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ABSTRACT

The shared nature of the network in today’s multi-tenant
datacenters implies that network performance for tenants
can vary significantly. This applies to both production data-
centers and cloud environments. Network performance vari-
ability hurts application performance which makes tenant
costs unpredictable and causes provider revenue loss. Mo-
tivated by these factors, this paper makes the case for ex-
tending the tenant-provider interface to explicitly account
for the network. We argue this can be achieved by provid-
ing tenants with a virtual network connecting their compute
instances. To this effect, the key contribution of this paper
is the design of virtual network abstractions that capture
the trade-off between the performance guarantees offered to
tenants, their costs and the provider revenue.

To illustrate the feasibility of virtual networks, we develop
Oktopus, a system that implements the proposed abstrac-
tions. Using realistic, large-scale simulations and an Oktopus
deployment on a 25-node two-tier testbed, we demonstrate
that the use of virtual networks yields significantly better
and more predictable tenant performance. Further, using a
simple pricing model, we find that the our abstractions can
reduce tenant costs by up to 74% while maintaining provider
revenue neutrality.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Algorithms, Design, Performance
Keywords: Datacenter, Allocation, Virtual Network, Band-
width

1. INTRODUCTION

The simplicity of the interface between cloud providers
and tenants has significantly contributed to the increasing
popularity of cloud datacenters offering on-demand use of
computing resources. Tenants simply ask for the amount of
compute and storage resources they require, and are charged
on a pay-as-you-go basis.

While attractive and simple, this interface misses a critical
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resource, namely, the (intra-cloud) network. Cloud providers
do not offer guaranteed network resources to tenants. In-
stead, a tenant’s compute instances (virtual machines or, in
short, VMs) communicate over the network shared amongst
all tenants. Consequently, the bandwidth achieved by traf-
fic between a tenant’s VMs depends on a variety of fac-
tors outside the tenant’s control, such as the network load
and placement of the tenant’s VMs, and is further exacer-
bated by the oversubscribed nature of datacenter network
topologies [14]. Unavoidably, this leads to high variability
in the performance offered by the cloud network to a ten-
ant [13,23,24,30] which, in turn, has several negative conse-
quences for both tenants and providers.
—Unpredictable application performance and tenant cost. Vari-
able network performance is one of the leading causes for un-
predictable application performance in the cloud [30], which
is a key hindrance to cloud adoption [10,26]. This applies to
a wide range of applications: from user-facing web applica-
tions [18,30] to transaction processing web applications [21]
and MapReduce-like data intensive applications [30,38]. Fur-
ther, since tenants pay based on the time they occupy their
VMs, and this time is influenced by the network, tenants
implicitly end up paying for the network traffic; yet, such
communication is supposedly free (hidden cost).
—Limited cloud applicability. The lack of guaranteed network
performance severely impedes the ability of the cloud to sup-
port various classes of applications that rely on predictable
performance. The poor and variable performance of HPC
and scientific computing applications in the cloud is well
documented [17,33]. The same applies to data-parallel ap-
plications like MapReduce that rely on the network to ship
large amounts of data at high rates [38]. As a matter of
fact, Amazon’s ClusterCompute [2] addresses this very con-
cern by giving tenants, at a high cost, a dedicated 10 Gbps
network with no oversubscription.
—Inefficiencies in production datacenters and revenue loss.
The arguments above apply to not just cloud datacenters,
but to any datacenter with multiple tenants (product groups),
applications (search, advertisements, MapReduce), and ser-
vices (BigTable, HDFS, GFS). For instance, in production
datacenters running MapReduce jobs, variable network per-
formance leads to poorly performing job schedules and sig-
nificantly impacts datacenter throughput [7,31]. Also, such
network-induced application unpredictability makes schedul-
ing jobs qualitatively harder and hampers programmer pro-
ductivity, not to mention significant loss in revenue [7].
These limitations result from the mismatch between the
desired and achieved network performance by tenants which



hurts both tenants and providers. Motivated by these fac-
tors, this paper tackles the challenge of extending the in-
terface between providers and tenants to explicitly account
for network resources while maintaining its simplicity. Our
overarching goal is to allow tenants to express their network
requirements while ensuring providers can flexibly account
for them. To this end, we propose “virtual networks” as a
means of exposing tenant requirements to providers. Ten-
ants, apart from getting compute instances, are also offered a
virtual network connecting their instances. The virtual net-
work isolates tenant performance from the underlying infras-
tructure. Such decoupling benefits providers too— they can
modify their physical topology without impacting tenants.

The notion of a virtual network opens up an important
question: What should a virtual network topology look like?
On one hand, the abstractions offered to tenants must suit
application requirements. On the other, the abstraction gov-
erns the amount of multiplexing on the underlying physical
network infrastructure and hence, the number of concurrent
tenants. Guided by this, we propose two novel abstractions
that cater to application requirements while keeping tenant
costs low and provider revenues attractive. The first, termed
virtual cluster, provides the illusion of having all VMs con-
nected to a single, non-oversubscribed (virtual) switch. This
is geared to data-intensive applications like MapReduce that
are characterized by all-to-all traffic patterns. The second,
named virtual oversubscribed cluster, emulates an oversub-
scribed two-tier cluster that suits applications featuring local
communication patterns.

The primary contribution of this paper is the design of vir-
tual network abstractions and the exploration of the trade-off
between the guarantees offered to tenants, the tenant cost and
provider revenue. We further present Oktopus, a system that
implements our abstractions. Oktopus maps tenant virtual
networks to the physical network in an online setting, and
enforces these mappings. Using extensive simulations and
deployment on a 25-node testbed, we show that expressing
requirements through virtual networks enables a symbiotic
relationship between tenants and providers; tenants achieve
better and predictable performance while the improved dat-
acenter throughput (25-435%, depending on the abstraction
and the workload) increases provider revenue.

A key takeaway from Oktopus is that our abstractions can
be deployed today: they do not necessitate any changes to
tenant applications, nor do they require changes to routers
and switches. Further, offering guaranteed network band-
width to tenants opens the door for explicit bandwidth charg-
ing. Using today’s cloud pricing data, we find that virtual
networks can reduce median tenant costs by up to 74% while
ensuring revenue neutrality for the provider.

On a more general note, we argue that predictable net-
work performance is a small yet important step towards the
broader goal of offering an explicit cost-versus-performance
trade-off to tenants in multi-tenant datacenters [36] and
hence, removing an important hurdle to cloud adoption.

2. NETWORK PERFORMANCE
VARIABILITY

Network performance for tentants in shared datacenters
depends on many factors beyond the tenant’s control: the
volume and kind of competing traffic (TCP/UDP), place-
ment of tenant VMs, etc. Here, we discuss the extent of net-

1000 — ‘ : : :
800 | T T

600 |

400 | T

200 - é

Intra-cloud
Network Bandwidth (Mbps)

Study

Figure 1: Percentiles (1-25-50-75-99'") for intra-
cloud network bandwidth observed by past studies.

work performance variability in cloud and production data-
centers.

Cloud datacenters. A slew of recent measurement studies
characterize the CPU, disk and network performance offered
by cloud vendors, comment on the observed variability and
its impact on application performance [13,23,24,30,35]. We
contacted the authors of these studies and summarize their
measurements of the intra-cloud network bandwidth, i.e.,
the TCP throughput achieved by transfers between VMs in
the same cloud datacenter. Figure 1 plots the percentiles for
the network bandwidth observed in these studies (A [13],
B [30], C-E [23], F-G [35], H [24]). The figure shows that
tenant bandwidth can vary significantly; by a factor of five
or more in some studies (A, B, F and H).

While more work is needed to determine the root-cause
for such bandwidth variations, anecdotal evidence suggests
that the variability is correlated with system load (EU dat-
acenters, being lightly loaded, offer better performance than
US datacenters) [30,31], and VM placement (e.g., VMs in
the same availability zone perform better than ones in dif-
ferent zones) [30]. Further, as mentioned in Section 1, such
network performance variability leads to poor and unpre-
dictable application performance [18,21,30,38].
Production datacenters. Production datacenters are of-
ten shared amongst multiple tenants, different (possibly com-
peting) groups, services and applications, and these can suf-
fer from performance variation. To characterize such varia-
tion, we analyze data from a production datacenter running
data analytics jobs, each comprising multiple tasks. This
data is presented in [7] while our results are discussed in [8].
Briefly, we find that runtimes of tasks belonging to the same
job vary significantly, and this can adversely impact job com-
pletion times. While many factors contribute to such vari-
ability, our analysis shows that a fair fraction (>20%) of the
variability can be directly attributed to variable network
bandwidth. Further, we find that the bandwidth achieved
by tasks that read data across cross-rack links can vary by
an order of magnitude.

In summary, we observe significant variability in network
performance in both cloud and production datacenters. This
negatively impacts application performance. Evaluation in
Section 5 also shows that in both settings, the mismatch
between required and achieved network performance hurts
datacenter throughput and hence, provider revenue. Since
our proposed abstractions cover both cloud and production
datacenters, we will henceforth use the term “multi-tenant”
to refer to both.
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Figure 2: Virtual Cluster abstraction.

3. VIRTUAL NETWORK ABSTRACTIONS

In multi-tenant datacenters, tenants request virtual ma-
chines (VMs) with varying amounts of CPU, memory and
storage resources. For ease of exposition, we abstract away
details of the non-network resources and characterize each
tenant request as </N>, the number of VMs requested. The
fact that tenants do not expose their network requirements
hurts both tenants and providers. This motivates the need
to extend the tenant-provider interface to explicitly account
for the network. Further, the interface should isolate tenants
from the underlying network infrastructure and hence, pre-
vent provider lock-in. Such decoupling benefits the provider
too; it can completely alter its infrastructure or physical
topology, with tenant requests being unaffected and unaware
of such a change. To this end, we propose virtual networks as
a means of exposing tenant network requirements to the pro-
vider. Apart from specifying the type and number of VMs;
tenants also specify the virtual network connecting them.

The “virtual” nature of the network implies that the pro-
vider has a lot of freedom in terms of the topology of this
network, and can offer different options to tenants for dif-
ferent costs. Beyond the overarching goal of maintaining the
simplicity of the interface between tenants and providers,
our topologies or virtual network abstractions are guided by
two design goals:

1. Tenant suitability. The abstractions should allow tenants
to reason in an intuitive way about the network perfor-
mance of their applications when running atop the virtual
network.

2. Provider flexibility. Providers should be able to multi-
plex many virtual networks on their physical network.
The greater the amount of sharing possible, the lesser
the tenant costs.

To this effect, we propose two novel abstractions for vir-
tual networks in the following sections.

3.1 Virtual Cluster

The “Virtual Cluster” abstraction is motivated by the ob-
servation that in an enterprise (or any private setting), ten-
ants typically run their applications on dedicated clusters
with compute nodes connected through Ethernet switches.
This abstraction, shown in figure 2, aims to offer tenants
with a similar setup. With a wvirtual cluster, a tenant re-
quest <N, B> provides the following topology: each tenant
machine is connected to a virtual switch by a bidirectional
link of capacity B, resulting in a one-level tree topology. The
virtual switch has a bandwidth of N % B. This ensures that
the virtual network has no oversubscription and the max-
imum rate at which the tenant VMs can exchange data is
N x B. However, this data rate is only feasible if the com-
munication matrix for the tenant application ensures that

Root Virtual
Switch

Bandwidth

Group Virtual
Switch

VM1 VMS VM1 VM S VM1 VM S
Group 1 Group 2 Group N/S

Request <N, S, B, 0>
N VMs in groups of size S, Oversubscription factor O
Group switch bandwidth = S*B, Root switch bandwidth = N*B/O

Figure 3: Virtual Oversubscribed Cluster abstrac-
tion.

each VM sends and receives at rate B. Alternatively, if all N
tenant VMs were to send data to a single destination VM,
the data rate achieved will be limited to B.

Since a wvirtual cluster offers tenants a network with no
oversubscription, it is suitable for data-intensive applica-
tions like MapReduce and BLAST. For precisely such appli-
cations, Amazon’s Cluster Compute provides tenants with
compute instances connected through a dedicated 10 Gbps
network with no oversubscription. This may be regarded as
a specific realization of the virtual cluster abstraction with
<N,10 Gbps>.

3.2 Virtual Oversubscribed Cluster

While a network with no oversubscription is imperative
for data-intensive applications, this does not hold for many
other applications [19,34]. Instead, a lot of cloud bound ap-
plications are structured in the form of components with
more intra-component communication than inter-component
communication [16,25]. A “Virtual Oversubscribed Cluster”
is better suited for such cases; it capitalizes on application
structure to reduce the bandwidth needed from the under-
lying physical infrastructure compared to virtual clusters,
thereby improving provider flexibility and reducing tenant
costs.

With a wirtual oversubscribed cluster, a tenant request
<N, B, S, O> entails the topology shown in Figure 3. Ten-
ant machines are arranged in groups of size S, resulting in %
groups. VMs in a group are connected by bidirectional links
of capacity Bto a (virtual) group switch. The group switches
are further connected using a link of capacity B’ = SEB to
a (virtual) root switch. The resulting topology has no over-
subscription for intra-group communication. However, inter-
group communication has an oversubscription factor O, i.e.,
the aggregate bandwidth at the VMs is O times greater than
the bandwidth at the root switch. Hence, this abstraction
closely follows the structure of typical oversubscribed data-
center networks. Note, however, that O neither depends upon
nor requires physical topology oversubscription.

Compared to virtual cluster, this abstraction does not of-
fer as dense a connectivity. However, the maximum data rate
with this topology is still N« B. The localized nature of the
tenant’s bandwidth demands resulting from this abstraction
allows the provider to fit more tenants on the physical net-
work. This, as our evaluation shows, has the potential to
significantly limit tenant costs. By incentivizing tenants to
expose the flexibility of their communication demands, the




Abstraction | Max Suitable for Provider Tenant
Rate applications | Flexibility Cost

Virtual O(N) All Medium Medium

Cluster

Oversub. O(N) Many High Low

Clique O(N?) All Very Low | Very High

Table 1: Virtual network abstractions present a
trade-off between application suitability and pro-
vider flexibility.

abstraction achieves better multiplexing which benefits both
tenants and providers. Amazon’s EC2 Spot Instances [1] is
a good example of how tenants are willing to be flexible, es-
pecially when it suits their application demands, if it means
lowered costs.

For simplicity, in this paper we assume a single value of
B for all VMs of a given request. For virtual oversubscribed
cluster, we also assume that the group size is uniform. How-
ever, both the abstractions and the algorithms presented in
Section 4 can be easily extended to support multiple values
of B and variable-sized groups within the same request.

Other topologies. A number of network abstractions have
been proposed in other contexts and could potentially be
offered to tenants. However, they suffer from several draw-
backs due to their dense connectivity, and hence significantly
limit the true flexibility a multi-tenant datacenter can pro-
vide. For example, many topologies have been studied for
HPC platforms, such as multi-dimensional cubes, hypercube
and its variants, and even more complex topologies such as
Butterfly networks, de Bruijn, etc [11]. These are of interest
to a small niche set of applications (violating goal 1).

Similarly, SecondNet [15] provides tenants with bandwidth
guarantees for pairs of VMs. While the resulting clique vir-
tual topology can elegantly capture application demands, its
dense connectivity also makes it difficult for the provider to
multiplex multiple tenants on the underlying network infras-
tructure (violating goal 2). For instance, the analysis in [15]
shows that with the oversubscribed physical networks preva-
lent in today’s datacenters, only a few tenants demanding
clique virtual networks are sufficient to saturate the physical
network. This hurts the provider revenue and translates to
high tenant costs.

Table 1 illustrates how the topologies discussed compare
with respect to our design goals. The virtual cluster provides
rich connectivity to tenant applications that is independent
of their communication pattern but limits provider flexibil-
ity. The wvirtual oversubscribed cluster utilizes information
about application communication patterns to improve pro-
vider flexibility. The clique abstraction, chosen as a repre-
sentative of existing proposals, offers very rich connectivity
but severely limits provider flexibility. Overall, our virtual
networks closely resemble the physical topologies used in the
majority of enterprise data centers. We expect that this will
greatly simplify the migration of applications from a private
cluster to a multi-tenant one.

4. Oktopus

To illustrate the feasibility of virtual networks, we present
Oktopus, a system that implements our abstractions.® The
provider maintains a datacenter containing physical machines

LOktopus provides predictable performance, and is named

with slots where tenant VMs can be placed. With Oktopus,
tenants requesting VMs can opt for a (virtual) cluster or a
(virtual) oversubscribed cluster to connect their VMs. Fur-
ther, to allow for incremental deployment, we also support
tenants who do not want a virtual network, and are satis-
fied with the status quo where they simply get some share
of the network resources. T'wo main components are used to
achieve this:

e Management plane. A logically centralized network man-
ager (NM), upon receiving a tenant request, performs
admission control and maps the request to physical ma-
chines. This process is the same as today’s setup except
that the NM needs to further account for network re-
sources and maintain bandwidth reservations across the
physical network.

e Data plane. Oktopus uses rate-limiting at endhost hyper-
visors to enforce the bandwidth available at each VM.
This ensures that no explicit bandwidth reservations at
datacenter switches are required.

The network manager implements allocation algorithms
to allocate slots on physical machines to tenant requests in
an online fashion. For tenant requests involving a virtual
network, the NM needs to ensure that the corresponding
bandwidth demands can be met while maximizing the num-
ber of concurrent tenants. To achieve this, the NM main-
tains the following information— (i). The datacenter network
topology, (ii). The residual bandwidth for each link in the
network, (iii). The empty slots on each physical machine,
and (iv). The allocation information for existing tenants,
including the physical machines they are allocated to, the
network routes between these machines and the bandwidth
reserved for the tenant at links along these routes. In the
following sections, we describe how the NM uses the above
information to allocate tenant requests.

4.1 Cluster Allocation

A wirtual cluster request r :<N, B> requires a virtual
topology comprising N machines connected by links of band-
width B to a virtual switch. In designing the allocation al-
gorithm for such requests, we focus on tree-like physical net-
work topologies; for instance, the multi-rooted trees used in
today’s datacenters and richer topologies like VL2 [14] and
FatTree [5]. Such topologies are hierarchical and are recur-
sively made of sub-trees at each level. For instance, with a
three-tier topology, the cluster is a collection of pods, pods
comprise racks, and racks comprise hosts.

At a high level, the allocation problem involves allocating
N empty VM slots to the tenant such that there is enough
bandwidth to satisfy the corresponding virtual topology. We
begin by characterizing the bandwidth requirements of an
already allocated tenant on the underlying physical links.
Further, we start with the assumption that the physical links
connecting the tenant’s N VMs form a simple tree 7T'. This is
shown in Figure 4. Section 4.4 relaxes the assumption. Note
that the set of switches and links in 7" form a “distributed
virtual switch” for the tenant. Given that the tenant’s virtual
switch has a bandwidth of N % B, a trivial yet inefficient
solution is to reserve this bandwidth on each link in the
tenant tree.

after “Paul the Oktopus” (German spelling), famous for his
ability to predict the outcome of football World Cup games.
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However, the actual bandwidth needed to be reserved is
lower. Let’s consider a link in T. As shown in Figure 4,
removing this link from the tree leads to two components;
if the first one contains m VMs, the other contains (N-m)
VMs. The virtual topology dictates that a single VM cannot
send or receive at rate more than B. Hence, traffic between
these two components is limited to min(m, N —m)* B. This
is the bandwidth required for the tenant on this link.

For a valid allocation, the tenant’s bandwidth requirement
should be met on all links in the tenant tree. Hence, the Vir-
tual Cluster Allocation Problem boils down to determining
such valid allocations. An optimization version of this prob-
lem involves determining valid allocations that maximize
Oktopus’ future ability to accommodate tenant requests.
Allocation algorithm. Allocating virtual cluster requests
on graphs with bandwidth-constrained edges is NP-hard [12].
We design a greedy allocation algorithm. The intuition is
that the number of tenant VMs that can be allocated to
a sub-tree (a machine, a rack, a pod) is constrained by two
factors. The first is the number of empty VM slots in the sub-
tree. The second is the residual bandwidth on the physical
link connecting the sub-tree to the rest of the network. This
link should be able to satisfy the bandwidth requirements
of the VMs placed inside the sub-tree. Given the number of
VMs that can be placed in any sub-tree, the algorithm finds
the smallest sub-tree that can fit all tenant VMs.

Below we introduce a few terms and explain the algorithm
in detail. Each physical machine in the datacenter has K
slots where VMs can be placed, while each link has capacity
C. Further, k, € [0, K] is the number of empty slots on
machine v, while R; is the residual bandwidth for link . We
begin by deriving constraints on the number of VMs that
can be allocated at each level of the datacenter hierarchy.
Starting with a machine as the base case, the number of
VMs for request r that can be allocated to a machine v with
outbound link [ is given by the set M,:

M, = {m €0, min(ky, N)]
s.t.min(m, N —m)* B < R;}

To explain this constraint, we consider a scenario where
m (< N) VMs are placed at the machine v. As described
earlier, the bandwidth required on outbound link I, B, ; is
min(m, N — m)*B. For a valid allocation, this bandwidth
should be less than the residual bandwidth of the link. Note
that in a scenario where all requested VMs can fit in v (i.e.,
m = N), all communication between the VMs is internal to

Require: Topology tree T
Ensure: Allocation for request r :< N, B >
1: 1 =0 //start at level 0, i.e., with machines
2: while true do
for each sub-tree v at level [ of T' do
Calculate M, //v can hold M, VMs
if N < max(M,) then
Alloc(r, v, N)
return true
l=1+1// move to higher level in T
if | == height(T) then
return false //reject request

SOPTPY B

//Allocate m VM slots in sub-tree v to request r
11: function Alloc(r, v, m)
12: if (level(v) ==0) then

13:  // Base case - v is a physical machine

14:  Mark m VM slots as occupied

15:  return m

16: else

170 count = 0 //number of VMs assigned

18:  //Iterate over sub-trees of v

19:  for each sub-tree w in v do

20: if count < m then

21: count += Alloc(r, w, min(m — count, max(Muy)))
22:  return count

Figure 5: Virtual Cluster Allocation algorithm.

the machine. Hence, the bandwidth needed for the request
on the link is zero.?

The same constraint is extended to determine the num-
ber of VMs that can be placed in sub-trees at each level,
i.e., at racks at level 1, pods at level 2 and onwards. These
constraints guide the allocation shown in Figure 5. Given
the number of VMs that can be placed at each level of the
datacenter hierarchy, the algorithm greedily tries to allocate
the tenant VMs to the lowest level possible. To achieve this,
we traverse the topology tree starting at the leaves (physical
machines at level 0) and determine if all N VMs can fit (lines
2-10). Once the algorithm determines a sub-tree that can ac-
commodate the VMs (line 5), it invokes the “Alloc” function
to allocate empty slots on physical machines in the sub-tree
to the tenant. While not shown in the algorithm, once the
assignment is done, the bandwidth needed for the request
is effectively “reserved” by updating the residual bandwidth
for each link [ as Ry = R; — By.

The fact that datacenter network topologies are typically
oversubscribed (less bandwidth at root than edges) guides
the algorithm’s optimization heuristic. To maximize the pos-
sibility of accepting future tenant requests, the algorithm al-
locates a request while minimizing the bandwidth reserved
at higher levels of the topology. This is achieved by pack-
ing the tenant VMs in the smallest sub-tree. Further, when
multiple sub-trees are available at the same level of hier-
archy, our implementation chooses the sub-tree with the
least amount of residual bandwidth on the edge connect-
ing the sub-tree to the rest of the topology. This preserves
empty VM slots in other sub-trees that have greater out-
bound bandwidth available and hence, are better positioned
to accommodate future tenants.

2We assume that if the provider offers N slots per physical
machine, the hypervisor can support N*B of internal band-
width (within the physical machine).
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by Group 1 VMs on a link dividing the tenant tree
into two components.

4.2 Oversubscribed Cluster Allocation

An oversubscribed cluster request, r :<N, S, B,O>, re-
quires N VMs arranged in groups of size S. VMs within the
same group are connected by links of bandwidth B to a vir-
tual switch. Inter-group bandwidth is given by B’ = Sz‘)B
(see Section 3.2).

Consider a request with three groups. As with the virtual
cluster, any physical link in the tenant tree divides the tree
into two components. Let g; denote the VMs of group i that
are in the first component, implying that the rest are in the
second component (S — g;). We observe that the bandwidth
required by the request on the link is the sum of the band-
width required by individual groups. Focusing on the Group
1 VMs in the first component, their traffic on the link in
question comprises the intra-group traffic to Group 1 VMs
in the second component and inter-group traffic to VMs of
Groups 2 and 3 in the second component. This is shown in
Figure 6.

In the first component, Group 1 VMs cannot send (or
receive) traffic at a rate more than g; * B. In the second
component, Group 1 VMs cannot receive (or send) at a rate
more than (S — g¢;) * B while the rate for VMs of other
groups cannot exceed the inter-group bandwidth B’. The
rate of these other VMs is further limited by the aggregate
bandwidth of the Group 2 and 3 members in the second
component, i.e., ((S—gz2)+ (S —g3)) * B). Hence, as shown
in the figure, the total bandwidth needed by Group 1 of
request r on link [, B,1; = min(g1 * B, (S — g1) * B + D).
Finally, the total bandwidth required on the link is the sum
across all three groups, i.e., Zi:l,S By

Generalizing the analysis above, the bandwidth required
for Group ¢ on link [ is given by

B,.,; = min(g; * B, (S — g;) x B+
+min(B’, 37, (S — g;) * B)).

The bandwidth to be reserved on link [ for request r is
the sum across all the groups, i.e., B,; = Zf:l By ;1. For
the allocation to be valid, link [ must have enough residual
bandwidth to satisfy B, ;. Hence, B,; < R; is the validity
condition.

Allocation algorithm. The key insight guiding the algo-
rithm is that allocating an oversubscribed cluster involves
allocating a sequence of virtual clusters (<5, B>) for indi-
vidual groups. This allows us to reuse the cluster allocation
algorithm. Hence, the allocation for a request r proceeds

one group at a time. Let’s assume that groups 1 to (i-1)
have already been allocated and we need to allocate VMs
of group 7. As with the cluster allocation algorithm, we de-
rive constraints on the number of VMs for this group that
can be assigned to each sub-tree. Consider a sub-tree with
outbound link [ already containing g; members of group j,
j € [1,i—1]. Using the analysis above, the conditional band-
width needed for the 5" group of request r on link [ is:

CB; (i — 1) =min(g; * B, (S — g;) * B+ min(B’, E))
where,

b= 22;11,1@# (S —gr)* B+ ZkP:i S x B.

This bandwidth is conditional since groups ¢,..., P re-
main to be allocated. We conservatively assume that all sub-
sequent groups will be allocated outside the sub-tree and link
[ will have to accommodate the resulting inter-group traffic.
Hence, if g; members of group i were to be allocated inside
the sub-tree, the bandwidth required by groups [1,i] on [ is
at most 23:1 CB;,.;,(7). Consequently, the number of VMs
for group ¢ that can be allocated to sub-tree v, designated
by the set M, ;, is:

My = {gi € [0, min(k,, )]
s.t. 23:1 OBT-,j)l(i) < Rl}

Given the number of VMs that can be placed in sub-trees
at each level of the datacenter hierarchy, the allocation algo-
rithm proceeds to allocate VMs for individual groups using
the algorithm in Figure 5. A request is accepted if all groups
are successfully allocated.

4.3 Enforcing virtual networks

The NM ensures that the physical links connecting a ten-
ant’s VMs have sufficient bandwidth. Beyond this, Oktopus
also includes mechanisms to enforce tenant virtual networks.
Rate limiting VMs. Individual VMs should not be able
to exceed the bandwidth specified in the virtual topology.
While this could be achieved using explicit bandwidth reser-
vations at switches, the limited number of reservation classes
on commodity switches implies that such a solution certainly
does not scale with the number of tenants [15].

Instead, Oktopus relies on endhost-based rate enforce-
ment. For each VM on a physical machine, an enforcement
module resides in the OS hypervisor. The key insight here is
that given a tenant’s virtual topology and the tenant traffic
rate, it is feasible to calculate the rate at which pairs of VMs
should be communicating. To achieve this, the enforcement
module for a VM measures the traffic rate to other VMs.
These traffic measurements from all VMs for a tenant are
periodically sent to a tenant VM designated as the controller
VM. The enforcement module at the controller then calcu-
lates the max-min fair share for traffic between the VMs.
These rates are communicated back to other tenant VMs
where the enforcement module uses per-destination-VM rate
limiters to enforce them.

This simple design where rate computation for each ten-
ant is done at a controller VM reduces control traffic. Alter-
natively, the enforcement modules for a tenant could use a
gossip protocol to exchange their traffic rates, so that rate
limits can be computed locally. We note that the enforce-
ment modules are effectively achieving distributed rate lim-
its; for instance, with a cluster request <N, B>, the aggre-



gate rate at which the tenant’s VMs can source traffic to
a destination VM cannot exceed B. This is similar to other
distributed rate control mechanisms like DRL [28] and Gate-
keeper [32]. The authors discuss the trade-offs between accu-
racy and responsiveness versus the communication overhead
in DRL; the same trade-offs apply here. Like Hedera [6], we
perform centralized rate computation. However, our knowl-
edge of the virtual topology makes it easier to determine
the traffic bottlenecks. Further, our computation is tenant-
specific which reduces the scale of the problem and allows
us to compute rates for each virtual network independently.
Section 5.4 shows that our implementation scales well im-
posing low communication overhead.
Tenants without virtual networks. The network traffic
for tenants without guaranteed resources should get a (fair)
share of the residual link bandwidth in the physical net-
work. This is achieved using two-level priorities, and since
commodity switches today offer priority forwarding, we rely
on switch support for this. Traffic from tenants with a vir-
tual network is marked as and treated as high priority, while
other traffic is low priority. This, when combined with the
mechanisms above, ensures that tenants with virtual net-
works get the virtual topology and the bandwidth they ask
for, while other tenants get their fair share of the residual
network capacity. The provider can ensure that the perfor-
mance for fair share tenants is not too bad by limiting the
fraction of network capacity used for virtual networks.
With the current implementation, if a VM belonging to
a virtual network does not fully utilize its bandwidth share,
the unused capacity can only be used by tenants without
virtual networks. This may be sub-optimal since the spare
capacity cannot be distributed to tenants with virtual net-
works. Oktopus can use weighted sharing mechanisms [22,31]
to ensure that unused capacity is distributed amongst all
tenants, not just fair share tenants and hence, provide min-
imum bandwidth guarantees instead of exact guarantees.

4.4 Design discussion

NM and Routing. Oktopus’ allocation algorithms assume
that the traffic between a tenant’s VMs is routed along a
tree. This assumption holds trivially for simple tree phys-
ical topologies with a single path between any pair of ma-
chines. However, datacenters often have richer networks. For
instance, a commonly used topology involves multiple L2 do-
mains inter-connected using a couple of layers of routers [27].
The spanning tree protocol ensures that traffic between ma-
chines within the same L2 domain is forwarded along a span-
ning tree. The IP routers are connected with a mesh of links
that are load balanced using Equal Cost Multi-Path for-
warding (ECMP). Given the amount of multiplexing over
the mesh of links, these links can be considered as a single
aggregate link for bandwidth reservations. Hence, in such
topologies with limited path diversity, the physical routing
paths themselves form a tree and our assumption still holds.
The NM only needs to infer this tree to determine the rout-
ing tree for any given tenant. This can be achieved using
SNMP queries of the 802.1D-Bridge MIB on switches (prod-
ucts like Netview and OpenView support this) or through
active probing [9].

Data-intensive workloads in today’s datacenters have mo-
tivated even richer, fat-tree topologies that offer multiple
paths between physical machines [5,14]. Simple hash-based
or randomized techniques like ECMP and Valiant Load Bal-

ancing (VLB) are used to spread traffic across paths. Hence,
tenant traffic would not be routed along a tree, and addi-
tional mechanisms are needed to satisfy our assumption.

For the purpose of bandwidth reservations, multiple phys-
ical links can be treated as a single aggregate link if traf-
fic is distributed evenly across them. Today’s ECMP and
VLB implementations realize hash-based, per-flow splitting
of traffic across multiple links. Variations in flow length and
hash collisions can result in a non uniform distribution of
traffic across the links [6]. To achieve a uniform distribu-
tion, we could use a centralized controller to reassign flows
in case of uneven load [6] or distribute traffic across links on
a per-packet basis, e.g., in a round-robin fashion.

Alternatively, the NM can control datacenter routing to
actively build routes between tenant VMs, and recent pro-
posals present backwards compatible techniques to achieve
this. With both SecondNet [15] and SPAIN [27], route com-
putation is moved to a centralized component that directly
sends routing paths to endhosts. The Oktopus NM can adopt
such an approach to build tenant-specific routing trees on
top of rich physical topologies. The fact that there are many
VMs per physical machine and many machines per rack im-
plies that multiple paths offered by the physical topology
can still be utilized, though perhaps not as effectively as
with per-flow or per-packet distribution.

We defer a detailed study of the relative merits of these
approaches to future work.
Failures. Failures of physical links and switches in the dat-
acenter will impact the virtual topology for tenants whose
routing tree includes the failed element. With today’s setup,
providers are not held responsible for physical failures and
tenants end up paying for them [36]. Irrespective, our allo-
cation algorithms can be extended to determine the tenant
VMs that need to be migrated, and reallocate them so as to
satisfy the tenant’s virtual topology. For instance, with the
cluster request, the failed edge divides the tenant’s routing
tree into two components. If the NM cannot find alternate
links with sufficient capacity to connect the two components,
it will reallocate the VMs present in the smaller component.

5. EVALUATION

We evaluate two aspects of Oktopus. First, we use large-
scale simulations to quantify the benefits of providing ten-
ants with bounded network bandwidth. Second, we show
that the Oktopus NM can deal with the scale and churn
posed by datacenters, and benchmark our implementation
on a small testbed.

5.1 Simulation setup

Since our testbed is restricted to 25 machines, we devel-
oped a simulator that coarsely models a multi-tenant data-
center. The simulator uses a three-level tree topology with
no path diversity. Racks of 40 machines with 1Gbps links
and a Top-of-Rack switch are connected to an aggregation
switch. The aggregation switches, in turn, are connected to
the datacenter core switch. By varying the connectivity and
the bandwidth of the links between the switches, we vary
the oversubscription of the physical network. The results in
the following sections involve a datacenter with 16,000 phys-
ical machines and 4 VMs per machine, resulting in a total
of 64,000 VMs.

Tenant workload. We adopt a broad yet realistic model
for jobs/applications run by tenants. Tenant jobs comprise



computation and network communication. To this effect,
each tenant job is modeled as a set of independent tasks
to be run on individual VMs, and a set of flows between the
tasks. The minimum compute time for the job (7.) captures
the computation performed by the tasks. We start with a
simple communication pattern wherein each tenant task is
a source and a destination for one flow, and all flows are of
uniform length (L). A job is complete when both the compu-
tation and the network flows finish. Hence, the completion
time for a job, T' = max(Te, T»), where T}, is the time for the
last flow to finish. This reflects real-world workloads. For in-
stance, with MapReduce, the job completion time is heavily
influenced by the last shuffle flow and the slowest task [7].
This naive workload model was deliberately chosen; the
job compute time T, abstracts away the non-network re-
sources required and allows us to determine the tenant’s
“network requirements”. Since tenants pay based on the time
they occupy VMs and hence, their job completion time, ten-
ants can minimize their cost by ensuring that their network
flows do not lag behind the computation, i.e., T}, < T.. With
the model above, the network bandwidth needed by tenant
VMs to achieve this is B = Tic
Baseline. We first describe the baseline setup against which
we compare Oktopus abstractions. Tenants ask for VMs
only, and their requests are represented as </N>. Tenants
are allocated using a locality-aware allocation algorithm that
greedily allocates tenant VMs as close to each other as pos-
sible. This baseline scenario is representative of the purely
VM-based resource allocation today. Once a tenant is ad-
mitted and allocated, the simulator models flow level com-
munication between tenant VMs. A flow’s bandwidth is cal-
culated according to max-min fairness; a flow’s rate is its fair
share across the most bottlenecked physical link it traverses.
Virtual network requests. To allow a direct compar-
ison, we ensure that any baseline tenant request can also
be expressed as a virtual network request. A baseline re-
quest <N> is extended as <N,B> and <N, S, B,0> to
represent a cluster and oversubscribed cluster request re-
spectively. The requested bandwidth B is based on the ten-
ant’s network requirements, as detailed earlier. For oversub-
scribed clusters, the tenant’s VMs are further arranged into
groups, and to ensure that the underlying network traffic
matches the requested topology, the number of inter-group
flows is made proportional to the oversubscription factor O.
For example, if O=10, on average 1—1\6 inter-group flows are
generated per request. These virtual network requests are
allocated using the algorithms presented in Section 4.
Simulation breadth. Given the lack of datasets describ-
ing job bandwidth requirements to guide our workload, our
evaluation explores the entire space for most parameters of
interest in today’s datacenters; these include tenant band-
width requirements, datacenter load, and physical topology
oversubscription. This is not only useful for completeness,
but, further provides evidence of Oktopus’ performance at
the extreme points.

5.2 Production datacenter experiments

We first consider a scenario involving a large batch of ten-
ant jobs to be allocated and run in the datacenter. The ex-
periment is representative of the workload observed in pro-
duction datacenters running data-analytics jobs from mul-
tiple groups/services. We compare the throughput achieved
with virtual network abstractions against the status quo.

Baseline —+— VOC-5
C - VOC-10

150
100
50

0" ‘ ‘ , ‘
100 200 300 400 500 600
Mean Bandwidth (Mbps)

Completion Time (Hrs)

700 800 900

Figure 7: Completion time for a batch of 10,000 ten-
ant jobs with Baseline and with various virtual net-
work abstractions.

In our experiments, the number of VMs (V) requested

by each tenant is exponentially distributed around a mean
of 49. This is consistent with what is observed in produc-
tion and cloud datacenters [31]. For oversubscribed cluster
requests, the tenant VMs are arranged in v/ N groups each
containing v/N VMs. We begin with a physical network with
10:1 oversubscription, a conservative value given the high
oversubscription of current data center networks [14], and 4
VMs per physical machine. We simulate the execution of a
batch of 10,000 tenant jobs with varying mean bandwidth
requirements for the jobs. To capture the variability in net-
work intensiveness of jobs, their bandwidth requirements are
taken from an exponential distribution around the mean.
The job scheduling policy is the same throughout— jobs are
placed in a FIFO queue, and once a job finishes, the topmost
job(s) that can be allocated are allowed to run.
Job completion time. Figure 7 plots the time to complete
all jobs with different abstractions for tenants— the Baseline
setup, virtual cluster (VC), and virtual oversubscribed clus-
ter with varying oversubscription ratio (VOC-10 refers to
oversubscribed clusters with O=10). The figure shows that
for any given approach, the completion time increases as the
mean bandwidth requirement increases (i.e., jobs become
network intensive).

In all cases, virtual clusters provide significant improve-
ment over the Baseline completion time. For oversubscribed
clusters, the completion time depends on the oversubscrip-
tion ratio. The completion time for VOC-2, omitted for clar-
ity, is similar to that of wvirtual cluster. With VOC-10, the
completion time at 500 Mbps is 18% (6 times less) of Base-
line (31% with 100 Mbps). Note that increasing O implies
greater locality in the tenant’s communication patterns. This
allows for more concurrent tenants and reduces completion
time which, in turn, improves datacenter throughput. How-
ever, the growth in benefits with increasing oversubscription
diminishes, especially beyond a factor of 10.

Beyond improving datacenter throughput, providing ten-
ants with virtual networks has other benefits. It ensures that
network flows comprising a job do not lag behind computa-
tion. Hence, a tenant job, once allocated, takes the minimum
compute time T, to complete. However, with the Baseline
setup, varying network performance can cause the comple-
tion time for a job to exceed T.. Figure 8 plots the CDF
for the ratio of today’s job completion time to the com-
pute time and shows that tenant jobs can be stretched much
longer than expected. With BW =500 Mbps, the completion
time for jobs is 1.42 times the compute time at the median
(2.8 times at the 75t percentile). Such performance unpre-
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dictability is highly undesirable and given the iterative pro-
gram/debug/modify development, hurts programmer pro-
ductivity [7].

Utilization. To understand the poor Baseline performance,
we look at the average VM and network utilization over the
course of one experiment. This is shown in Figure 9. With
Baseline, the network utilization remains low for a majority
of the time. This is because the allocation of VMs, though lo-
cality aware, does not account for network demands causing
contention. Thus, tenant VMs wait for the network flows to
finish and hurt datacenter throughput. As a contrast, with
oversubscribed cluster (VOC-10), the allocation is aware of
the job’s bandwidth demands and hence, results in higher
network utilization.

We repeated the experiments above with varying param-
eters. Figure 10 shows how the completion time varies with
the physical network oversubscription. We find that even
when the underlying physical network is not oversubscribed
as in [5,14], virtual networks can reduce completion time
(and increase throughput) by a factor of two.®> Further, in-
creasing the virtual oversubscription provides greater bene-
fits when the physical oversubscription is larger. Similarly,
increasing the mean tenant size (IN) improves the perfor-
mance of our abstractions relative to today since tenant
traffic is more likely to traverse core network links. We omit
these results due to space constraints.

Diverse communication patterns. In the previous ex-

3Since there are 4 VMs per machine, flows for a VM can
still be network bottlenecked at the outbound link.
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periments, all flows of a job have the same length. Conse-
quently, all VMs for a tenant require the same bandwidth
to complete their flows on time. We now diversify the job
communication pattern by varying the length of flows be-
tween a tenant’s VMs. The flow lengths are chosen from
a normal distribution with a specified standard deviation.
Consequently, each tenant VM requires a different band-
width. While our abstractions can be extended to allow for
a different bandwidth for individual VMs, here we restrict
ourselves to the same bandwidth across a tenant’s VMs.

Given the non-uniform communication pattern, each ten-
ant needs to determine its desired bandwidth; we use the
average length of a tenant’s flows to calculate the requested
bandwidth. This implies that some VMs will waste resources
by not using their allocated bandwidth while for others, their
flows will lag behind the computation.

Figure 11 shows the completion time with increasing stan-
dard deviation of the flow length. Since flow lengths are
normally distributed, the average network load remains the
same throughout, and there is not much impact on the Base-
line completion time. For virtual networks, the completion
time increases with increasing variation before tapering off.
With oversubscribed clusters, the jobs complete faster than
Baseline. For virtual cluster, completion time is greater than
Baseline when flow lengths vary a lot. This is due to the di-
verse communication pattern and the resulting “imprecise”
tenant demands that cause network bandwidth to be wasted.
This can be rectified by modifying the semantics of Okto-
pus abstractions so that unused bandwidth can be utilized
by other tenants.

5.3 Cloud datacenter experiments

The experiments in the previous section involved a static
set of jobs. We now introduce tenant dynamics with tenant
requests arriving over time. This is representative of cloud
datacenters. By varying the tenant arrival rate, we vary the
load imposed in terms of the number of VMs. Assuming
Poisson tenant arrivals with a mean arrival rate of A, the
load on a datacenter with M total VMs is A]Xfc, where N
is the mean request size and Tt is the mean compute time.
Unlike the previous experiments in which requests could be
delayed, in this scenario, we enforce an admission control
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Figure 13: Percentage of rejected tenant requests with varying datacenter load and varying mean tenant
bandwidth requirements. At load>20%, virtual networks allow more requests to be accepted.

scheme in which a request is rejected if it cannot be im-
mediately allocated. For today’s setup, requests are rejected
if there are not enough available VMs when a request is
submitted. For our virtual networks, instead, even if enough
VMs are available, a request can still be rejected if the band-
width constraints cannot be satisfied. We simulate the ar-
rival and execution of 10,000 tenant requests with varying
mean bandwidth requirements for the tenant jobs.
Rejected requests. Figure 13 shows that only at very low
loads, Baseline setup is comparable to virtual abstractions
in terms of rejected requests, despite the fact that virtual ab-
stractions explicitly reserve the bandwidth requested by ten-
ants. At low loads, requests arrive far apart in time and
thus, they can always be allocated even though the Base-
line setup prolongs job completion. As the load increases,
Baseline rejects far more requests. For instance, at 70% load
(Amazon EC2’s operational load [3]) and bandwidth of 500
Mbps, 31% of Baseline requests are rejected as compared to
15% of VC requests and only 5% of VOC-10 requests.
Tenant costs and provider revenue. Today’s cloud
providers charge tenants based on the time they occupy their
VMs. Assuming a price of k dollars per-VM per unit time,
a tenant using N VMs for time T pays kNT dollars. This
implies that while intra-cloud network communication is not
explicitly charged for, it is not free since poor network per-
formance can prolong tenant jobs and hence, increase their
costs. Figure 12 shows the increase in tenant job completion
times and the corresponding increase in tenant costs (upper
X-axis) today. For all load values, many jobs finish later and
cost more than expected— the cost for 25% tenants is more
than 2.3 times their ideal cost had the network performance
been sufficient (more than 9.2 times for 5% of the tenants).
The fraction of requests that are accepted and the costs
for accepted requests govern the provider revenue. Figure 14
shows the provider revenue when tenants use virtual net-
works relative to Baseline revenue. At low load, the pro-
vider revenue is reduced since the use of virtual networks
ensures that tenant jobs finish faster and they pay signifi-
cantly less. However, as the load increases, the provider rev-
enue increases since virtual network allow more requests to
be accepted, even though individual tenants pay less than
today. For efficiency, providers like Amazon operate their
datacenters at an occupancy of 70-80% [3]. Hence, for prac-
tical load values, virtual networks not only allow tenants to
lower their costs, but also increase provider revenue! Fur-
ther, this estimation ignores the extra tenants that may be
attracted by the guaranteed performance and reduced costs.
Charging for bandwidth. Providing tenants with vir-
tual networks opens the door for explicitly charging for net-
work bandwidth. This represents a more fair charging model
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Figure 14: Provider rev-
enue with virtual net-
work abstractions. Mean
BW = 500Mbps.

since a tenant should pay more for a wvirtual cluster with
500Mbps than one with 100Mbps. Given the lack of a refer-
ence charging model, we use a simple model to explore the
economic benefits that the use of virtual networks would
provide. Apart from paying for VM occupancy (kv), ten-
ants also pay a bandwidth charge of kbm Hence,
a tenant using a virtual cluster <N, B> for time T' pays
NT(ky + kpB).

Such a charging model presents an opportunity to redress
the variability in provider revenue observed above. To this
effect, we performed the following analysis. We used current
Amazon EC2 prices to determine k, and k; for each vir-
tual network abstraction so as to maintain provider revenue
neutrality, i.e., the provider earns the same revenue as to-
day.* We then determine the ratio of a tenant’s cost with the
new charging model to the status quo cost. The median ten-
ant cost is shown in Figure 15. We find that except at low
loads, wirtual networks can ensure that providers stay rev-
enue neutral and tenants pay significantly less than Baseline
while still getting guaranteed performance. For instance, with
a mean bandwidth demand of 500 Mbps, Figure 15 shows
that tenants with virtual clusters pay 68% of Baseline at
moderate load and 37% of Baseline at high load (31% and
25% respectively with VOC-10).

The charging model can be generalized from linear band-
width costs to NT (kv + ks f(B)), where f is a bandwidth

“For Amazon EC2, small VMs cost 0.085$/hr. Sample esti-
mated prices in our experiments are at 0.04$/hr for k., and
0.00016$ /GB for ky.



charging function. We repeated the analysis with other band-
width functions (B% , B?), obtaining similar results.

5.4 Implementation and Deployment

Our Oktopus implementation follows the description in

Section 4. The NM maintains reservations across the net-
work and allocates tenant requests in an on-line fashion. The
enforcement module on individual physical machines imple-
ments the rate computation and rate limiting functionality
(Section 4.3). For each tenant, one of the tenant’s VMs (and
the corresponding enforcement module) acts as a controller
and calculates the rate limits. Enforcement modules then
use the Windows Traffic Control API [4] to enforce local
rate limits on individual machines.
Scalability. To evaluate the scalability of the NM, we
measured the time to allocate tenant requests on a data-
center with 10° endhosts. We used a Dell Precision T3500
with a quad-core Intel Xeon 5520 2.27 GHz processor and
4 GB RAM. Over 10° requests, the median allocation time
is 0.35ms with a 99" percentile of 508ms. Note that this
only needs to be run when a tenant is admitted, and hence,
the NM can scale to large datacenters.

The rate computation overhead depends on the tenant’s

communication pattern. Even for a tenant with 1000 VMs
(two orders of magnitude more than mean tenant size to-
day [31]) and a worst-case scenario where all VMs commu-
nicate with all other VMs, the computation takes 395ms
at the 99" percentile. With a typical communication pat-
tern [20], 99" percentile computation time is 84ms. To bal-
ance the trade-off between accuracy and responsiveness of
enforcement and the communication overhead, our imple-
mentation recomputes rates every 2 seconds. For a tenant
with 1000 VMs and worst-case all-to-all communication be-
tween the VMs, the controller traffic is 12 Mbps (~1 Mbps
with a typical communication pattern). Hence, the enforce-
ment module imposes low overhead.
Deployment. We deployed Oktopus on a testbed with 25
endhosts arranged in five racks. Each rack has a Top-of-Rack
(ToR) switch, which is connected to a root switch. Each in-
terface is 1 Gbps. Hence, the testbed has a two-tier tree
topology with a physical oversubscription of 5:1. All end-
hosts are Dell Precision T3500 servers with a quad core Intel
Xeon 2.27GHz processor and 4GB RAM, running Windows
Server 2008 R2. Given our focus on quantifying the bene-
fits of Oktopus abstractions, instead of allocating VMs to
tenants, we simply allow their jobs to run on the host OS.
However, we retain the limit of 4 jobs per endhost, resulting
in a total of 100 VM or job slots.

We repeat the experiments from Section 5.2 on the testbed
and determine the completion time for a batch of 1000 ten-
ant jobs (mean tenant size N is scaled down to 9). As before,
each tenant job has a compute time (but no actual computa-
tion) and a set of TCP flows associated with it. Figure 16(a)
shows that virtual clusters reduce completion time by 44%
as compared to Baseline (57% for VOC-10). We repeated
the experiment with all endhosts connected to one switch
(hence, no physical oversubscription). The bars on the right
in Figure 16(a) show that virtual clusters match the Base-
line completion time while VOC-10 offers a 9% reduction.
Since the scale of these experiments is smaller (smaller topol-
ogy and tenants), virtual networks do not have much oppor-
tunity to improve performance and the reduction in com-
pletion time is less significant. However, tenant jobs still
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Figure 16: Testbed experiments show that virtual
networks provide performance gains and validate
our simulator.

(a) Completion Time

get guaranteed network performance and hence, predictable
completion times.

Cross-validation. We replayed the same job stream in
our simulator and for each tenant request, we determined
the ratio of the completion time on the testbed and the
simulator. Figure 16(b) shows that for the vast majority
of jobs, the completion time in the simulator matches that
on the testbed. Some divergence results from the fact that
network flows naturally last longer in the live testbed than
in the simulator which optimally estimates the time flows
take. We note that jobs that last longer in the testbed than
the simulator occur more often with Baseline than with vir-
tual networks. This is because the Baseline setup results in
more network contention which, in turn, causes TCP to not
fully utilize its fair share. Overall, the fact that the same
workload yields similar performance in the testbed as in the
simulator validates our simulation setup and strengthens our
confidence in the results presented.

6. RELATED WORK

The increasing prominence of multi-tenant datacenters
has prompted interest in network virtualization. Seawall [31]
and NetShare [22] share the network bandwidth among ten-
ants based on weights. The resulting proportional bandwidth
distribution leads to efficient multiplexing of the underlying
infrastructure; yet, in contrast to Oktopus, tenant perfor-
mance still depends on other tenants. SecondNet [15] pro-
vides pairwise bandwidth guarantees where tenant requests
can be characterized as <N, [Bi;j]nxn>; [Bij]nxn reflects
the complete pairwise bandwidth demand matrix between
VMs. With Oktopus, we propose and evaluate more flexible
virtual topologies that balance the trade-off between tenant
demands and provider flexibility.

Duffield et al. [12] introduced the hose model for wide-
area VPNs. The hose model is akin to the wvirtual cluster
abstraction; however, the corresponding allocation problem
is different since the physical machines are fixed in the VPN
setting while we need to choose the machines. Other alloca-
tion techniques like simulated annealing and mixed integer
programming have been explored as part of testbed map-
ping [29] and virtual network embedding [37]. These efforts
focus on allocation of arbitrary (or, more general) virtual
topologies on physical networks which hampers their scala-
bility and restricts them to small physical networks (O(10?)
machines).



7. CONCLUDING REMARKS

This paper presents virtual network abstractions that al-
low tenants to expose their network requirements. This en-
ables a symbiotic relationship between tenants and providers;
tenants get a predictable environment in shared settings
while the provider can efficiently match tenant demands to
the underlying infrastructure without muddling their inter-
face. Our experience with Oktopus shows that the abstrac-
tions are practical, can be efficiently implemented and pro-
vide significant benefits.

Our abstractions, while emulating the physical networks
used in today’s enterprises, focus on a specific metric— inter-
VM network bandwidth. Tenants may be interested in other
performance metrics, or even non-performance metrics like
reliability. Examples include bandwidth to the storage ser-
vice, latency between VMs and failure resiliency of the paths
between VMs. In this context, virtual network abstractions
can provide a succinct means of information exchange be-
tween tenants and providers.

Another interesting aspect of virtual networks is cloud
pricing. Our experiments show how tenants can implicitly
be charged for their internal traffic. By offering bounded
network resources to tenants, we allow for explicit and fairer
bandwidth charging. More generally, charging tenants based
on the characteristics of their virtual networks eliminates
hidden costs and removes a key hindrance to cloud adop-
tion. This, in effect, could pave the way for multi-tenant
datacenters where tenants can pick the trade-off between
the performance of their applications and their cost.
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