
C2AS: A System Supporting Distributed Web Applications Composed of
Collaborating Agents

A. I. T. Rowstron, S. F. Li and R. Stefanova
Computer Laboratory, University of Cambridge,

New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK
faitr2, sfl20, rs10025g@cl.cam.ac.uk

Abstract

In this paper we describe the Cambridge Collaborative
Agent System (C2AS). This is a prototype system designed
to demonstrate the functionality and basic architecture ofa
framework for co-ordination between different components
(or agents) of distributed ‘Web’ applications.

Co-ordination in C2AS is achieved through the use of
tuple spaces, as used in Linda. However, the access prim-
itives used in C2AS are not those used by Linda, but the
BONITA primitives, which provide asynchronous access to
tuple spaces as opposed to synchronous access. Because
C2AS is tuple space based it supports temporal and spatial
separation of agents. The prototype system supports agents
written in either Java (including applets) or C.

1. Introduction

The aim of C2AS is to develop a simple, powerful and
flexible approach to allowing inter-agent communication
over a Wide Area Network (WAN) such as the World Wide
Web (WWW). In order to achieve this C2AS does not make
any assumptions about the programming language being
used. An agent written in C running in Cambridge, UK
should be able to co-ordinate with an agent written in Java
running as an applet on a Netscape Web browser in Cam-
bridge, MA, USA. Indeed, the two agents should have no
idea of the physical distance between them, or that they are
written in different languages. The current prototype sup-
ports process co-ordination between agents written in Java
and C (and C++). The C agents are compiled into native
machine code and do not use the Java Virtual Machine.

In order to demonstrate the attributes of C2AS and how
distributed Web applications can use it, a specific example
of a Web application is considered; a Virtual University.

The proposal for the use of tuple spaces for geo-
graphically distributed systems is not a novel one, indeed

Gelernter[5] generally talked about the concept of mirror
worlds built using tuple spaces. More recently, the PageS-
pace project[3] has actually implemented such a system.
The differences between the PageSpace and C2AS are:
C2AS is designed to support agents written in different lan-
guages; the access primitives to the tuple space are differ-
ent; multiple tuple spaces are supported; and the underlying
architecture is radically different.

Ciancarini et al.[2] describe in detail the current prob-
lems with the Web as currently used. The problems can es-
sentially be described as the need for temporal separation1

and peer-to-peer communication, removing the need to cre-
ate special servers, MIME-types, helper applications and so
on for an application that requires spatial separation.

2. C2AS functionality and architecture

C2AS uses tuple spaces as used in Linda[1]. The prop-
erties of tuple spaces have for over a decade been used in
parallel computing and Local Area Network (LAN) based
computing. C2AS represents an extension of the ideas of
tuple spaces to allow distributed Web based applications.
Within the systemthe onlyway two processes can commu-
nicate is via a tuple space. C2AS does notsupport direct
communication between two agents.

Earlier work has shown that the Linda primitives for
accessing tuple spaces may not be appropriate for Web
based applications (applications with the potential for a
large geographic distribution of communicating agents).
This is fundamentally because the primitives provide only
synchronouscommunicationwith tuple spaces. Thus, the
C2AS uses the BONITA[13] primitives which allow both
synchronous and asynchronous access to tuple spaces.

The current implementation of C2AS provides all the co-
ordination functionality envisaged. However, the underly-
ing run-time system is based on a LAN run-time system

1The ability for two agents to co-ordinate despitenotexecuting concur-
rently

and is not scalable. The current prototype system does not
address the problems of security or agent migration.

The co-ordination functionality of C2AS is now consid-
ered, and then the prototype architecture is described.

2.1. C2AS Functionality

As with Linda the fundamental objects of C2AS are tu-
ples, templates and tuple spaces:
Tuple A tuple is an ordered collection of fields. Each field
has a type and a value associated with it. A field with both a
value and a type is known as an actual. The same field can
be replicated many times within a tuple. The tuple:h10

int

;

“Hello World”
string

; 10

int

; ‘A’
char

i is a tuple containing
four fields with the type of the field shown as a subscript
of the value. The types of the fields are normally restricted
by the language into which Linda is embedded. Tuples are
placed into tuple spaces and are removed from tuple spaces
using an a associative matching process.
Template A template is similar to a tuple except the fields
do not need to have values associated with them, but all
fields must have a type. A field that has only a type and no
value is known as a formal, and a template is a tuple which
can have formals.

The templates: hj10

int

; “Hello World”
string

; 10

int

;

‘A’
char

ji and hj10

int

; 2

string

; 2

int

; ‘A’
char

ji will match
the tupleh10

int

; “Hello World”
string

; 10

int

; ‘A’
char

i. In
this paper the symbol2 in a template is used to indicate
that the field is a formal, so it has no value.
Tuple space A tuple space is alogical shared associative
memorythat is used to store tuples. A tuple space imple-
ments abagor multi-set, and the same tuple may be present
more than once and there is no ordering of the tuples in a
tuple space.

Tuples are inserted into tuple spaces. In order to retrieve
a tuple an associative match is performed between a tem-
plate and the tuples in the tuple space. The choice of data
types that can be inserted into a tuple has been restricted
because the agents can be written in different languages,
which support different types. Currently, C2AS supports
typed objects of integer, character, and string. This means
that entire Java objects cannot be inserted into a tuple. There
is no reason why new types cannot be added, indeed there
is nothing to stop language dependent typed objects being
inserted in tuples, but it means that only agents written in
the same language can access these tuples.

A number of access primitives are embedded into the
host languages, in the case of the C2AS prototype, C and
Java. C2AS uses the BONITA[13] primitives:
rqid = dispatch(ts, tuple j [template, destructive j non-
destructive]) This is an overloaded primitive which con-
trols all accesses to a tuple space which require a tuple to
be either placed into a tuple space or removed from a tu-

ple space. The tuple space to be used ists. If a tuple
is specified then this tuple is placed in the tuple space. If
a template is specified then this indicates that a tuple
is to be retrieved from the specified tuple space. If this is
the case then an extra field is used to indicate if the tuple
retrieved should be removed (destructive) or not re-
moved(nondestructive) from the tuple spacets. This
primitive is non-blocking and returns arequest identifier
(rqid) which is subsequently used with other primitives to
retrieve the matched tuple.
rqid = dispatch bulk(ts1, ts2, template, destructive j

nondestructive) This initiates the movement of tuples be-
tween tuple spaces. Tuple spacets1 is the source tuple
space and the destination tuple space ists2 and the tu-
ples are either moved (destructive) or copied (non-
destructive). A count of the number of tuples copied
or moved is returned. Again this is achieved by the prim-
itive returning arequest identifier(rqid) which is subse-
quently used with other primitives to get a count of the
number of tuples moved or copied. The number of tuples
moved or copied depends on the stability of the tuple space.
If the tuple space is stable (there are no operations which
are destructive being performed in parallel with this primi-
tive) then all the available tuples are copied or moved. The
semantics of the primitive, when other primitives are being
performed concurrently can be found in the description of
thecopy-collect primitive in Rowstron[13]. The prim-
itive is non-blocking.
arrived(rqid) This primitive checks to see if the result as-
sociated with rqid is available. If the result is available
then the primitive returns the result. The primitive isnon-
blockingand returns false if the result associated with rqid
is not yet available. The result will either be a tuple (the
result of adispatch) or an integer (the result of adis-
patch bulk).
obtain(rqid) This primitive is similar to thearrived
primitive except it blocks waiting for the result associated
with rqid if the result is not available immediately.
ts = tsc This primitive is used to create a new tuple space
within the system. The tuple space is guaranteed to be
unique, and a handle to the tuple space is returned.

The exact syntax of each of the primitives depends upon
the host language being used. It should be noted that the
Linda primitives ofin, rd andout can all be emulated us-
ing the BONITA primitives[13]. Anin primitive is a block-
ing primitive that removes an arbitrary matching tuple from
a tuple space, blocking if there are no matching tuples. A
rd primitive is anin primitive that returns a copy of the
tuple but does not remove the tuple from the tuple space.
An out primitive inserts a tuple into a tuple space.

C2AS uses the BONITA primitives rather than the Linda
primitives because they provide asynchronous access totu-
ple spaces. Tuple spaces provide asynchronous inter-agent

communication, but each agent can only access atuple
spacein a synchronous manner. Rowstron et al.[13] de-
scribe the overhead costs of performing anin or rd prim-
itive. The drawback, in geographically distributed systems,
of synchronous tuple space access is that the primitives
block regardless of whether the matching tuple is present
or not, simply due to the time taken for a message to reach
the system managing the tuples and the time taken for the
reply message. The agent (or in Java case the thread) which
performs the Linda primitive will block for this communi-
cation time.

2.2. Prototype architecture

The architecture of the prototype system is shown in Fig-
ure 1.

JGD JGD

TSM1

TSM3

TSM2

TSM4

Java Agent Java Agent

Existing Tuple Space Manager (York Kernel II)

C2AS Run−time System

C Agent

Java Agent

Figure 1. Architecture of prototype C 2AS.

The C2AS architecture was initially created to be simple.
The underlying storage mechanism (the tuple space man-
ager or kernel) is based on the York Kernel II[9, 11, 12]. The
kernel is distributed over a number of workstations, with
each workstations running a processTSMx. Within the ker-
nel every tuple space is distributed over potentiallyall TSM
nodes. Therefore, each node may contain tuples that belong
to the same tuple space. This requires under many circum-
stances arbitration, and subsequently all nodes must be able
to communicate with each other. This leads to a fixed tuple
space manager architecture which cannot expand (or shrink)
over time. The kernel is built upon PVM[16].

Within the current prototype architecture C based agents
communicate with the TSM nodes directly, using PVM and
therefore, can only be executed on workstations included
within the PVM virtual machine that the kernel is using.

In order to enable Java based agents to communicate
with the kernel, another server process (written in Java) is

started on each workstation which is running part of the ker-
nel, called the Java Gateway Daemon (JGD). A Java agent
can connect withanyof the JGDs using a dedicated socket.
Because there are many JGDs and the Java agent can con-
nect with any of them the JGDs do not become a bottle-
neck within the system. When the agents are not written
as applets this is fine, however due to security restrictions
within the Java Virtual Machine when embedded in WWW
browsers this is a problem for applets. An applet can only
open a socket to the same machine which the Web server
that provided the applet is executing on. Currently, in or-
der to overcome this, a small Web server is also run on ev-
ery workstation that runs one of the JGD. When the level
of Java security is configurable, as planned, this restriction
may be removed, or otherwise a simple Web server will be
folded into the JGD, to allow it to process HTTP requests.
However, even if a HTTP server is integrated with the JGDs
a dedicated socket will still be used for communication be-
tween the agents and the JGD. We anticipate a performance
advantage by maintaining an open socket because of the
TCP/IP slow start policy.

2.3. Example

Figure 2 and Figure 3 show two small and simple agents,
one written in C and the other in Java. The C agent inserts
100 tuples into a tuple space, and the Java agent retrieves the
tuples and prints the second field of each tuple to the screen.
Both use a tuple space which is called GTS, or the global tu-
ple space. Traditional Linda systems support a global tuple
space that all processes (agents) can access. C2AS supports
this global tuple space, but processes can also create new
tuple spaces.

1 int main(int argc, char *argv[]) {
2 int x;
3 for (x = 0; x < 100; x++)
4 dispatch(gts, L_INT x, L_INT (x*x), L_END);
5 return 0;
6 }

Figure 2. A C agent that inserts 100 tuples
into a tuple space.

Figure 3 shows the Java agent. In the Java embedding
of the primitives the global tuple space handle has to be ex-
plicitly created, and this is done on line 7. The objectgts
is an instantiation of the class TupleSpace, whose meth-
ods include the BONITA primitives. Therefore, executing
gts.dispatch causes the dispatch to be performed on
the tuple space handle associated with the objectgts, in
this case the global tuple space. In order to allow formals
in a template a new class Formal is introduced, and when
instantiated it contains a type descriptor of the formal field

in the template (in this caseinteger). In the Java embed-
ding theobtain primitive returns a tuple (as in ISETL-
Linda[4]). A method is provided in the Tuple class to ex-
tract a field and in line 14 this is used to extract the second
field of each returned tuple in order to print it to the screen.

1 public class OutTest {
2 public static void main(String[] args) {
3 TupleSpace gts = new TupleSpace();
4 Tuple AllTuples[] = new Tuple[100];
5 int Handles[] = new int[100];
6 gts.tsc("GTS");
7 for (int x = 0; x < 100; x++)
8 Handles[x] = gts.dispatch(new
9 Template(new Integer(x),
10 new Formal("integer")), true);
11 for (int x = 0; x < 100; x++) {
12 AllTuples[x] = gts.obtain(Handles[x]);
13 System.out.println(x + " " + ((Integer)
14 AllTuples[x].GetField(2)).intValue());
15 }
16 }

Figure 3. A Java agent which, using pipelin-
ing, retrieves 100 tuple from a tuple space.

3. Case study: The Virtual University

The aim of the example system is to provide the basic in-
frastructure of a Virtual University which supports distance
learning for geographically separated students. The main
method of interaction between university members will be
through World Wide Web based tools which interact using
the C2AS. We envisage this university as having a number
of students and lecturers who interact with each other even
though they are not on the same campus or even in the same
country or continent.

A Virtual University will provide a set of courses on
different subjects. To support these courses a number of
CSCW tools are required which provide the different forms
of interaction that students at a physical university expe-
rience. Rather than concentrating on how course content
is provided, we have concentrated on the interaction tools.
The interaction tools must be able to support temporal sep-
aration so that the users can share information concurrently
but also potentially share the information at different times,
e.g. pupils living in different time zones.

Currently, two of the tools have been developed, a talk
tool and a feedback tool. The talk tool is now described
in greater detail. The talk tool is based on the talk tool
described in Rowstron[10]. The tool is designed to facil-
itate communication between humans through time. The
tool maintains a conversation which is simply the entries
made. These are ordered so the most recent additions to the
conversation are at the end of the conversation and this is
stored in a tuple space. When a talk tool terminal is started

the conversation to that point is printed, and the user can
then add lines to the conversation. Because the conversa-
tion is stored in a tuple space,all talk tool terminals can
terminate and the conversation will not be lost.

In the virtual university such a tool is used to enable
inter-pupil conversation, tutorial group conversation, and
individual pupil-supervisor conversations. Another toolis
currently under development to allow an agent to detect
when a conversation has been altered. Therefore, a su-
pervisor can ‘watch’ all the unique conversations between
himself and each pupil. The talk tool is also currently be-
ing extended to support the cross posting of lines, and the
‘copying’ of lines of text from one conversation to another,
so a private conversation between a supervisor and a stu-
dent could be posted to the tutorial group conversation for
example.

This is all achieved using simple agents, that access the
tuple spaces. There are no servers running which manage
the conversations. The agents manipulate the tuples them-
selves. The implementation of the basic talk tool can be
seen in Rowstron[10]. There are three versions of the talk
tool, a C version, a Java version and a Java applet version.
Figure 4 shows the screen shot of the Netscape browser run-
ning the Java Applet version of the talk tool.

Figure 4. Screen shot of a Netscape browser
running the talk tool as a Java applet.

4. Comparison with other approaches

CORBA[15] (Common Object Request Broker Architec-
ture) is a standardized open object-based system. It aims
to support a distributed computing environment using het-
erogenous platforms. CORBA provides a client/server type

architecture, with an Object Request Broker (ORB) pro-
viding references to server objects (which can dynamically
change). Currently, the client/server approach is increas-
ingly seen as an intermediate stage in moving from main-
frame orientated applications to collaborative (peer-to-peer)
computing[8].

Tuple spaces provide persistence of the information
stored within them, and also allow organised distributed
data structures to be created. The agents in C2AS can com-
municate and synchronise by manipulating these structures
in the tuple spaces. This removes the need to supply servers
to support the storage and manipulation of such data. If
we consider the talk tool described in the last Section. In a
client/server model a server would have to be written which
managed the conversations. However, in the case on C2AS
the agents can manipulate the tuples that store the conver-
sation without requiring a server to be implemented.

Java RMI enables the creation of distributed Java-to-Java
applications, in which the methods of remote Java objects
can be invoked from other Java Virtual Machines, possibly
on different hosts. However, this technology assumes the
homogeneous environment of the Java Virtual Machine and
does not support a heterogeneous, multi-language environ-
ment. From the client’s perspective, Java RMI is equiva-
lent in behaviour to an Remote Procedure Call (RPC), i.e.
the client invokes the remote method, and then blocks wait-
ing for the response. For interactive Java based programs
this could potentially be a problem, due to the communi-
cations overhead (for the same reasons the C2AS uses the
BONITA primitives rather than the Linda primitives). Also,
as with CORBA, it is fundamentally based on a client-server
model. If the talk tool was written using RMI then, again
a server would be required to manage the conversation, be-
cause there is no notion of persistence in Java.

PageSpace[3, 2] is a platform which supports open dis-
tributed applications using the Web. It utilises a global tu-
ple space. Access to the tuple space is provided by using the
Linda primitives. PageSpace also supports Laura[17] which
is a co-ordination language for agents in distributed systems
that offer and request services using a service space. This
service space can be considered as a tuple space, where the
offers and requests which are tuples are inserted into the
tuple space.

The PageSpace architecture is very different from the
C2AS architecture. The architecture is described in detail
in Ciancarini[2]. The architecture uses many different cate-
gories of agent. Alpha agents interact with humans and are
“located” within Web browsers as Java applets. These com-
municate with beta agents. There appears to be one beta
agent per user who can use the system, and this agent acts
as a gateway for the user into the PageSpace system. These
agents then intact with other agents within the system which
actually perform the computation. This architecture means

that alpha agents do not perform computation, all computa-
tion is performed in the PageSpace by other agents.

In C2AS the agents that run as applets in the browser
can directly co-ordinate with other agents running as ap-
plets in other browsers. If a poker game was written us-
ing C2AS then the agent running in the browser would co-
ordinate, through tuple spaces, with the other poker agents.
This potentially makes the writing of agent systems much
simpler and ensures that computation is performed on the
user’s workstation rather than having to run a number of
agents within the PageSpace system. However, this has the
drawback that state is stored in the agent which under some
circumstances can be a problem. If an agent has removed
a tuple that other agents require and then dies then all the
agents may well be unable to continue because the tuple is
missing. We are currently considering the addition of trans-
action processing properties to the agents, thereby provid-
ing sets of atomic operations. PLinda[7] uses such a tech-
nique to provide fault tolerance.

C2AS provides low-level co-ordination. PageSpace pro-
vides higher-level co-ordination by incorporating Laura.In
C2AS it is up to the developers of an agent system to decide
the co-ordination style and protocol that they wish to use. It
is possible to develop a Laura style co-ordination language
on top of the basic functionality of C2AS, but it is equally
possible to develop other co-ordination mechanisms on top
of C2AS.

W3-Linda[14] used the Common Gateway Interface
(CGI) to provide a method for allowing tuples to be inserted
into a single global tuple space, and tuples retrieved. The
CGI scripts processed information provided via a HTML
FORM. A program consists of one or more CGI scripts, that
insert the tuples and generate a new HTML page that is re-
turned to the users Web browser. Due to the nature of HTTP
(client initiated), once the HTML page has been returned to
the user’s browser any future update of that page is depen-
dent upon the user of the browser initiating it by clicking on
a button or something similar to cause an appropriate HTTP
operation to be initiated with the server. This means inter-
active programs which update dynamically are not possible,
and interaction with the tuple space is very restricted.

However, Schoenfeldinger describes a course evaluation
tool which was developed using 3W-Linda. Students are
presented with an questionnaire written in HTML FORM.
The results of this are inserted into the tuple space using
a CGI script. These are then processed by another agent
who maintains the results in the tuple space. Also the agent
maintains a graph. People can then ask to see the current
status of the results. Our feedback tool could be used to
perform such an operation. With our feedback system the
result agent dynamically updates the display as new results
are processed, without the user needing to request updates
explicitly. Secondly, the graph generation and result for-

matting is performed by the result agent.
Gutfreund[6] proposed the use of Linda to allow differ-

ent parts of a Web browser to communicate. Because of
the spatial separation provided by tuple spaces, the func-
tionality of the Web browser can be extended by adding
a new process without the other processes being explicitly
aware of it when the browser was first started. Therefore,
the browser becomes a collection of interacting agents that
provide the services. Since this work, main stream browsers
have used the concept by providing support for helper ap-
plications.

5. Conclusion

In this paper we have presented an overview of the Cam-
bridge Collaborative Agent System. The aim of C2AS is to
provide a flexible but yet simple system to allow geograph-
ically diverse agent based systems to communicate.

There are a number of important areas that the proto-
type system does not address which are primarily the is-
sues of: scalability, agent migration and security. Current
work on the development of tuple space management sys-
tems has shown the potential to allow the systems to be very
scalable[9]. The techniques used in these kernels are based
on thedynamicanalysis of running agents tuple space us-
age. The information required can be gathered in an implicit
manner, requiring no additional information to be added to
the agent by the programmer. However, such kernels have
not yet been implemented.

We believe that explicit migration operations are not re-
quired. For agents which do not interact with humans then
the C2AS run-time system decides when to migrate an agent
and to where. One of the advantages of spatial separation
is that agents are unaware of where the destination agent is
located. Agents are written in a fashion that makes them
completely independent of physical location. All an agent
needs to be able to do is to use the tuple spaces it has access
to. This means the programmer explicitly asking to migrate
the agent appears rather strange.

The use of associative shared memories in the form of tu-
ple spaces, provides a simple, efficient and potentially scal-
able approach to developing an infrastructure for Web based
agent systems. The simplicity means that agent systems can
be created quickly. The ability to store data structures in a
tuple space, largely removes the need for a client-server ap-
proach to Web based systems, by allowing agents to directly
access and manipulate the stored information.

6. Acknowledgements

Sheng Li and Radina Stefanova were supported by a
CASE grant from the EPSRC of the UK andThe Olivetti &

Oracle Research Laboratory. Antony Rowstron was sup-
ported by a research grant fromThe Olivetti & Oracle Re-
search Laboratory. The authors would like to thank Andy
Hopper and Stuart Wray for their support.

References

[1] N. Carriero and D. Gelernter. Linda in context.Communi-
cations of the ACM, 32(4):444–458, 1989.

[2] P. Ciacarini, R. Tolksdork, and F. Vitali. Weaving the Web
in a PageSpace using coordination. 1996.

[3] P. Ciancarini, A. Knocke, R. Tolksdorf, and F. Vitali. PageS-
pace: An architecture to coordinate distributed applications
on the web. In5th International World Wide Web Confer-
ence, 1995.

[4] A. Douglas, A. Rowstron, and A. Wood. ISETL-LINDA:
Parallel programming with bags. Technical Report YCS
257, University of York, 1995.

[5] D. Gelernter.Mirror worlds. Oxford University Press, 1992.
[6] Y. Gutfreund. WWWinda: An orchestration service for

WWW browsers and accessories. InElectronic Proceedings
2nd International World Wide Web Conference: Mosaic and
the Web, 1994.

[7] K. Jeong and D. Shasha. Persistent Linda 2: a trans-
action/checkpointing approach to fault-tolerant linda. In
Proceedings of the 13th Symposium on Fault-Tolerant Dis-
tributed Systems, 1994.

[8] T. Lewis. Where is client/server software headed?IEEE
Computer, 28(4):49–55, 1995.

[9] A. Rowstron. Bulk primitives in Linda run-time systems.
PhD thesis, Department of Computer Science, University of
York, 1997.

[10] A. Rowstron. Using asynchronous tuple space access prim-
itives (BONITA for process co-ordination. Accepted for Co-
ordination’97, 1997.

[11] A. Rowstron and A. Wood. An efficient distributed tuple
space implementation for networks of heterogenous work-
stations. Technical Report YCS 270, University of York,
1996.

[12] A. Rowstron and A. Wood. An efficient distributed tu-
ple space implementation for networks of workstations. In
Euro-Par’96, LNCS 1123, pages 510–513. Springer-Verlag,
1996.

[13] A. Rowstron and A. Wood. BONITA: A set of tuple space
primitives for distributed coordination. In30th Hawaii Inter-
national Conference on System Sciences 1, pages 379–388.
IEEE CS Press, January 1997.

[14] W. Schoenfeldinger. WWW meets Linda. InElectronic
Proceedings 4th International World Wide Web Conference:
The Web Revolution, 1995.

[15] J. Siegel.CORBA Fundamentals and Programming. John
Wiley & Sons Inc., 1996.

[16] V. Sunderam, J. Dongarra, A. Geist, and R. Manchek. The
PVM concurrent computing system: Evolution, Experi-
ences, and Trends.Parallel Computing, 20(4):531–547,
1994.

[17] R. Tolksdorf. Coordinating services in open distributed sys-
tems with LAURA. In Proceedings of Coordination ’96,
LNCS 1061, pages 386–402. Springer-Verlag, 1996.

