Software-Defined Caching:
Managing Caches in Multi-Tenant Data Centers

Ioan Stefanovici⋆, Eno Thereska, Greg O’Shea, Bianca Schroeder⋆, Hitesh Ballani, Thomas Karagiannis, Antony Rowstron, Tom Talpey†
University of Toronto⋆, Microsoft Research, Microsoft†

Abstract
In data centers, caches work both to provide low IO latencies and to reduce the load on the back-end network and storage. But they are not designed for multi-tenancy; system-level caches today cannot be configured to match tenant or provider objectives. Exacerbating the problem is the increasing number of un-coordinated caches on the IO data plane. The lack of global visibility on the control plane to coordinate this distributed set of caches leads to inefficiencies, increasing cloud provider cost.

We present Moirai, a tenant- and workload-aware system that allows data center providers to control their distributed caching infrastructure. Moirai can help ease the management of the cache infrastructure and achieve various objectives, such as improving overall resource utilization or providing tenant isolation and QoS guarantees, as we show through several use cases. A key benefit of Moirai is that it is transparent to applications or VMs deployed in data centers. Our prototype runs unmodified OSes and databases, providing immediate benefit to existing applications.

Categories and Subject Descriptors D.4.7 [Operating Systems]: Organization and Design—Distributed systems; D.4.2 [Operating Systems]: Storage Management—Distributed memories

Keywords Caching, Software-defined storage, Predictable performance, SLA, QoS

1. Introduction
An increasing number of enterprise applications have migrated to hosted platforms in private enterprise and public cloud data centers. Such platforms are typically virtualized, i.e., tenants deploy applications in virtual machines (VMs) whose access to the underlying resources (memory, storage, network) is shared with other tenants, and mediated by hypervisors such as Hyper-V, VMware ESX, or Xen. Uninhibited sharing of such resources in a multi-tenant environment leads to poor and variable application performance. While recent efforts give providers control over how resources like network [3, 19, 24, 31, 34] and storage [4, 17, 18, 35, 38] are shared, there is no coordinated end-to-end control of the distributed caching infrastructure, made up of storage caches at multiple places along the IO stack (inside VMs, hypervisors, storage servers; see Figure 1). Today, storage caches along the IO stack are transparent to both applications and cloud providers, lack workload-aware mechanisms, and are each managed in isolation, leading to multiple problems:

• **Lack of performance isolation** Since caches are not tenant- or workload-aware, applications with different IO patterns and request rates sharing the same cache will impact each other’s cache performance. For example, depending on the cache eviction policy, one application’s large sequential reads can blast away another workload’s working set. Even with scan-resistant cache management policies, such as ARC [29], aggressive clients with higher request rates will still be allocated larger portions of the cache.

• **Lack of customization** Since caches are not tenant-aware, the entire cache is treated as a single pool with one cache write policy (write-through, write-back, etc), despite different durability requirements of different applications, and one eviction policy, despite the fact that different workloads benefit from different cache eviction policies. For example, Figure 2(a) shows two IOMeter workloads under two sequences.
different eviction policies, LRU and MRU \(^1\) respectively. The workload on the left performs at its peak with an MRU policy, while the one on the right performs best with LRU. Today, if both workloads were running atop the same hypervisor, they would have to follow the same eviction policy, leading to performance penalties on the order of 4-5x.

- **Lack of coordination** Each cache in the IO stack makes its decisions locally, agnostic to the state of other caches in the stack, leading to inefficiencies, such as double caching, as was also noted by Wong and Wilkes \(^43\).

- **Lack of adaptability** Currently, the organization and configuration of caches is fixed. Caches cannot be added, removed, or resized on the fly to adapt to changes in the workload or in provider objectives.

- **Waste of system resources** Simple solutions for partitioning caches along the IO stack are not sufficient. For example, Figure 2(b) shows that the observed performance triples when cache space is optimally allocated according to workload characteristics (the workload consists of 4 tenants using 120 VMs in total), compared to the case when caches are naively allocated equally across tenants. We will describe the details of this experiment in Section 5, but note that all workloads' throughputs benefit when the right cache size is chosen. This is true even for tenants that receive less total cache, as the contention at the storage device is reduced.

While some of these problems have been tackled in isolation, there is no comprehensive framework for the end-to-end management of caches that allows providers to address the major issues they are facing today. We present Moirai\(^1\), a tenant- and workload-aware system that allows data center providers to control their distributed caching infrastructure to achieve provider objectives, such as improving resource utilization and request latency, achieving tenant isolation, and QoS guarantees. Moirai does not require changes to the IO stack architecture, is transparent to applications and VMs, and does not change cache consistency semantics.

2. Design

Figure 3 shows the architecture of Moirai, which comprises three key components. At the core is a logically-centralized controller that uses information on workload characteristics maintained by the metrics engine to configure the programmable caches to achieve provider objectives.

2.1 The Metrics Engine

The Metrics Engine is a hypervisor-based module that maintains key characteristics for each workload running on the system, such as throughput, number of reads vs. writes, etc., but also hit ratio curves, which describe the percentage of requests serviced from cache as a function of the cache size. We use phantom caches, which inspect IO headers (with fields such as accessed file name, offset, length, etc.) and exploit techniques from recent work \(^{33, 41, 42}\) to generate hit ratio curves efficiently at runtime. The Metrics Engine periodically sends these performance metrics to the centralized controller.

2.2 Programmable Caches

Caches along the IO stack are programmable through a simple API shown in Table 1. Caches are created at the desired position in the IO stack by sending a createCache call to the appropriate level in the stack (more details in Section 4). A cache \(c\) is made workload-aware using the createRule call, which installs a rule to specify the IOs that should be cached in \(c\). If the header of an incoming IO matches one of \(c\)'s rules, the IO (header+data) is sent through the cache. The controller can also configure cache properties (configureCache) to set the size, eviction, and write policies. Similarly, cache performance metrics are obtained via the getCacheStats call.

The controller is all-seeing, and installs cache rules in a way that maintains consistency and coherence across caches along the IO stack. Care must also be taken when the location of a cache changes (e.g., the controller decides to cache at the storage server rather than at the hypervisor). In order to maintain consistency, Moirai first removes the caches on the old path, which automatically triggers the eviction of all cached state, including writing any dirty blocks to the backend storage, and then installs caches on the new path. We considered other options, such as keeping the old caches until all accesses eventually move to the new caches, but they add complexity and require maintaining extra metadata.

\(^1\) Moirai (Ancient Greek for “apportioner”) in Greek mythology are the three personifications of fate, who control the thread of life of every mortal from birth to death, analogously to the end-to-end control of caches by the three components that comprise Moirai.
a particular bandwidth \(B \)

... but the question now becomes what the size each controller passes each workload’s traffic through its own dedicated cache in the same system, in order to guarantee each workload \(W \)’s bandwidth guarantee, and then allocates the workload \(W_i \) cache space \(a_i \), such that \(U(a_i) = Hit_i \), where \(U \) is the workload’s hit ratio function (provided by the Metrics Engine).

More precisely, note that if the total bandwidth achievable from the storage back-end \(BW^{storage} \) is and main memory bandwidth is \(BW^{memory} \), a workload’s bandwidth depends on its hit ratio \(Hit_i \) as follows:

\[
SLA_i^{BW} \leq Hit_i \times BW^{memory} + (1 - Hit_i) \times BW^{storage}
\]

That means the cache hit ratio in order to achieve a bandwidth \(SLA_i^{BW} \) needs to be at least:

\[
Hit_i \geq \frac{SLA_i^{BW} - BW^{storage}}{BW^{memory} - BW^{storage}}
\]

After the min. data bandwidth guarantees \(SLA_1^{BW}, \ldots, SLA_n^{BW} \) are met for all \(n \) workloads, the leftover cache space can be allocated based on priorities or using approaches highlighted in Section 3.3 to optimize for global utility.

Recent work we have done provides performance guarantees to applications that span multiple distributed appliances and the intervening network, through the abstraction of a virtual datacenter (VDC) \([2]\). We are currently also working to expand this abstraction to include caches.

3.3 Maximizing Global Workload Utility

Rather than per-workload guarantees, a provider might strive to maximize the global workload utility, i.e., the sum of the utilities across all workloads in the system. Utility of a workload could be measured by hit ratio, or be defined more generally in terms of bytes per second (Bps) satisfied by the cache, or by extending the notion of hit ratio by introducing weights to account for the type of IO (i.e., reads vs. writes), or even to account for the impact of a workload on the storage device (e.g., sequential vs. random access).

The choice of definition for utility will be dictated by the optimization goals of the cloud provider. Using the example of hit ratios as the utility function, the controller can create a separate cache for each workload (similar to Section 3.2) and then use a classic result \([37]\) to determine the cache allocations \(a_1, \ldots, a_n \) that maximize system-wide hit ratios (shown in our extended technical report \([36]\)).

3.2 Providing Per-Workload Bandwidth Guarantees

Next we examine how Moirai allocates cache space to several arbitrary workloads \(W_1, W_2, \ldots, W_n \), all running on the same system, in order to guarantee each workload \(W_i \) a particular bandwidth \(B_i \). Similar to Section 3.1 the controller passes each workload’s traffic through its own dedicated cache \(C_i \) at the hypervisor (see figure on the following column), but the question now becomes what the size each of the caches needs to be. For simplicity of exposition, we focus on hypervisor level caches only, but the techniques can be expanded to include simultaneous allocation of hypervisor and storage level cache space, as we explain in our extended technical report \([36]\).

To answer this question, the controller uses information from the Metrics Engine to first determine the hit ratio \(Hit_i \) required for workload \(W_i \) to meet a certain bandwidth guarantee, and then allocates the workload \(W_i \) cache space \(a_i \), such that \(U(a_i) = Hit_i \), where \(U \) is the workload’s hit ratio function (provided by the Metrics Engine).
One might argue that a standard, workload-agnostic system that manages the entire cache as a single pool and applies its favorite replacement policy to it is also designed to achieve the same goal of maximizing overall hit ratio. However, Moirai can provide generalizations of this goal (e.g., a weighted sum of the hit ratios across workloads) and simultaneously provide other goals, such as isolation (e.g., protecting one workload from the effects of workload spikes in another workload), which a standard system cannot.

3.4 Consolidating Memory Over Fast Networks

As systems are increasingly making use of fast networks with speeds in excess of 40-100Gbps and RDMA capabilities [12], use of remote resources is becoming increasingly feasible and can improve overall utilization of resources. Consider as an example a read-only dataset DATA.file accessed by N VMs across N hypervisors. Placing one consolidated cache at the storage server can result in an Nx reduction in total cache space used, with potentially only small increases in latency. The controller can accomplish this as follows (using the example of a 100GB MRU write-back cache C as the consolidated cache):

1: \(C = \text{createCache}(<100GB, \text{MRU, write-back}>) \)
2: \(\text{createRule}(<\text{VM}1 - N, *, \text{DATA.file, *}, C>) \)

The resulting data plane is shown in the figure below:

![Diagram of data plane](image)

3.5 Scaling Out Caches

In addition to fully-remote caching, caching capacity per workload can be split across the compute and storage server, while appearing to the VM and applications as one single aggregate cache. Note that today, workloads do flow through both caches (at the hypervisor, and at the storage server), but this occurs in an uncontrolled fashion, leading to wasted memory capacity by double-caching of data in both places.

In situations where the hypervisor is hosting several applications and memory is limited, the controller has several choices for how to split the cache for a workload A and configure it at the hypervisor(1) and storage server(2). If the workload access is uniform across the file, one choice is to cache half the file in each of the respective caches:

1: \(\text{createRule}(<\text{VM}, *, \text{A.file, 0, size}/2>, C1) \)
2: \(\text{createRule}(<\text{VM}, *, \text{A.file, size}/2+1, size>, C2) \)

The resulting data plane is shown in the figure below:

![Diagram showing workload access patterns](image)

The controller can also match workload access patterns to the way the cache is split based on hot or cold blocks or files. Another option is to treat both caches as a global LRU cache. To do that, the controller programs C1 to cache the IOs from A.file, and C2 to only cache IOs that were evicted (or “demoted”) from C1.

4. Implementation

We have implemented and deployed a Moirai prototype, comprising all components described in Section 2 on a Windows-based system and made the code publicly available [1]. The controller is implemented in around 6000 LOC of C# and communicates with the caches through RPCs over TCP. The Metrics Engine is implemented as a user-level stage in the hypervisor in around 500 LOC and uses a variant of SHARDS [41] to determine hit ratio curves. Cache modules implement the APIs in Table 1 at user-level in around 2000 LOC in C#.

One implementation challenge is how to classify and direct a tenant’s traffic to the configurable caches. We decided to build an extension of the IOFlow framework [38] to implement this functionality. Note that while in its original form IOFlow does keep track of each IO’s tenant class, it was designed to provide IO queuing and rate limiting based on IO request headers. By contrast, caching involves inspection and manipulation of the data associated with an IO request.

We implemented an extension of the IOFlow architecture to add support for data transformations using a version of the Windows messaging API for filter drivers, in around 500 new LOC. IOs are passed to a user-level cache through an upcall, while a kernel-mode thread handling the IO request blocks pending a return code from the cache. The latter decides whether the request is terminated at the filter driver (hit), or is sent further down the IO stack.

5. Experimental Evaluation

This section provides an experimental evaluation of some of Moirai’s use cases presented in Section 3. Our experimental testbed has 12 servers, each with 16 Intel Xeon 2.4 GHz, 384 GB of RAM and three Seagate Constellation 2 disks or four Intel 520 SSDs in RAID-0. The servers run Windows Server 2012 R2 operating system and can act as either Hyper-V hypervisors or as storage servers. Each server has a 40 Gbps Mellanox ConnectX-3 NIC supporting RDMA and is connected to a Mellanox MSX1036B-1SFR switch. We use real enterprise application traces and benchmarks, as specified below and in more detail in our technical report [30]. As Moirai is transparent to applications and VM’s, they can run on our testbed without modifications.

5.1 Enforcing Priorities

We examine Moirai’s ability to prioritize a workload using the example of a VM with one SQL Server instance running both TPC-E and TPC-H. The corresponding database files, “TPCE.VHD” and “TPCH.VHD” each have a footprint of 50GB and are stored on Virtual Hard Drives (VHDs) on two separate disk-based storage servers.
We run two experiments, one with default caching and one where we use Moirai to prioritize the TPC-E workload, as explained in Section 3.1 and measure the following throughput (transactions/min) for the TPC-E workload:

<table>
<thead>
<tr>
<th></th>
<th>Default (Txn/min)</th>
<th>Moirai (Txn/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC-E alone</td>
<td>1098</td>
<td>207</td>
</tr>
<tr>
<td>TPC-E with TPC-H</td>
<td>871</td>
<td>852</td>
</tr>
</tbody>
</table>

We observe that in the system without Moirai, TPC-E’s performance drops by more than 5X when TPC-H runs. On the other hand, we find that with Moirai, TPC-E’s throughput running alongside TPC-H is within 2.3% of its throughput running by itself.

Note that our current implementation of Moirai results in a data plane overhead of 20% (this difference is due to using our user-level cache vs. SQL Server’s native cache, which is highly optimized). The overhead also stems in part from extra memory copies between the kernel and the user-level cache. We believe that this overhead is acceptable compared to the 5x drop in performance with today’s caching infrastructure. Further, note that the controller can detect when there are no workloads accessing VHDs on an SSD-based storage server. Each tenant’s VM uses IOMeter, parameterized with the key characteristics of the Hotmail workloads [36] (Tenants 1-4 are running the Index, Data, Msg and Log workloads respectively).

We compare two approaches of dividing up the cache space. In the first we divide space equally among the four tenants. In the second (after 480 seconds), we use the method described in Section 3.3 to partition the cache and reconfigure the data plane. The results are shown in Figure 2(b).

Interestingly, we observe not only that overall throughput increases by more than 2.5x, but also that this improvement comes at no cost to any of the individual four tenants. The reason is that all tenants benefit from the decreased load at the storage back-end.

We observe that the average latency overhead when using a consolidated cache over the fast network is around 26%, compared to using local hypervisor caches. For the slow network the overheads are 153%. Note that in exchange for paying these overheads one gains a 10X reduction in the total amount of cache space allocated for this workload. Also note that with Moirai a provider has the option to seamlessly switch from one cache configuration to another, depending on the state of the system. For example, a provider might switch to a consolidated cache at the cost of some latency penalties when cache space is scarce.

5.4 Scaling Out Caches

In this section we evaluate Moirai’s ability to scale out the storage cache as described in Section 5.3. We consider a TPC-E workload on a machine low on memory. The provider wishes to scale out TPC-E’s 5GB hypervisor cache to include another 5GB at the storage server.

Figure 5 shows the results when allocating the split cache with and without Moirai. Without Moirai there is little benefit to adding a 5GB cache at the storage server (second bar from the left), compared to having only the 5GB cache at the hypervisor (left-most bar), due to double caching. On
the other hand when setting up the two caches with Moirai (third bar from the left), performance is similar to that of an aggregate 10GB cache at the hypervisor (right-most bar).

5.5 Dynamic Workloads

The controller in Moirai continuously monitors the metrics and dynamically reacts to changes after some reaction time \(s \), a configurable parameter. For example, Moirai will detect when a cache goes unutilized and reuse the space accordingly. We have worked with values for \(s \) on the order of 15-30 seconds - we believe that this range presents a good trade-off between responsiveness and unwarranted reconfigurations due to momentary changes in workload demand.

To illustrate Moirai’s dynamic capabilities, we evaluate a setup consisting of 10 hypervisors each with 12 VMs, where each VM has a 2GB file stored on an SSD back-end accessed by IOMeter. The provider uses Moirai to allocate a total of 72GB cache at the hypervisor level, which is evenly split between VMs (i.e., each receiving 72/120 GB).

Figure 6 shows what happens if half of the VMs on each hypervisor go idle for some time, before they become active again at a later point. Moirai detects when the VMs go idle and re-computes the cache allocation for each VM to distribute spare capacity, hence improving the performance of the active VMs. Once all VMs become active again, Moirai re-computes the initial allocations, and performance goes back to previous levels.

6. Related work

5. Dynamic Workloads

The controller in Moirai continuously monitors the metrics and dynamically reacts to changes after some reaction time \(s \), a configurable parameter. For example, Moirai will detect when a cache goes unutilized and reuse the space accordingly. We have worked with values for \(s \) on the order of 15-30 seconds - we believe that this range presents a good trade-off between responsiveness and unwarranted reconfigurations due to momentary changes in workload demand.

To illustrate Moirai’s dynamic capabilities, we evaluate a setup consisting of 10 hypervisors each with 12 VMs, where each VM has a 2GB file stored on an SSD back-end accessed by IOMeter. The provider uses Moirai to allocate a total of 72GB cache at the hypervisor level, which is evenly split between VMs (i.e., each receiving 72/120 GB).

Figure 6 shows what happens if half of the VMs on each hypervisor go idle for some time, before they become active again at a later point. Moirai detects when the VMs go idle and re-computes the cache allocation for each VM to distribute spare capacity, hence improving the performance of the active VMs. Once all VMs become active again, Moirai re-computes the initial allocations, and performance goes back to previous levels.

6. Related work

Application caches. There has been much work recently on caches in data centers. Much of it focused on specialized application caches, such as Facebook’s photo-serving stack [22]. Facebook’s social graph store [5], memcached [14], or explicit cloud caching services [8, 9]. In contrast, our work is on system storage caches for hosting cloud providers that run arbitrary workloads.

System caches. Work on system caches has focused on efficient use of memory for virtual machines through ballooning and sharing techniques [20, 30, 40], which are implemented in state-of-the-art hypervisors like VMware’s and Hyper-V. Our work focuses on other caches in the system, beneath the VM abstraction.

Cache replacement policies. Some prior work has focused on isolating the cache effects of streams with different access patterns (sequential versus looping) within the same workload from each other [10, 15, 25, 29]. However, these policies are not workload- or tenant-aware and cannot prevent a more aggressive workload from occupying more than its fair share of cache. Moreover, each of these policies might actually work better when applied in the context of Moirai, where a cache policy works on a per workload segregated cache, as patterns of different workloads don’t get interspersed and hence might be easier to detect. Others propose methods to detect changes in workload patterns and dynamically adjust the caching policy used by the system [16]. Moirai provides a perfect vehicle for implementing such an approach and it would be interesting to extend it to support such functionality. Yet another line of work [21, 27] proposes that applications explicitly manage their cache space and its contents, while our goal was to provide a solution that is transparent to the application.

Inefficiencies in cache hierarchies. Several other papers have addressed the problem of inefficiencies in cache hierarchies, e.g., some [7, 28] pass hints from the client to better inform caching decisions at the storage server and others [43] extend the SCSI command set by a custom command to avoid double caching. Our solution does not require application or VM support, or changes to existing protocols.

Software defined storage. Similar to recent work on software-defined networking (SDNs) [6, 13, 23, 26, 32, 33, 44] and storage (SDS) [38], our architecture is controller-based with a separation between the data and the control plane. Moirai’s implementation uses IOFlow’s [38] mechanisms for traffic classification, however Moirai’s implementation required extensions to IOFlow, e.g., to support arbitrary inspection and manipulation of IO request data, as well as the implementation of the three core components Moirai comprises (as described in Section 2 and Section 4).

7. Summary

Caches are a critical resource in data centers. But today, they are implicit, not designed for controlled sharing, leading to severe inefficiencies under multi-tenancy. This paper presents Moirai, a software-defined caching architecture that enables control of caches in a multi-tenant data center, without requiring any tenant input or hints. We show using several different use cases how Moirai can help ease the management of the distributed caching infrastructure and enable the provider to achieve a series of different objectives. We hope that our public release of the code [1] implementing the Moirai prototype will help foster future work in this area, and encourage you to read our technical report [36] for further details.

8. Acknowledgements

We thank the anonymous reviewers, our shepherd Andreas Haebelien, Jim Pinkerton, and Thomas Pfening for their feedback. Ioan Stefanovici is supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) CGS-D scholarship.
References

