming, essentially allowing a program to be noti�ed on the inser-

tion of tuples into parti
ular tuples spa
es, or dataspa
es. Examples of Linda-

like
oordination languages in
luding su
h primitives are JavaSpa
es [W

+

98℄,

TSpa
es [WMLF98℄ and WCL [Row98℄.

One interesting observation is that the primitives in
orporated within the

oordination languages, whilst all aiming to provide support for rea
tive pro-

gramming, have di�erent (informal) semanti
s. Indeed, it is possible to
lassify

the primitives in
orporated as being: (1) state-based, (2) event based, and (3)

hybrid.

In this paper we provide a formal semanti
s to be used to
ompare the ex-

pressive power and the inter
hangeability of these rea
tive me
hanisms, where

by inter
hageability we mean the possibility to substitute one me
hanism in

pla
e of the others without a�e
ting the internal behaviour of the
oordinated

omponents.

For ea
h of the
lasses we
onsider a typi
al
oordination primitive, for
larity

we assume there is a single dataspa
e:

(1) forEa
h(a; P): spawns an instan
e of pro
ess P for ea
h o

urren
e of a

urrently in the dataspa
e;

(2) notify(a; P): produ
es a listener, that we denote with on(a; P), whi
h will

spawn an instan
e of P ea
h time a new a is produ
ed;

(3) monitor(a; P): spawns an instan
e of pro
ess P for ea
h o

urren
e of a

urrently in the dataspa
e, and produ
es a listener on(a; P) whi
h will spawn

an instan
e of P ea
h time a new a is produ
ed.

Furthermore, for event-based me
hanisms we
onsider a dereg(a; P) primitive

whi
h removes one o

urren
e of listener on(a; P).

The primitive notify has been proposed as a
oordination operations by

JavaSpa
es [W

+

98℄, monitor has been introdu
ed for the �rst time by one of

the authors in WCL [Row98℄, while forEa
h is an adaptation to our
ontext

of the so-
alled
opy-
olle
t operation [RW98℄: this primitive, proposed as

a solution for the typi
al multiple-read problem of Linda, has the ability to

atomi
ally
opy all the data satisfying a
ertain pattern from one dataspa
e to

another.

In this paper we demonstrate that the three approa
hes are equivalent by

showing how ea
h of the approa
hes
an be reprodu
ed in terms of the others.

However, only some of these translations are adequate for open environments

(new
omponents may be introdu
ed in the system at run time and therefore

dynami
ally); in parti
ular, the mapping from the state- to the event-based

approa
h and vi
e versa are valid only for
losed appli
ations (where the
om-

ponents involved in the system are a priori known and therefore stati
ally).

In Se
tion 2 we further motivate the introdu
tion of rea
tive primitives. In

Se
tion 3 we present a pro
ess
al
ulus used to perform a rigorous investigation

of the three rea
tive primitives; the results of this
omparison are reported in

Se
tion 4. Finally, Se
tion 5
ontains some
on
lusive remarks.

2 Rea
tive Programming in Shared Dataspa
es

In order to demonstrate why rea
tive programming primitives are attra
tive in

Linda-like
oordination languages, let us
onsider some of the fun
tionality of

a simple instant messenger type tool: the fun
tionalities that allows a user to

display a list of \buddies" and their
urrent status (e.g., in meeting, at lun
h,

busy and so forth).

Ea
h user runs a buddy list agent whi
h enables them to signal to other users

what their
urrent status is, and to observe the status of the other users. A user

an
hange their state by pressing buttons on the buddy list agent. Although

this example is simple, it demonstrates the power of rea
tive programming.

A simple way to
reate the buddy list agent is to
reate a shared dataspa
e

into whi
h the buddy list agents pla
e tuples representing their status. Whenever

a user starts a buddy list agent, it inserts a status tuple into the shared dataspa
e,

ontaining the user's name and their initial status. When a user
hanges their

status in the buddy list agent, the agent removes their status tuple and inserts a

new tuple with the user's name and their new status. When the agent starts, a

list of all users with a status tuple is displayed, also showing their
urrent status.

As other users
hange their states, these
hanges are re
e
ted on all the users

buddy lists.

The state tuples in the shared dataspa
e at any one time represent the global

status of (most of) the users and a buddy list agent
an examine these tuples to

determine who is
urrently available and their status. This means the appli
ation

does not involve a
entralised
oordinator. It should be noted that the tuple spa
e

does not ne
essarily
ontain the entire global state be
ause tuples are removed

to be updated. Therefore, if a buddy list agent is updating their user's status

tuple, the user will not be represented by a tuple in the tuple spa
e.

The implementation of su
h a s
heme using the standard Linda primitives is

not easy, requiring shared
ounters and so forth. However, rea
tive programming

primitives should be able to enable this programming style.

So, let us
onsider how the monitor primitive
an be used in this example.

When a buddy list agent is started it performs a monitor on the shared tuple

spa
e. This has the e�e
t of returning all the
urrent state tuples and any ones

that are inserted in future. In the des
ription of the buddy list agent it was de-

s
ribed how it is possible for the shared dataspa
e not to
ontain all state tuples

as one or more of the agents may be updating their status tuple. However, this

does not matter be
ause any agent updating their status tuple will reinsert the

status tuple. When this o

urs the monitor primitive will
onsider the inserted

tuple and return it. When a buddy list agent re
eives the tuple it is able to
he
k

the users name lo
ally and dis
over whether the tuple represents the status of

as yet unseen user or if it is an update of an existing user's status.

The monitor primitive was introdu
ed in WCL [Row98℄. It expli
itly returns

the tuples that mat
h the template in the dataspa
e, as well as tuples subse-

quently inserted (until a dereg is performed). JavaSpa
es, in
ontrast, provides

a notify primitive whi
h does not return tuples that are already in the tuple

spa
e whi
h mat
h the template, simply tuples inserted subsequently

1

. This has

several side e�e
ts, one is that the notify primitive
an not be used in the same

way as the monitor primitive in the buddy list example. From a programmer's

perspe
tive, the issue is how to ensure that ea
h status tuple is read on
e. If all

mat
hing tuples in the dataspa
e are retrieved prior issuing the notify primitive

(for example using a forEa
h primitive), a tuple
an be inserted on
e the forEa
h

has
ompleted but before the notify has been started, and therefore, be missed.

Alternatively, if the notify is issued �rst, and after a forEa
h is performed, a

single tuple
an be returned twi
e (and there is no expli
it ordering). Therefore,

from a programmers perspe
tive the use of a monitor appears more powerful

and
exible.

1

It a
tually returns a noti�
ation that a tuple has been inserted not the tuple, and

the pro
ess must expli
itly retrieve the new tuple.

3 The Cal
ulus

In this se
tion, we introdu
e a pro
ess
al
ulus based on the Linda
oordination

primitives plus the rea
tive me
hanisms dis
ussed in the Introdu
tion,

By borrowing typi
al te
hniques from the tradition of pro
ess
al
uli for

on
urren
y (e.g., Milner's CCS [Mil89℄), an agent is des
ribed as a term of an

algebra where the basi
 a
tions are typi
al Linda
oordination primitives or one

of the
onsidered rea
tive based
oordination operations.

To be general, we
onsider a denumerable set of names for data,
alled Data,

ranged over by a, b, : : :. The set Prog of programs, ranged over by P , P

0

, : : :, is

the set of terms generated by the following grammar:

P ::= 0 j �:P j hai j on(a; P) j K j P jP

� ::= out(a) j in(a) j rd(a) j

forEa
h(a; P) j notify(a; P) j monitor(a; P) j dereg(a; P)

where � denotes an instan
e of one of the possible
oordination primitives, and

K stands for a generi
 element of a set Name of program names; we assume

that all program name o

urren
es are equipped with a
orresponding (guarded)

de�ning equation of the form K = P . Program names are used to support

re
ursive de�nitions as, for example, in the term Ren

ab

= in(a):out(b):Ren

ab

,

whi
h represents a program able to repeatedly rename messages of the kind a in

messages of the kind b.

A term P is the parallel
omposition (we use the standard parallel
om-

position operator j) of the a
tive programs, plus the data whi
h are
urrently

available in the data repository, and terms whi
h denote listeners used for the

modeling of event-based rea
tive programming. Term 0 represents a program

that
an do nothing. Term �:P is a program that
an do the a
tion � and after

behaves like P . The term hai denotes an instan
e of datum a whi
h is
urrently

available for rd(a) and in(a) operations; on the other hand, on(a; P) represents

a listener responsible to a
tivate a new instan
e of program P ea
h time a new

o

urren
e of datum a is produ
ed.

In the following we will exploit a stru
tural
ongruen
e relation in order to

equate terms whi
h represents the same system even if they are synta
ti
ally

di�erent. Let equiv be the least
ongruen
e relation satisfying:

P jQ � QjP P j(QjR) � (P jQ)jR

P j0 � P P � K if P = K

In the following we will reason upto stru
tural
ongruen
e, i.e., we will not make

any distin
tion between P and Q whenever P � Q.

We use the following notation: P 62 R (to indi
ate that P is not a subterm of

program R),

Q

n

P (to denote the parallel
omposition of n instan
es of program

P), and

Q

i

P

i

(to denote the parallel
omposition of the indexed programs P

i

).

The operational semanti
s is de�ned by the transition relation (Prog;�!)

de�ned as the least relation satisfying the axioms and rules reported in Table 1.

in(a):P jhaijR �! P jR

rd(a):P jhaijR �! P jhaijR

forEa
h(a; P):Qj

Q

n

haijR �! Qj

Q

n

P j

Q

n

haijR hai 62 R

notify(a; P):QjR �! Qjon(a; P)jR

monitor(a; P):Qj

Q

n

haijR �! Qj

Q

n

P jon(a; P)j

Q

n

haijR hai 62 R

dereg(a;P):Qjon(a; P)jR �! QjR

out(a):P j

Q

i

on(a; P

i

)jR �! P jhaij

Q

i

P

i

j

Q

i

on(a; P

i

)jR

for any S,

on(a; S) 62 R

Table 1. The operational semanti
s.

In the following we denote by P �!

�

P

0

the fa
t that either P � P

0

or there

exist P

0

: : : P

n

su
h that P

0

� P , P

n

� P

0

, and P

i

�! P

i+1

(for 0 � i < n).

The �rst two axioms deal with the in(a) and rd(a)
oordination operations:

both operations require the presen
e of a term hai; in the se
ond
ase the result

of the exe
ution of the operation is that this term is
onsumed.

The third axioms des
ribe the forEa
h(a; P) operation: the result of its ex-

e
ution is the spawning of a new pro
ess P for ea
h instan
e of hai (observe

that this is ensured by the side
ondition hai 62 R). The result of the exe
u-

tion of the notify(a; P) operation is the spawning of the listener on(a; P). The

monitor(a; P) primitive
ombines the two above operations: a new pro
ess P is

spawned for ea
h instan
e of hai and a new listener on(a; P) is produ
ed.

The dereg(a; P) requires the presen
e of a listener on(a; P), and this term is

removed as e�e
t of the exe
ution of this operation.

The out(a) operation produ
es a new term hai; moreover, for ea
h listener

on(a; P) in the environment, a new program P is spawned (observe that this is

ensured by the side
ondition: for any S, on(a; S) 62 R).

In the following we will fo
us on three variants of the
al
ulus, in whi
h

only one among the three rea
tive primitives forEa
h, notify, and monitor

is
onsidered. The three
al
uli are denoted with L[forEa
h℄, L[notify℄, and

L[monitor℄, respe
tively. We will also
onsider a fourth sub
al
ulus in whi
h

both the notify and the forEa
h operations are
onsidered: this
al
ulus is

denoted by L[forEa
h; notify℄.

4 Comparing the Rea
tive Me
hanisms

In this se
tion we
ompare the expressive power of the di�erent rea
tive me
ha-

nisms by investigating the en
odability of one me
hanism in terms of the others.

We will show that in general, for ea
h pair of
al
uli there exists an en
oding

fun
tion from the �rst
al
ulus to the se
ond.

Two kinds of en
odings are used: one adequate for
losed systems only, and

one suitable for open systems too. In the �rst
ase, indeed, it is ne
essary to

assume that all the programs involved in the system are a priori known; on the

other hand, the se
ond
lass of en
odings does not make this kind of assumption.

To be more pre
ise, we state that an en
oding fun
tion [[[℄℄℄ from one
al
ulus

to another is open if the following
ostraints are satis�ed:

[[[P ℄℄℄ = [[P ℄℄j

Q

n(P)

R

a

[[P jQ℄℄ = [[P ℄℄j[[Q℄℄

where n(P) denotes the set of names of data whi
h o

ur in the program P , and

R

a

denotes a program (depending on the
onsidered en
oding) used to manage

the name a o

urring inside P .

We refer to this
lass of en
odings as \open" be
ause the addition of a new

program Q in parallel with P does not require to re
ompute the overall en
oding

of P ; indeed, given P , its en
oding [[[P ℄℄℄ and a program Q to be added in parallel

with P , we have that the new en
oding

[[[P jQ℄℄℄ = [[P ℄℄j[[Q℄℄j

Q

n(P)[n(Q)

R

a

= [[[P ℄℄℄j[[Q℄℄j

Q

n(Q)nn(P)

R

a

an be obtained simply by adding new programs in parallel with the initial

en
oding [[[P ℄℄℄

open encoding

non−open encoding

notifyforEach

monitor

Fig. 1. Summary of the en
odings.

The results presented in the rest of this se
tion are summarized in Figure 1. In

Subse
tion 4.1 (resp. 4.2) we show the existen
e of an open en
oding of L[notify℄

(resp. L[forEa
h℄) in L[monitor℄. This means that the monitor primitive is ex-

pressive enough to model both the notify and the forEa
h operations. We

show the existen
e of an open en
oding of L[monitor℄ in L[forEa
h,notify℄ in

Subse
tion 4.3.

As far as stati
 systems are
on
erned, also the notify and the forEa
h

primitives are inter
hangeable: we show the existen
e of non{open en
odings of

L[notify℄ in L[forEa
h℄ (and vi
e versa) in Subse
tion 4.4 (resp. 4.5). By
ompos-

ing ea
h of these en
odings with the open en
oding of the monitor primitive in

the language
ontaining both the notify and the forEa
h operations, we obtain

a non{open en
oding of L[monitor℄ in L[notify℄ (and in L[forEa
h℄).

4.1 En
oding L[notify℄ in L[monitor℄

In this se
tion we show that it is possible to model the event-based rea
tive

me
hanism of the notify primitive using the monitor operation.

The hybrid approa
h of the monitor primitive observes all the data already

available at the instant in whi
h the operation is performed, as also the fu-

ture in
oming entries. On the other hand, the notify operation observes only

the in
oming entries. In order to over
ome this di�eren
e, for ea
h datum hai

we exploit an auxiliary datum ha

0

i; this kind of data are produ
ed and subse-

quently removed every time an out(a) operation is performed. In this way the

auxiliary data ha

0

i are not persistent in the dataspa
e, but they are stored only

temporarily.

When we need to model a notify(a; P) operation, we use monitor(a

0

; P)

whi
h observes the auxiliary data only; as these data are not persistent, only

subsequent produ
tions will be observed.

Formally, the en
oding fun
tion is de�ned as [[[P ℄℄℄ = [[P ℄℄ where [[P ℄℄ is indu
-

tively de�ned as follows:

[[0℄℄ = 0 [[hai℄℄ = hai

[[on(a; P)℄℄ = monitor(a

0

; [[P ℄℄) [[K℄℄ = K

0

[[P jQ℄℄ = [[P ℄℄j[[Q℄℄ [[�:P ℄℄ = �:[[P ℄℄ � 6= notify(a;Q); out(a)

[[notify(a; P):Q℄℄ = monitor(a

0

; [[P ℄℄):[[Q℄℄

[[out(a):P ℄℄ = out(a

0

):in(a

0

):out(a):[[P ℄℄

where, for ea
h program name K in L[notify℄ with de�nition K = P , we assume

the existen
e of a
orresponding K

0

in L[monitor℄ with de�nition K

0

= [[P ℄℄.

Moreover, we assume that for ea
h en
oding [[[P ℄℄℄ the auxiliary names a

0

are

di�erent from ea
h of the names of data o

urring in P .

This en
oding satis�es the above
ontraints; thus it is open. Moreover, we

have that it is also homomorphi
 with respe
t to the parallel operation, i.e.,

[[[P jQ℄℄℄ = [[[P ℄℄℄j[[[Q℄℄℄. In the terminology of [dBP91℄ this property is
alled modu-

larity with respe
t to the parallel
omposition operator.

The
orre
tness of this en
oding is formally stated by the following theorem

whi
h states that, given a program P of L[notify℄, ea
h
omputation step of P

an be simulated by [[P ℄℄, and that ea
h
omputation of [[P ℄℄
an be extended

in su
h a way that it
orresponds to an equivalent
omputation of P . Due to

spa
e limit we do not report the proof of this theorem (as also the proofs of the

theorems in the following se
tions).

Theorem 1. Given a program P of L[notify℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[[P

0

℄℄℄;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

su
h that Q �!

�

[[[P

0

℄℄℄ and P �!

+

P

0

.

An interesting property of this en
oding
on
erns the use of the auxiliary

names a

0

. As stated above, data ha

0

i are produ
ed (and subsequently removed)

simply to notify the exe
ution of out(a) operations. Observe that this produ
tion

and subsequent
onsumption operations
ould be exe
uted in interleaving with

other operations performed by
on
urrent pro
esses. As an example
onsider the

en
oding [[notify(a; P)jout(a)℄℄ = monitor(a

0

; [[P ℄℄)jout(a

0

):in(a

0

):out(a). Con-

sider now the
omputation of the en
oding in whi
h �rst ha

0

i is produ
ed and

onsumed, after the monitor operation is performed, and �nally, the out(a)

primitive is exe
uted.

This
omputation is parti
ularly of interest be
ause no rea
tion is a
tivated

even if the output of hai is exe
uted after the exe
ution of the program repre-

senting the notify(a; P) pro
ess. However, this is not a problem for the en
oding

be
ause this parti
ular
omputation
orresponds to the
omputation of the ini-

tial program in whi
h the notify operation is exe
uted only after the output of

hai.

4.2 En
oding L[forEa
h℄ in L[monitor℄

Now we
on
entrate on the modeling of the state-based primitive forEa
h using

the hybrid approa
h adopted by monitor. The di�eren
e between the two oper-

ations is that monitor observes not only the data already available, but is also

a
tivates a listener whi
h observes the future in
oming entries. This di�eren
e

an be
overed simply by removing this listener immediately after its a
tivation:

following this approa
h, a forEa
h operation is modeled by a monitor primitive

followed by a dereg. Formally, the new en
oding
an be de�ned as follows

[[[P ℄℄℄ = [[P ℄℄j

Y

a2n(P)

hlo
k

a

i

where [[P ℄℄ is indu
tively de�ned as above, with only two non-trivial
ases

[[forEa
h(a; P):Q℄℄ = in(lo
k

a

):monitor(a; [[P ℄℄):

dereg(a; [[P ℄℄):out(lo
k

a

):[[Q℄℄

[[out(a):P ℄℄ = in(lo
k

a

):out(a):out(lo
k

a

):[[P ℄℄

where we assume that for ea
h en
oding [[[P ℄℄℄ the auxiliary names lo
k

a

are all

distin
t from the names a o

urring inside P .

Also in this
ase the
orre
tness of the en
oding is stated by a theorem similar

to Theorem 1; the di�eren
e here is in the fa
t that we have to
onsider also the

data hlo
k

a

i.

Theorem 2. Given a program P of L[forEa
h℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[[P

0

℄℄℄j

Q

a2n(P)nn(P

0

)

hlo
k

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

su
h that P �!

+

P

0

and

Q �!

�

[[[P

0

℄℄℄j

Q

a2n(P)nn(P

0

)

hlo
k

a

i.

The en
oding exploits, for ea
h name of datum a o

urring in the sour
e

program P , the auxiliar datum hlo
k

a

i, to implement mutual ex
lusion between

the exe
ution of the programs
orresponding to the output operation out(a)

and the rea
tive operations forEa
h(a). Mutual ex
lusion is a
hieved simply by

for
ing the withdrawal (and subsequent release) of the datum hlo
k

a

i before (and

after) ea
h sequen
e of
riti
al operations to be exe
uted in mutual ex
lusion.

This lo
king poli
y is ne
essary in order to ensure that the listener produ
ed

by the exe
ution of a monitor(a) operation is deregistered before a subsequent

output operation out(a) is performed (e.g., by some other
on
urrent pro
ess).

Consider, as an example, the en
oding of haijforEa
h(a; out(a)) if we do not

use mutual ex
lusion. In this
ase the target program be
omes

haijmonitor(a; out(a)):dereg(a; out(a))

This program
ould a
tivate an in�nite
omputation in the
ase the dereg op-

eration is delayed inde�nitely: this
ould happen if a loop is a
tivated in whi
h

�rst the rea
tion out(a) is exe
uted, and after the listener on(a; out(a)) rea
ts

by spawning a new instan
e of out(a). On the other hand, the sour
e program

haijforEa
h(a; out(a)) has no in�nite
omputation.

Observe that the lo
king poli
y involves only operations on the same name;

the
on
urrent exe
ution of operations modeling an out(a) and a forEa
h(b; P)

primitive, for example, is allowed be
ause the two operations
onsider the two

distin
t data hlo
k

a

i and hlo
k

b

i, respe
tively. Finally, observe that the en
oding

is open even if it is not modular.

4.3 En
oding of L[monitor℄ in L[forEa
h,notify℄

In this se
tion we investigate the possibility to model the hybrid approa
h ex-

ploiting both the state- and the event-based approa
hes. Intuitively, this
an be

done simply by modeling the monitor operation with a forEa
h immediately

followed by a notify operation.

Following this approa
h, we rea
t to the data
urrently present in the repos-

itory as also to those data whi
h will be introdu
ed subsequently. The unique

problem that may happen, o

urs if new interesting data are produ
ed between

the exe
ution of the forEa
h and the notify operations; in this
ase, the pro-

du
ed instan
e of the datum does not a
tivate the expe
ted rea
tion. To avoid

this problem we
ould exploit a lo
king poli
y similar to the one adopted in the

previous subse
tion.

Formally, we de�ne the new en
oding as

[[[P ℄℄℄ = [[P ℄℄j

Y

a2n(P)

hlo
k

a

i

where [[P ℄℄ is indu
tively de�ned as above, with only three signi�
ant
ases

[[monitor(a; P):Q℄℄ = in(lo
k

a

):forEa
h(a; [[P ℄℄):

notify(a; [[P ℄℄):out(lo
k

a

):[[Q℄℄

[[on(a; P)℄℄ = on(a; [[P ℄℄)

[[out(a):P ℄℄ = in(lo
k

a

):out(a):out(lo
k

a

):[[P ℄℄

where we assume that for ea
h en
oding [[[P ℄℄℄ the auxiliary names lo
k

a

are all

distin
t from the names a o

urring inside P .

The
orre
tness of this en
oding is a
onsequen
e of a theorem
orresponding

to Theorem 2 where the languageL[monitor℄ is
onsidered instead of L[forEa
h℄.

This en
oding exploits a lo
king poli
y whi
h avoid the
on
urrent exe
ution of

operations representing monitor and out operations exe
uted on the same name

a: these operations must be exe
uted in mutual ex
lusion in order to avoid that

some events are not observed (then some rea
tions
ould be lost).

As an example of undesired
omputation
onsider out(a)jmonitor(a; LOOP),

where LOOP is any program whi
h performs an in�nite
omputation. This

program has only in�nite
omputations as it is ensured that the rea
tion LOOP

is a
tivated, both in the
ase that out(a) is exe
uted before monitor and in the

ase it is exe
uted after. Consider now the en
oding of this program in the
ase

the lo
king poli
y is not adopted:

out(a)jforEa
h(a; [[LOOP ℄℄):notify(a; [[LOOP ℄℄)

This se
ond program has at least one �nite
omputation; indeed
onsider the

ase in whi
h out(a) is s
heduled exa
tly between the exe
ution of the forEa
h

and the notify operations.

One
ould think to solve this problem simply by
hanging the order of the

two rea
tive operations obtaining the new en
oding:

out(a)jnotify(a; [[LOOP ℄℄):forEa
h(a; [[LOOP ℄℄)

This new program has only in�nite
omputations; however, it
ould a
tivate

the undesired
omputation in whi
h two rea
tions are a
tivated in the
ase the

out(a) operation is exe
uted in interleaving with the two rea
tive primitives.

Also in this
ase, the lo
king poli
y involves only
on
urrent operations per-

formed on the same name. Similarly to the previous subse
tion, the en
oding is

open even if not modular.

4.4 En
oding L[notify℄ in L[forEa
h℄

In the previous subse
tions we have formally proved the intuitive result that the

hybrid paradigm is powerful enough to model both the event- and the state-based

rea
tive approa
hes; moreover, we showed that the notify and the forEa
h

primitives permit to emulate the hybrid monitor operation (at the pri
e of in-

trodu
ing some lo
king me
hanism). It is also interesting to observe that all the

en
odings that we have presented are suitable for open appli
ations.

In this se
tion we start the investigation of the modeling of the event-based

approa
h using the state-based one. The interesting result is that even if an en-

oding exists, it is not suitable for open appli
ations; namely, it does not satisfy

the
onstraints we have �xed for open en
odings. The problem is that the en
od-

ing that we present requires the a priori knowledge of all the possible programs

that will be exe
uted in the system. This is against the basi
 requirements of

open appli
ations in whi
h we usually assume that there exist
omponents of

the system whi
h are added at run-time.

The en
oding is based on the idea that listeners
an be represented by auxil-

iary data; namely, for ea
h possible listener on(a; P

a

i

) we use an auxiliary datum

ha

i

i whi
h is introdu
ed in the dataspa
e. Whenever an output operation out(a)

is performed, the presen
e of these auxiliary data ha

i

i is
he
ked, and for ea
h

of them the
orresponding rea
tion is a
tivated; this operation
an be obtained

simply by exe
uting a sequen
e of operations forEa
h(a

i

; P

a

i

) for all possible

rea
tions P

a

i

. The drawba
k of this approa
h is that it is ne
essary to know a

priori all the possible rea
tions P

a

i

whi
h
ould be involved.

Formally, let P be a program of L[notify℄ to be en
oded in L[forEa
h℄; for

ea
h name a o

urring in P , i.e., a 2 n(P), we denote with ON

P

(a) the programs

P

a

1

; : : : ; P

a

l

whi
h
ould be the possible rea
tions asso
iated to a in P , i.e., all

those programs P

a

appearing in operations notify(a; P

a

) or terms on(a; P

a

). For

ea
h of the programs P

a

i

2 ON

P

(a), we
onsider an auxiliary name a

i

and a

program name K

a

i

. With ON

P

we denote the fun
tion whi
h asso
iates to ea
h

a 2 n(P) the programs in ON

P

(a).

The en
oding is de�ned as follows

[[[P ℄℄℄ = [[P ℄℄

ON

P

j

Y

a2n(P)

hlo
k

a

i

where [[P ℄℄

ON

P

is indu
tively de�ned with only three non-trivial
ases

[[notify(a; P

a

i

):Q℄℄

ON

P

= in(lo
k

a

):out(a

i

):out(lo
k

a

):[[Q℄℄

ON

P

[[on(a; P

a

i

)℄℄

ON

P

= ha

i

i

[[out(a):P ℄℄

ON

P

= in(lo
k

a

):forEa
h(a

1

;K

a

1

):forEa
h(a

2

;K

a

2

) : : :

forEa
h(a;K

a

l

):out(a):out(lo
k

a

):[[P ℄℄

ON

P

if ON

P

(a) = P

a

1

: : : P

a

l

where we assume that for ea
h en
oding [[[P ℄℄℄ the auxiliary names lo
k

a

are all

distin
t from the names a o

urring inside P , and that the program names K

a

i

are all distin
t from the other program names K o

urring in P . For ea
h of this

program name K

a

i

, with P

a

i

2 ON

P

(a), we
onsider the following de�nition

K

a

i

= [[P

a

i

℄℄

ON

P

.

The program names K

a

i

are used to model the
orresponding rea
tions P

a

i

.

This apprao
h is ne
essary, e.g., to model programs of L[notify℄, see for example

notify(a; out(a)):out(a), whi
h have an in�nite behaviour even if they are not

re
ursively de�ned. This
annot happen in L[forEa
h℄ where only re
ursively

de�ned programs
ould give rise to in�nite
omputations. As an example,
on-

sider the following program
orresponding to [[[notify(a; out(a)):out(a)℄℄℄ whi
h

exploit a re
ursive de�nition for the program name K

a

1

:

in(lo
k

a

):out(a

1

):out(lo
k

a

):in(lo
k

a

):forEa
h(a

1

;K

a

1

):out(lo
k

a

)

K

a

1

= in(lo
k

a

):forEa
h(a

1

;K

a

1

):out(lo
k

a

)

It is worth noting that this en
oding does not satisfy the
onstraints we have

�xed for open en
odings; this be
ause the inner en
oding fun
tion [[℄℄ depends on

the initial term
onsidered by the outer en
oding [[[℄℄℄. For example, en
oding P

in parallel with Q is usually di�erent from en
oding P in parallel with a di�erent

program R.

In this
ase, the theorem proving the
orre
tness of the en
oding should be

rephrased in order to manage the new kind of non-open en
oding.

Theorem 3. Given a program P of L[notify℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[P

0

℄℄

ON

P

j

Q

a2n(P)

hlo
k

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

su
h that P �!

+

P

0

and

Q �!

�

[[P

0

℄℄

ON

P

j

Q

a2n(P)

hlo
k

a

i.

Also this en
oding adopts mutual ex
lusion among the exe
ution of opera-

tions performed on the same name. In order to undertand the importan
e of

this lo
king poli
y
onsider the program notify(a; notify(a; LOOP)):out(a) in

whi
h it is ensured that only one rea
tion
an be a
tivated (i.e., LOOP
annot

be a
tivated). On the other hand, if we
onsider its en
oding without the lo
king

poli
y we obtain

out(a

1

):forEa
h(a

1

;K

a

1

):forEa
h(a

2

;K

a

2

):out(a)

K

a

1

= out(a

2

)

K

a

2

= LOOP

0

where LOOP

0

is the en
oding of LOOP . This program
ould give rise to an

undesired in�nite
omputation in the
ase the �rst rea
tion K

a

1

is exe
uted in

interleaving with the two forEa
h operations.

4.5 En
oding L[forEa
h℄ in L[notify℄

In this se
tion we
onsider the problem of en
oding the state-based rea
tive

programming approa
h in the event-based one. Also in this
ase we show that

the en
oding exists, but it is not suitable for open appli
ations.

The idea on whi
h the en
oding is based is to asso
iate to ea
h datum hai a

group of listeners on(a

i

; P

a

i

), one for ea
h possible rea
tion P

a

i

. In this
ontext,

if we want to model the exe
ution of a forEa
h(a; P

i

) operation it is suÆ
ient

to produ
e a datum ha

i

i: as rea
tion to the produ
tion of this datum a num-

ber of rea
tions P

i

,
orresponding to the number of o

urren
es of the listener

on(a

i

; P

a

i

),
orresponding to the number of o

urren
es of hai, are a
tivated.

Formally, let P be a program of L[forEa
h℄ that we want to en
ode in

L[notify℄; for ea
h name a o

urring in P , i.e., a 2 n(P), we denote with RE

P

(a)

the programs P

a

1

; : : : ; P

a

l

whi
h
ould be the possible rea
tions asso
iated to a

in P , i.e., all those programs P

a

appearing in operations forEa
h(a; P

a

). For

ea
h of the programs P

a

i

2 RE

P

(a), we
onsider an auxiliary name a

i

and a

program name K

a

i

. With RE

P

we denote the fun
tion whi
h asso
iates to ea
h

a 2 n(P) the programs in RE

P

(a).

The en
oding is de�ned as follows

[[[P ℄℄℄ = [[P ℄℄

RE

P

j

Y

a2n(P)

hlo
k

a

i

where [[P ℄℄

RE

P

is indu
tively de�ned with only the following non-trivial
ases

[[hai℄℄

RE

P

= haijon(a

1

;K

a

1

)jon(a

2

;K

a

2

)j : : : jon(a

l

;K

a

l

)

if RE

P

(a) = P

a

1

: : : P

a

l

[[out(a):P ℄℄

RE

P

= in(lo
k

a

):notify(a

1

;K

a

1

):notify(a

2

;K

a

2

) : : :

notify(a

l

;K

a

l

):out(lo
k

a

):out(a):[[P ℄℄

RE

P

if RE

P

(a) = P

a

1

: : : P

a

l

[[forEa
h(a; P

a

i

):Q℄℄

RE

P

= in(lo
k

a

):out(a

i

):out(lo
k

a

):[[Q℄℄

RE

P

[[in(a):P ℄℄

RE

P

= in(a):in(lo
k

a

):dereg(a

1

;K

a

1

):dereg(a

2

;K

a

2

) : : :

dereg(a

l

;K

a

l

):out(lo
k

a

):[[P ℄℄

RE

P

if RE

P

(a) = P

a

1

: : : P

a

l

where we assume that for ea
h en
oding [[[P ℄℄℄ the auxiliary names lo
k

a

are all

distin
t from the names a o

urring inside P , and that the program names K

a

i

are all distin
t from the other program namesK o

urring in P . For ea
h of these

program names K

a

i

, with P

a

i

2 RE

P

(a), we
onsider the following de�nition

K

a

i

= [[P

a

i

℄℄

RE

P

. For the same reasons dis
ussed in the previous subse
tion, also

this en
oding is not open.

The theorem proving the
orre
tness of the en
oding should be rephrased as

follows.

Theorem 4. Given a program P of L[forEa
h℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[P

0

℄℄

RE

P

j

Q

a2n(P)

hlo
k

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

su
h that P �!

+

P

0

and

Q �!

�

[[P

0

℄℄

RE

P

j

Q

a2n(P)

hlo
k

a

i.

Also this en
oding adopts mutual ex
lusion among the exe
ution of opera-

tions performed on the same name. In order to understand the importan
e of this

lo
king poli
y
onsider the program out(a)jforEa
h(a; forEa
h(a; LOOP)); ob-

serve that if this program a
tivates the �rst rea
tion, then also the se
ond one

will be exe
uted (in this
ase the program has an in�nite
omputation).

Consider now the
orresponding en
oding in the
ase we do not exploit the

lo
king poli
y. There are two possible rea
tions asso
iated to the datum hai that

we denote with P

a

1

= forEa
h(a; LOOP) and P

a

2

= LOOP . The en
oding is

notify(a

1

;K

a

1

):notify(a

2

;K

a

2

):out(a)jout(a

1

)

K

a

1

= out(a

2

)

K

a

2

= LOOP

0

where LOOP

0

is the en
oding of LOOP . This program
ould give rise to an

undesired
omputation in whi
h only the �rst rea
tion is a
tivated;
onsider

the
omputation in whi
h the �rst notify is exe
uted, after the datum ha

1

i is

produ
ed, the rea
tionK

a

1

is a
tivated, and �nally ha

2

i is produ
ed without pro-

du
ing any rea
tion (be
ause the se
ond notify operation has not been exe
uted

yet). In this
ase even if the �rst rea
tion is a
tivated the overall
omputation

in �nite.

5 Con
lusion

In this paper we have investigated three possible primitives for rea
tive pro-

gramming to be embedded to Linda-like languages: forEa
h (rea
tions depend

on the
urrent state of the repository), notify (rea
tions depends on the future

output operations), and monitor (whi
h
ombines both the kind of rea
tions).

We have showed that the three approa
hes are inter
hangeable: namely, we

have presented a possible way to translate any appli
ation developed following

an approa
h, in an equivalent one based on a di�erent kind of rea
tive me
h-

anism. The interesting fa
t is that some of the translations are not adequate

for open appli
ations, this be
ause they require to know a priori all the possible

programs involved in the system. The lesson we have learned is that the monitor

operation appears as the more powerful be
ause it permits to model the other

two primitives in a more
exible way.

Putting together the results proved in this paper and in a previous pa-

per [BZ00℄ investigating the notify primitive only, we obtain the interesting

result that there exists a signi�
ant gap of expressiveness between a rea
tive

Linda (Linda extended with at least one of the three rea
tive primitives) and

the basi
 Linda (with only input, output, and read operations). Indeed, in [BZ00℄

two of the authors proved that a pro
ess
al
ulus with only in and out opera-

tions is not Turing-powerful, while it be
omes (weakly) Turing-powerful in the

ase the notify operation is added to the
al
ulus. In this paper we showed

that notify
an be modeled also with monitor and forEa
h, thus the same

expressiveness result holds also for these rea
tive primitives.

Referen
es

[BZ00℄ N. Busi and G. Zavattaro. On the Expressivenes of Event Noti�
ation

in Data-Driven Coordination Languages. In Pro
. of ESOP 2000, volume

1782 of Le
ture Notes in Computer S
ien
e, pages 41{55. Springer-Verlag,

Berlin, 2000.

[dBP91℄ F.S. de Boer and C. Palamidessi. Embedding as a Tool for Language Com-

parison: On the CSP Hierar
hy. In Pro
. of CONCUR'91, volume 527,

pages 127{141. Springer-Verlag, Berlin, 1991.

[Gel85℄ D. Gelernter. Generative Communi
ation in Linda. ACM Transa
tions on

Programming Languages and Systems, 7(1):80{112, 1985.

[Mil89℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.

[Row98℄ A. Rowstron. WCL: A web
o-ordination language. World Wide Web

Journal, 1(3):167{179, 1998.

[RW98℄ A. Rowstron and A. Wood. Solving the Linda multiple rd problem using the

opy-
olle
t primitive. S
ien
e of Computer Programming, 31(2-3):335{

358, 1998.

[W

+

98℄ J. Waldo et al. Javaspa
e spe
i�
ation - 1.0. Te
hni
al report, Sun Mi-

rosystems, Mar
h 1998.

[WMLF98℄ P. Wy
ko�, S. M
Laughry, T. Lehman, and D. Ford. T spa
es. IBM

Systems Journal, 37(3):454{474, 1998.

