
Bonita: A set of tuple space primitives for distributed coordination

A. I. T. Rowstron A. M. Wood

Department of Computer Science Department of Computer Science

University of York University of York

York, YO1 5DD UK York, YO1 5DD UK

ant@cs.york.ac.uk wood@cs.york.ac.uk

Abstract

In the last few years the use of distributed structured

shared memory paradigms for coordination between

parallel processes has become common. One of the

most well known implementations of this paradigm is

the shared tuple space model (as used in Linda). In

this paper we describe a new set of primitives for fully

distributed coordination of processes and agents using

tuple spaces, called the Bonita primitives. The Linda

primitives provide synchronous access to tuple spaces,

whereas the Bonita primitives provide asynchronous

access to tuple spaces. The proposed primitives are

able to mimic the Linda primitives, therefore providing

the ease of use and expressibility of Linda together with

a number of advantages for the coordination of agents

or processes in distributed environments. The primit-

ives allow user processes to perform computation con-

currently with tuple space accesses, and provide new

coordination constructs which lead to more e�cient

programs.

In this paper we present the (informal) semantics of

the Bonita primitives, a description of how the Linda

primitives can be modelled using them and a demon-

stration of the advantages of the Bonita primitives

over the Linda primitives.

1 Introduction

Over the last ten years the power of the tuple

space model for coordinating parallel programs has

been demonstrated in such systems as Linda. The

�rst Linda implementations were developed for paral-

lel machines, however the potential for \network based

computing" using the Linda primitives and the tuple

space model for coordination of processes executing

over networks of workstations was soon realised.

As tuple space based systems are created for widely

distributed computing resources it is necessary to con-

sider whether the current Linda primitives are su�-

cient or as e�ective as they could be given the 
ex-

ible nature of the underlying tuple space model. In

this paper we present an argument, backed with ex-

amples, that a new set of primitives for tuple space

access should be adopted for use in distributed en-

vironments. These primitives are called the Bonita

primitives.

The tuple space access operations as embodied in

the Linda primitives are synchronous. This enabled

the Linda primitives to deliver a clear and simple in-

terface to tuple spaces at the cost of loosing poten-

tial parallelism between tuple space access and user

computation. The primitives for tuple space access

described in this paper provide asynchronous access

to tuple spaces. This enables processes accessing

the tuple spaces to perform computation concurrently

with the tuple space access. The new primitives also

allow the creation of new styles of programming, which

are more e�cient than the equivalent using the Linda

primitives. The proposed primitives allow the main

Linda primitives to be mimicked, therefore providing

the mechanisms to perform synchronous tuple space

access (e�ciently).

Other relevant work has been completed on the par-

allelisation of tuple space access costs and user com-

putation by Landry et al.[12]. This work focused on

the compile time analysis of Linda primitives and user

computation. The idea was that at compile time in

and rd are split into two sections, and these two sec-

tions are moved as far apart as possible. The �rst sec-

tion is an initialise and the second section a receive.

Such compile time analysis can be performed in both

open and closed implementations. However, there is a

fundamental 
aw with their approach, due to the non-

deterministic behaviour of the Linda model. Within

a Linda program often the length of computation en-



sures that sometimes competition for speci�c tuples is

avoided, or follows a \natural" course. If the requests

are automatically moved then this natural spreading

of requests is potentially removed. This leads to a

possibility that the \optimised" program will in fact

take longer than the original. For more details see

Rowstron[13].

Initially, a overview of the Linda primitives is

presented, followed by a more detailed justi�cation for

the new primitives. The informal semantics of the new

primitives and how they can be used to produce more

e�cient styles of programming is then described. Fi-

nally a brief description of the current prototype im-

plementation is given.

2 The Linda primitives

The Linda model is now well known and a detailed

description can be found in [4]. The main primitives

are:

out(ts, tuple) This places the tuple (tuple) into a

tuple space (ts).

in(ts, template) This removes a tuple from a tuple

space. The tuple removed is associatively

matched using the template and the tuple is re-

turned to the calling process. If no matching tuple

exists then the calling process is blocked until one

becomes available.

rd(ts, template) This primitive is identical to in ex-

cept the matched tuple is not removed from the

tuple space, so a copy is returned to the calling

process.

eval(ts, active-tuple) The active-tuple contains one or

more functions, which are evaluated in parallel

with each other and the calling process. When

all the functions have terminated a tuple is placed

into the tuple space with the results of the func-

tions as its elements.

Some Linda systems support two other primitives,

inp and rdp. These are non-blocking versions of in

and rd. Instead of blocking they return a value to in-

dicate no tuple was found. For a number of (semantic)

reasons many systems do not support them.

Over the last ten years there have been a number

of proposed extensions to both the Linda primitives

and the underlying tuple space model. Of these the

most important is the extension of the tuple space

model with multiple tuple spaces. Schemes based on

hierarchies of tuple spaces have been suggested[7, 8]

as well as one with a mixture of 
at and hierarchical

tuple spaces[9]. The work described here is not af-

fected by the exact relationship of the multiple tuple

spaces. In a distributed environment it is important

to have multiple tuple spaces, however no assumptions

are made about their relationship with each other.

There are two new primitives which have been pro-

posed that are of particular interest; collect and

copy-collect. The semantics of these primitives are

described below:

collect(ts1, ts2, template) The collect[3] primitive

moves all available tuples from ts1 that match

template into ts2, returning a count of the num-

ber of tuples moved.

copy-collect(ts1, ts2, template) The

copy-collect[17] primitive is similar to collect

except it copies all available tuples that match the

given template in the source tuple space (ts1)

to the destination tuple space (ts2). As with

collect it returns a count of the number of tuples

copied.

The motivation for the addition of the collect

primitive is outlined in Butcher et al.[3]. The motiv-

ation for the copy-collect primitive is a particular

operation that is di�cult to perform using the stand-

ard Linda model. This operations is referred to as the

multiple rd problem and a detailed discussion of it is

presented in Rowstron et al.[17].

For this paper we wish to make a clear distinc-

tion between the Linda primitives and the underlying

tuple space model. When we refer to the tuple space

model we are referring to the basic concept of shared

tuple spaces of tuples (multi sets). The access to tuple

spaces is purely by a process of associative matching.

When we refer to the Linda primitives we are refer-

ring to a particular set of primitives that provide the

interface to the tuple spaces.

Most Linda implementations fall into one of two

categories, closed and open. Closed implementa-

tions use compile time analysis to create very e�cient

implementations[1]. However, closed implementations

normally do not allow processes to join and leave at

will. All processes that wish to communicate via a

shared tuple space must be available at compile time.

Open implementations allow processes to join and

leave quite freely and provide persistent tuple spaces,

rendering most of the compile time analysis useless.

For distributed environments open implementations

are normally the most useful.



3 The justi�cation for a new set of

primitives

The motivation and justi�cation for the new prim-

itives comes from extensive experience in the imple-

mentation of open Linda systems[14, 6, 16] and their

use in distributed environments. The other motivating

factor is the current trend within the Linda research

community to alter the current Linda primitives to ful-

�ll the requirements of distributed coordination[2, 11]

in a way which appears still too restrictive for distrib-

uted computing.

The observations made during the pro�ling of cur-

rent \open" Linda implementations led to the conclu-

sion that time costs associated with Linda primitives

were not due to bottlenecks in the implementations

but quite simply the time taken to send and receive

messages over networks. The second observation is the

problem of controlling how long a process performing

any Linda operation should block before the opera-

tion is aborted. In order to overcome this it has been

suggested that timeouts should be added to the prim-

itives. The problems of such an approach are shown

in Section 6.

3.1 Time costs involved in performing a

Linda primitive

Let us consider the primitives in and rd. In the

informal semantics of Linda these primitives are de-

scribed as blocking only if a tuple is not available.

This implies that a process which uses either of these

primitives should block only if the required tuple is

not available when the process requests it. However

in reality, within any practical Linda system a process

will always block even if the required tuples are avail-

able because of the overheads associated with �nding

the matching tuple. Regardless of how an open dis-

tributed Linda implementation works it is possible to

provide a set of time cost categorisations which will

represent the time that the primitive is blocked from

the user process's point of view. These time cost cat-

egorisations are:

T

Pack

+ T

SendRequest

+ T

Queue

+ T

Process

+

T

Block

+ T

SendReply

+ T

Unpack

where

T

Pack

is the time taken for the information required

for a tuple to be retrieved to be packed into a

message by the user process for passing to the

control system

1

and the initiation of the message

transmission;

T

SendRequest

is the time taken for the message to pass

through the communication channels and reach

the control system;

T

Queue

is the time that the message has to wait be-

fore it is serviced, when it has reached the control

system;

T

Process

is the time taken for the control system to

process the message it receives, �nd a suitable

tuple, pack the message for return to the user

process, and perform the initiation of the message

transmission back to the user process;

T

Block

is the time that the primitive blocks because

no matching tuples are available;

T

SendReply

is the time taken for the message to pass

through the communication channels to reach the

user process which requires it; and

T

Unpack

is the time that the user process takes to un-

pack and interpret the message being returned

from the control system.

When considering the predicate versions of the

primitives (inp and rdp), and the collect and

copy-collect primitives the time T

Block

will always

be zero, because these primitives never block waiting

for tuples. For an out the time cost will just be T

Pack

.

Depending on speci�c implementations some of the

categories may overlap, however, in general these cat-

egories represent the time costs of performing a Linda

operation.

4 A new set of primitives

There are many properties of the tuple space model

which makes it a good model for distributed sys-

tems. It is asynchronous and allows communicating

processes to be both spatially and temporally separ-

ated. This is very important for distributed systems.

We are proposing a new set of primitives (called the

Bonita primitives) which use the tuple space model

(with multiple tuple spaces) to allow a programmer to

parallelise the access of a tuple space with computa-

tion, thus minimising many of the time costs associ-

ated with tuple space access outlined in the previous

1

This stores and manages the tuples { in many implement-

ations the control system is distributed.



section. The primitives provide a mechanism for pla-

cing tuples in a tuple space, retrieving them from tuple

spaces and the bulk movement of tuples between tuple

spaces. These primitives provide a better interface to

the tuple spaces in distributed environments than the

Linda primitives. Because these primitives are only

an interface with the tuple space model they use the

same concepts of tuple spaces, tuples and templates

as the Linda primitives. Furthermore the same tuple

and template matching is used: a tuple is matched by

a template, if the tuple has the same cardinality as

the template, if each of the �elds in the tuple has the

same type as the same �eld in the template, and if an

actual is speci�ed in the template it exactly matches

with the same �eld in the tuple

2

.

The Bonita primitives may be informally de-

scribed as follows:

rqid = dispatch(ts, tuple j [template,

destructive j nondestructive])

This is an overloaded primitive which controls all

of the accesses to a tuple space which require a

tuple to be either placed in a tuple space or re-

moved from a tuple space. The tuple space to be

used is ts. If a tuple is speci�ed then this tuple

is placed in the tuple space. If a template is spe-

ci�ed then this indicates that a tuple is to be re-

trieved from the speci�ed tuple space. If this is the

case then an extra �eld is used to indicate if the tuple

retrieved should be removed (destructive) or not

removed(nondestructive) from the tuple space ts.

This primitive is non-blocking and returns a request

identi�er (rqid) which is subsequently used with other

primitives to retrieve the matched tuple.

rqid = dispatch bulk(ts1, ts2, template,

destructive j nondestructive)

This requests the movement of tuples between tuple

spaces. The source tuple space is ts1 and the des-

tination tuple space is ts2 and the tuples are either

moved (destructive) or copied (nondestructive).

The number of tuples moved or copied depends on

the stability of the tuple space. If the tuple space is

stable (there are no destructive operations being per-

formed in parallel with this primitive) then all the

available tuples are copied or moved. This primitive

is non-blocking and returns a request identi�er (rqid)

2

We recognise that there are many proposals for the exten-

sion of the matching, some of which may be more suited to a

distributed domain. However, the matching algorithm used does

not e�ect the proposed primitives, just the tuples they retrieve.

which is subsequently used with other primitives to

get a count of the number of tuples moved or copied.

arrived(rqid)

This detects if a tuple or result associated with an

rqid is available. The primitive is non-blocking and

either returns true or false to indicate whether the

tuple has arrived. If an invalid rqid is used then the

primitive returns false.

obtain(rqid)

This is a blocking primitive which waits for the tuple

or result associated with rqid to arrive. When the

result becomes available then it is returned.

The exact syntax of each of the primitives depends

upon the host language being used. For example, the

syntax of the obtain primitive may include variables

to be used to store the information returned. Also

the primitives may return error values if an invalid

rqid is used. In the C-Bonita version we assume

that the template provides a number of variables into

which the returned tuple �elds are placed when an

obtain is performed for that tuple. When Bonita

is embedded into other languages di�erent approaches

may be taken, for example if ISETL was used as the

host language[5] which supports tuples as �rst class

objects the obtain primitive may return a tuple or an

integer.

It should be noted that the non-deterministic

nature of the tuple space model is preserved. If there

are many tuples in a tuple space that match a template

then the choice is non-deterministic, and if there are

many processes competing for the same tuple which

process gets the tuple is non-deterministic.

There is an extra property of tuple spaces that the

Bonita primitives require, and that is one of tuple

insertion ordering. When a single process performs

several dispatch primitives then the dispatch prim-

itive guarantees that tuples appear in the tuple spaces

in the same order as the process produces them. The

guarantee is enforced across tuple spaces. It should be

noted that the order in which the tuples are removed

from the tuple space is not dependent on the order

in which they are inserted. This does not produce an

insertion dependency across multiple processes. Each

process must ensure that the tuples it produces are

inserted into all tuple spaces in the order they are pro-

duced. The process inserting the tuples is not a�ected

by the order in which other processes insert tuples.



There is no synchronisation between the processes in-

serting the tuples unless the programmer writing the

user processes causes the processes to synchronise us-

ing tuples. This is important in order to ensure that

the behaviour of the bulk dispatch primitive is cor-

rect. If a process produces a number of tuples and then

produces a marker tuple which indicates that these

tuples have been produced, another process checking

the marker tuple must be able to guarantee getting all

the tuples using a bulk primitive. For more inform-

ation refer to the out ordering section in Douglas et

al.[6], the description of copy-collect in Rowstron et

al.[17, 15] and the description of the \predicate oper-

ation forms: inp and rdp" in the SCA C-Linda user

manual[1].

The Bonita primitives make no reference to pro-

cess creation. Currently, the creation of processes in a

distributed environment is viewed as something that

the underlying operating systems or the system in

which the Bonita primitives are embedded should

manage. However, in the future the addition of a

primitive (or primitives) to manage the spawning of

processes may be added.

4.1 Time costs in performing a Bonita

primitive

The time costs of performing the Bonita primitives

are now considered. The same time cost de�nitions as

used in Section 3.1 with an extra time cost, T

Check

which represents the time it takes to check locally if

a required message has arrived. This is required be-

cause there is the need to perform a certain amount

of arbitration of messages from the control system,

since it is possible to have several tuples requested,

and hence several tuples waiting locally. With the

Linda primitives once a tuple has been requested, by

any primitive, the next message received must be the

requested tuple. Each of the Bonita primitives have

di�erent time costs, relative to the initiating process,

associated with them:

dispatch and dispatch bulk The time cost associ-

ated with these primitives is:

T

Pack

Both these primitives create a message and then

dispatch it to the control system.

arrived The time cost associated with this primitive

is simply:

T

Check

obtain The time cost associated with this primitive

is:

T

Check

+ T

Block

+ T

Unpack

If the primitives are being used to mimic the

Linda primitives (see Section 5) then T

Block

will

represent not only the \blocked" time but also

the time costs T

SendRequest

+T

Queue

+T

Process

+

T

SendReply

as speci�ed for the Linda primitives.

However, the ability to split the request for a

tuple and the process of decoding it allows the

time costs T

SendRequest

+ T

Queue

+ T

Process

+

T

SendReply

to be performed concurrently with

user computation. (See Section 6).

The time costs for the arrived and obtain prim-

itives may alter slightly in some circumstances. For

example, arrived may need to unpack messages in

order to check if it is the required one. If this is the

case, the time cost T

Unpack

would not be associated

with obtain but rather with arrived if arrived was

used to check to see if the result was available.

5 The Linda primitives using Bonita

primitives

The Bonita primitives have been designed to al-

low the basic Linda primitives of out, rd and in to

be emulated. This means that the functionality of the

Linda primitives is preserved within the Bonita prim-

itives. Figure 1 shows how the Bonita primitives can

be used to create an in. If the destructive tag was

changed to nondestructive then the section of code

would mimic a rd.

C-Bonita

int id, x;

id = dispatch(ts, ?x, destructive);

obtain(id);

Figure 1: A Linda style: in(ts, ?x).

Figure 2 demonstrates the overloading of the

dispatch primitive so that it mimics an out.

C-Bonita

dispatch(ts, 10);

Figure 2: A Linda style: out(ts, 10).

The Bonita primitives do not provide a mechan-

ism for creating a construct identical to an inp or rdp.



The use of the arrived primitive provides a mechan-

ism for checking whether a requested tuple or result is

available. It does not abort the dispatch if the result

is not available, therefore it can not be used to mimic

an inp.

The Bonita primitives can be used to mimic the

collect and copy-collect primitives, as demon-

strated in Figure 3. If the destructive was changed

to nondestructive then this example would be a

copy-collect.

C-Bonita

int rqid, count;

rqid = dispatch bulk(ts1, ts2, ?int, destructive);

count = obtain(rqid);

Figure 3: A Linda style: count = collect(ts1,

ts2, ?int).

Having shown how the Bonita primitives can im-

personate the Linda primitives the next section shows

how they can be used in their own right.

6 Using the Bonita primitives inde-

pendently

In this section the use of the Bonita primitives

to improve both performance and provide extra func-

tionality is demonstrated. The examples used repres-

ent constructs that have been used to date. There are

probably other useful constructs that can be produced

using the Bonita primitives.

6.1 Increasing performance

The most obvious use of the new primitives is to

parallelise tuple space access with computation within

a user process. Figure 4 demonstrates this. The Linda

version \performs the calculation", then retrieves a

tuple and then calls a function to use it. The Bonita

version performs exactly the same computations, but

dispatches a request for a tuple ahead of needing it,

thereby parallelising the tuple retrieval with compu-

tation, so potentially T

SendRequest

, T

Queue

, T

Process

,

T

Block

, T

Process

and T

SendReply

are performed in par-

allel with the function perform calculation() and

therefore the total time taken for the Bonita version

is the time taken for the Linda version minus these

time costs.

As well as providing the potential to parallelise

computation and tuple space access the Bonita prim-

itives also provide the potential to pipeline access to

C-Linda

int x;

perform calculation();

in(ts, \RESULT", ?x);

use result(x);

C-Bonita

int rqid;

int x;

rqid = dispatch(ts, \RESULT", ?x, destructive);

perform calculation();

obtain(rqid);

use result(x);

Figure 4: Parallelising tuple space access and compu-

tation.

tuple spaces. Figure 5 demonstrates the parallelisa-

tion of tuple space access. The Linda version uses in

to retrieve three tuples

3

and the Bonita version does

the same, except the three requests are dispatched and

then retrieved. In the worst case the execution times

of the two examples will be the same. In the best case

the Bonita versions execution times will be the time

taken to do a single Linda in + 2� T

Unpack

.

C-Linda

in(ts1, \ONE");

in(ts2, \TWO");

in(ts3, \THREE");

C-Bonita

int rqid1, rqid2, rqid3;

rqid1 = dispatch(ts1, \ONE", destructive);

rqid2 = dispatch(ts2, \TWO", destructive);

rqid2 = dispatch(ts3, \THREE", destructive);

obtain(rqid1);

obtain(rqid2);

obtain(rqid3);

Figure 5: Pipelining multiple tuple space access.

6.2 Coordination constructs

The previous examples have shown how the new

primitives can be used to provide performance in-

creases. The next example demonstrates how new

3

In this case from three di�erent tuple spaces but this need

not be the case.



more e�cient coordination constructs can be produced

using the primitives. The �rst of these constructs is

similar to an ALT construct in the occam language,

a non-deterministic choice operator. This construct

allows a number of di�erent tuples to be requested

and then perform actions as the results arrive. The

need for such a construct is discussed in Kaashoek

et al.[10]. Figure 6 demonstrates this construct. Ini-

tially, a number of tuples are requested, in this case

from di�erent tuple spaces but they could be from the

same tuple space. The while loop then keeps check-

ing locally using the arrived primitive to see if either

of the requested tuples have arrived. When either of

them arrives the appropriate function is called. Cur-

rently there is no concept of a cancel, once a request

has been made it will persist forever (or at least until

the system (not process) terminates)

4

.

C-Bonita

int rqid1, rqid2;

rqid1 = dispatch(ts1, \FIRST", destructive);

rqid2 = dispatch(ts2, \SECOND", destructive);

while (1)

f

if (arrived(rqid1)) f do �rst(rqid1);

rqid1 =dispatch(ts1, \FIRST", destructive);

break; g

if (arrived(rqid2)) f do second(rqid2);

rqid2 =dispatch(ts2, \SECOND", destructive);

break; g

g

Figure 6: A non-deterministic choice construct.

In Figure 6 a simple example is shown. It is quite

possible to insert other checks (for keyboard presses

perhaps) within the while loop. Although this ex-

ample uses polling to check if the tuples have arrived

this is local and does not require communication to the

remote control system. When a tuple is found it is pro-

cessed, then the same tuple is requested again. Cur-

rently in Linda an inp or rdp would be used for check-

ing whether a tuple has appeared. This is demon-

strated in Figure 7 which performs a similar function

to the example in Figure 6. However, there are three

problems with the Linda version:

� The �rst is that this uses polling which is not

necessarily local, so it keeps sending messages to

4

We are currently considering the addition of either an ex-

plicit cancel or at least an implicit cancel when a process

terminates.

the underlying control system, causing it to have

to keep searching for the same tuple and poten-

tially not �nding it, an expensive operation both

in terms of computational time wasted in the con-

trol system and the number of messages being

sent through the communication channels. If we

assume that both the required tuples for the ex-

amples appear in the tuple space once, then the

C-Bonita version will require exactly four mes-

sages to be passed from the user process to the

control system. The C-Linda version will require

between 4 and an unbounded number messages

(it will be a multiple of 2) to be passed between

the user process and the control system.

� The second problem with the Linda version is the

time taken to perform an inp has the costs ex-

plained in Section 3.1, meaning that each of the

primitives could block for some time, acceptable

in this situation but perhaps if a program inter-

acts with a human not acceptable.

� The third is that not all systems support an inp.

C-Linda

while (1)

f

if (inp(ts1, \FIRST"))

f do �rst(rqid1); break; g

if (inp(ts2, \SECOND"))

f do second(rqid2); break; g

g

Figure 7: A non-deterministic choice construct using

Linda.

In response to the second problem other researchers

considering the use of Linda in distributed environ-

ments have suggested that the addition of timeouts to

the Linda primitives[2, 11], whereby an in can \block"

only for a speci�ed number of seconds. Such an ap-

proach at �rst seems attractive, providing an easy way

of controlling a primitive. However, this does not solve

the problem, it merely hides it and introduces further

problems.

The in primitive still takes time (as detailed in Sec-

tion 3.1), which means that the user process is blocked.

Also, some care has to be taken into the exact se-

mantics of adding timeouts. If the timeout is relative

to the user process then it is possible that a process al-

ways \misses" a tuple which exists simply because the

overhead times (T

Pack

, T

SendRequest

, T

Queue

, T

Process

,

T

SendReply

and T

Unpack

) are greater than the timeout



speci�ed. In the worst case this can lead to a pro-

gram live-locking. Alternatively if the timeout refers

just to the time T

block

the primitive can still block

the user process for far longer than the timeout in-

dicates. Therefore a primitive can still block from a

user's point of view.

The introduction of timeouts can reduce the com-

munication costs associated with polling for tuples.

Instead of using the inp primitive to keep checking

for a tuple, an in primitive can be used. If this is

used then the primitive can be forced to block for

only a certain time and then return. This may reduce

the communication associated with the polling but the

fundamental approach remains polling involving com-

munication to keep checking if a tuple is present. Of

course such an approach introduces the potential for

a delay from when a tuple becomes available to when

the process requests it, because the process could be

blocked on the alternative choice, waiting for that to

timeout before checking for the tuple that is now avail-

able.

7 Current implementation state

Currently a prototype implementation exists. The

run-time system is currently a modi�cation of the

Linda system described in Rowstron et al.[16] which

is built using PVM[18]. A language embedding for

C has been developed. The syntax of the Bonita

primitives within this embedding is poor, but can eas-

ily be improved by the use of a pre-processor. The

implementation is currently used upon a network of

workstations.

When originally designing the Bonita primitives a

larger geographical distribution of processes (worksta-

tions) was imagined where the communication latency

could potentially be larger than those experienced on

a LAN. However, even in the limited LAN environ-

ment used to test the prototype there are appreciable

speed increases. For example, when pipelining the ac-

cess of tuple space by a single process as demonstrated

in Figure 5 speedups of 40% are achieved when using

the Bonita primitives instead of the Linda primit-

ives on an implementation running on a network of

workstations. If the system was more geographically

distributed the communication times would increase

and the speedup provided by the Bonita primitives

over the Linda primitives would also increase.

Work is currently being done to implement a num-

ber of \real life" distributed systems using the Bonita

primitives.

8 Future work

The primitives presented here represent a �rst step

towards a complete system for distributed coordina-

tion, based on tuple spaces.

Future work will involve examining and integrat-

ing into the tuple space model extensions for more

advanced tuple matching, control mechanisms to con-

trol access to tuple spaces and individual tuples, and

a mechanism to e�ciently pass di�erent data types

between user processes. Also better implementation

strategies are needed for the run-time systems used

to control tuple spaces to enable them to cope better

with large numbers of workstations.

Within the Bonita primitives the role of the re-

quest identi�er is to be considered. Allowing the user

to specify di�erent templates within the dispatch

primitive, the arrived primitive, and obtain prim-

itive may be more expressive. However, it introduces

the problem that a process may block on an obtain

which can never be satis�ed because no matching

tuple has been requested. The use of compile time

analysis may enable the detection of this, and there-

fore, the ability to inform the programmer that such

a situation exists.

The addition of a cancel primitive also ap-

pears attractive for use with the dispatch primitive.

However, the addition of such a primitive may lead to

an impossible semantics for dispatch bulk, because

tuples could potentially be matched and have left the

tuple space when the cancel is performed, thereby the

tuple arrives at the user process and has to be returned

to the source tuple space. One approach may be to

relax the dispatch bulk primitives semantics in con-

junction with the addition of access controls to tuples

and tuple spaces. The addition of a cancel primitive

for the dispatch bulk primitive is more complex, be-

cause the cancelled primitive may have already either

copied or moved the tuples and these may have been

consumed by other processes. The protocols needed

to enable the addition of the cancel primitive may be

very costly. And �nally a more formal semantics of

the primitives would be useful.

9 Conclusion

The work presented here was motivated by previous

work completed on the development of Linda run-time

systems for networks of distributed workstations. De-

tailed analysis of run time performance of these sys-

tems indicated that the primitives that involved the



retrieval of tuples spent most time being blocked be-

cause of the time taken for messages to pass through

the network and be serviced, rather than matching

tuples not being available.

The Bonita primitives have been presented as the

solution to this problem because they provide asyn-

chronous access to tuple spaces. Therefore, user com-

putation and tuple space access can be performed con-

currently. These primitives have the useful property

of being able to express the main primitives of Linda

(out, in, rd). The use of the primitives to provide a

non-deterministic choice construct and increased e�-

ciency has been shown. The non-deterministic choice

construct is of particular interest because of the few

implementations that support the full inp and rdp

primitives, and the reduction in communication that

is achieved when it is used.

The Linda model is a very good model for parallel

processing. It provides a simple and clean interface

for parallel processing on dedicated parallel machines

and small networks of workstations. Much of the per-

formance of the best implementations is due to the

compile time analysis which can be performed in such

closed environments. However, it is perhaps not so

appropriate for more distributed systems and we be-

lieve the Bonita primitives are a good �rst attempt

to overcome the problems.

Acknowledgements

During this work Antony Rowstron was supported

by a CASE grant from the EPSRC of the UK and

British Aerospace Military Aircraft Division. The au-

thors would like to thank Andrew Douglas, Ronaldo

Menezes and the referees for their useful comments

and discussions on the contents of this paper.

References

[1] Scienti�c Computing Associates. Linda: User's

guide and reference manual. Scienti�c Computing

Associates, 1995.

[2] M. Banville. Sonia: an adaption of Linda for co-

ordination of activities in organisations. In Paolo

Ciancarini and Chris Hankin, editors, Coordina-

tion Languages and Models, Proceedings of Co-

ordination '96, volume 1061 of Lecture Notes in

Computer Science, pages 57{74. Springer-Velag,

1996.

[3] P. Butcher, A. Wood, and M. Atkins. Global

synchronisation in Linda. Concurrency: Practice

and Experience, 6(6):505{516, 1994.

[4] N. Carriero and D. Gelernter. How to write par-

allel programs: A �rst course. MIT Press, 1990.

[5] A. Douglas, A. Rowstron, and A. Wood. ISETL-

LINDA: Parallel programming with bags. Tech-

nical Report YCS 257, University of York, 1995.

[6] A. Douglas, A. Wood, and A. Rowstron. Linda

implementation revisited. In P. Nixon, editor,

Transputer and occam developments, Transputer

and occam Engineering Series, pages 125{138.

IOS Press, 1995.

[7] D. Gelernter. Multiple tuple spaces in Linda.

In E. Odijk, M. Rem, and J.-C. Syre, edit-

ors, PARLE '89: Parallel Architectures and Lan-

guages Europe. Volume II: Parallel Languages,

volume 366 of Lecture Notes in Computer Sci-

ence, pages 20{27. Springer-Verlang, 1989.

[8] S.C. Hupfer. Melinda: Linda with multiple tuple

spaces. Technical Report YALEU /DCS/RR-766,

Yale University, 1990.

[9] K.K. Jensen. Towards a Multiple Tuple Space

Model. PhD thesis, Aalbrog University, De-

partment of Mathematics and Computer Science,

1993.

[10] M. Kaashoek, H. Bal, and A. Tanenbaum. Ex-

perience with the distributed data structure

paradigm in Linda. In Distributed and Mul-

tiprocessor Systems Workshop, pages 175{191.

USENIX Association, 1989.

[11] T. Kielmann. Designing a coordination model

for open systems. In Paolo Ciancarini and Chris

Hankin, editors, Coordination Languages and

Models, Proceedings of Coordination '96, volume

1061 of Lecture Notes in Computer Science, pages

267{284. Springer-Velag, 1996.

[12] K. Landry and J. Arthur. Instructional footprint-

ing and semantic preservation in Linda. Con-

currency: Practice and Experience, 7(3):191{207,

1995.

[13] A. Rowstron. Bulk primitives in Linda run-time

systems. PhD thesis, University of York, 1997.

[14] A. Rowstron, A. Douglas, and A. Wood. A

distributed Linda-like kernel for PVM. In



J. Dongarra, M. Gengler, B. Tourancheau, and

X. Vigouroux, editors, EuroPVM'95, pages 107{

112. Hermes, 1995.

[15] A. Rowstron, A. Douglas, and A. Wood. Copy-

collect: A new primitive for the linda model.

Technical Report YCS 268, University of York,

1996.

[16] A. Rowstron and A. Wood. An e�cient dis-

tributed tuple space implementation for networks

of workstations. In L. Boug�e, P. Fraigniaud,

A. Mignotte, and Y. Robert, editors, Euro-

Par'96, volume 1123 of Lecture Notes in Com-

puter Science, pages 510{513. Springer-Verlang,

1996.

[17] A. Rowstron and A. Wood. Solving the Linda

multiple rd problem. In Paolo Ciancarini and

Chris Hankin, editors, Coordination Languages

and Models, Proceedings of Coordination '96,

volume 1061 of Lecture Notes in Computer Sci-

ence, pages 357{367. Springer-Velag, 1996.

[18] V. Sunderam, J. Dongarra, A. Geist, and

R Manchek. The pvm concurrent computing sys-

tem: Evolution, experiences, and trends. Parallel

Computing, 20(4):531{547, 1994.


