
CamCubeOS: A Key-based Network Stack
for 3D Torus Cluster Topologies

Paolo Costa Austin Donnelly Greg O’Shea Antony Rowstron
Microsoft Research Cambridge, UK

{pcosta,austind,gregos,antr}@microsoft.com

ABSTRACT
Cluster fabric interconnects that use 3D torus topologies are
increasingly being deployed in data center clusters. In our
prior work, we demonstrated that by using these topologies
and letting applications implement custom routing proto-
cols and perform operations on path, it is possible to increase
performance and simplify development. However, these ben-
efits cannot be achieved using mainstream point-to-point
networking stacks such as TCP/IP or MPI, which hide the
underlying topology and do not allow the implementation of
any in-network operations.

In this paper we describe CamCubeOS, a novel key-based
communication stack, purposely designed from scratch for
3D torus fabric interconnects. We note that many of the
applications used in clusters are key-based. Therefore, we
designed CamCubeOS to natively support key-based oper-
ations. We select a virtual topology that perfectly matches
the underlying physical topology and we use the keyspace to
expose the physical locality, thus avoiding the typical over-
head incurred by overlay-based approaches.

We report on our experience in building several applica-
tions on top of CamCubeOS and we evaluate their perfor-
mance and feasibility using a prototype and large-scale sim-
ulations.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distri-
buted Systems; H.3.4 [Information Systems]: Informa-
tion Storage and Retrieval

General Terms
Algorithms, Design, Performance

Keywords
Data center clusters, 3D torus topologies, key-based routing,
in-network processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$15.00.

1. INTRODUCTION
The recent acquisitions of Cray Interconnect by Intel [45]

and SeaMicro by AMD [41] confirmed the increasing trend
of deploying HPC-inspired fabric interconnects in general-
purpose data center clusters [49]. This trend has been
mostly driven by the opportunity of drastically reducing
space and power consumption. For instance, the SeaMi-
cro SM10000-XE appliance has three times the density of
today’s servers and consumes half of the power while pro-
viding 12x more bandwidth [46]. An additional feature of
these interconnect fabrics is that the switching functionality
is distributed across the servers, typically using a 3D torus
topology [29], like the one in Figure 1. This provides a tight
integration between servers and network.

We explored the opportunities provided by this integra-
tion in the context of general purpose data centers [11] and
we showed the benefits of implementing custom routing pro-
tocols [1] and performing in-network packet processing [10].
Unfortunately, most of these benefits are lost with current
platforms, which use traditional networking stacks such as
TCP/IP and MPI, which are oriented towards point-to-
point server communication and completely hide the under-
lying topology, thus inhibiting the implementation of any
in-network functionality.

To address these shortcomings, we developed CamCubeOS,
a novel networking stack for 3D torus topologies. Many
of the applications that run in a cluster are key-based,
e.g., [6, 9, 14,15, 24,26], using keys to identify data or users.
The CamCubeOS API has been designed to make it easier to
develop these applications by supporting key-based routing
along with traditional point-to-point, server-based, commu-
nication. CamCubeOS provides an API similar to the Key-
Based Routing API (KBR) [12], which has been successfully
used in many distributed hash tables (DHTs) [34, 38]. The
main benefit of KBR is that the destination of a packet is
represented by a key, which is mapped to a reachable server
and is re-mapped to another server in case of failure. This
means that, unlike for server-based communication in which
the packet is dropped if the destination server is unreach-
able, with key-based routing the packet is always delivered
because the system ensures that there will always be a valid
mapping between keys and servers.

Current data center thinking is dominated by network-
ing technology and abstractions designed to support the In-
ternet and enterprise networking. CamCubeOS challenges
these views, and demonstrates that the combination of HPC-
inspired fabrics and key-based abstractions makes writing



applications easier and achieves higher performance than
traditional setups.

A major issue when using key-based routing is how to ex-
pose the physical topology through the keyspace so as to
minimize path stretch. CamCubeOS addresses this problem
by making the physical and virtual topologies the same. The
topology defines a keyspace: each server is assigned a coor-
dinate in the 3D space defined by its location and neighbors
in the 3D torus.

The workloads generally used in HPC are batch-based and
computationally intensive. Normally, HPC clusters are ver-
tically partitioned, i.e., applications are allocated on dis-
joint subsets of nodes. In contrast, CamCubeOS focuses
on the workloads typically run in general-purpose data cen-
ter clusters such as data analytics jobs, web services, and
data stores. It uses a horizontal partitioning of the ser-
vices; every server runs an instance of every service. We
built a number of services on top of CamCubeOS, including
a file distribution service, a memcached-inspired key-value
cache layer, an extensible persistent key-value store, and
Camdoop [10], a MapReduce-like system that, in common
scenarios, achieves up to two orders of magnitude higher
performance than Hadoop [42] and Dryad [23]. We also im-
plemented a TCP/IP service to support legacy applications.

The CamCubeOS runtime controls when packets are sent
on a link and uses fair or weighted-queues to control the
number of packets that each service can send on a link. This
provides good link bandwidth partitioning between services,
which services can exploit to implement their own queuing
policies as well as implementing their own transport proto-
cols and routing protocols [1] if needed.

To evaluate the performance of our stack, we built a 27-
server (3x3x3) 3D Torus prototype, using commodity servers
interconnected through 1 Gbps Ethernet cables. Clearly,
our prototype cannot match the performance of dedicated
SeaMicro appliances and we use it as a proof-of-concept.
We compared the performance of applications built on top
of CamCubeOS against the performance of equivalent ap-
plications implemented using TCP/IP over the switch. The
results demonstrates that the benefits of using CamCubeOS
outweighs the overhead of servers participating in packet for-
warding. For instance, the key-value store outperforms an
equivalent switch-based application by a factor of 1.93 and
the file distribution service achieves a throughput per mem-
ber of 5.66 Gbps, which is more than five times higher than
what can be achieved in a traditional, switch-based, setup.

2. BACKGROUND: CAMCUBE
CamCubeOS is part of CamCube, a research project that

explores the benefits of using 3D torus topologies to inter-
connect clusters of servers for general-purpose applications.

2.1 Motivation
A 3D torus (or k-ary 3-cube) [29] can be visualized as a

wrapped 3D mesh, with each server connected to six other
servers, similar to the one depicted in Figure 1. This is
a popular topology, used in high performance computing,
e.g., the IBM BlueGene/L and Cray XT3/Red Storm, and
in cluster appliances, e.g., the SeaMicro SM10000-XE. Its
properties are well understood and it provides a high degree
of multi-path, which makes the topology very resilient to
link and server failure. There are also well known wiring

Figure 1: A 3-ary 3-
cube (or 3D torus).

CamCubeOS (API & Runtime) 

CamCube testbed  
shim layer 

SeaMicro  
shim layer 

… 
shim layer 

Key-Value 
Store 

Camdoop 
(MapReduce) 

… 
TCP/IP 
service 

File distribution 
service 

CamCube testbed SeaMicro … 

Figure 2: The CamCube soft-
ware architecture.

techniques that allow efficient inter-connections using only
short cables, each cable traversing a single server at most [2].

A key benefit of using a direct-connect topology like the
3D torus is that applications can implement their own cus-
tom routing protocols. Typically, both in switched-based
network and HPC clusters, only one routing protocol, e.g.,
the IS-IS link-state protocol [28] for the former and a variant
of greedy routing protocols [2, 36] for the latter, is available
to applications. We demonstrated that in many cases run-
ning a custom routing protocol is beneficial both from the
application and network perspective [1]. For example, appli-
cations that need to exchange large amount of data between
two servers may be interested in using as many disjoint paths
as possible so as to maximize the throughput between the
two servers. In contrast, multicast applications desire to
minimize the number of links used by the spanning tree to
reduce the impact over network resources. We showed that
custom routing protocols enable higher application-level per-
formance, even when used concurrently, and reduce the net-
work link stress.

A further advantage, beside enabling implementing cus-
tom forwarding decisions at each hop, is the ability of pro-
cessing packets on-path. This means that applications can
intercept packets on every server along the path from the
source to the destination, inspect the payload (as opposed
to just the header) of the packet and decide whether to drop
the packet (possibly after storing its content in memory), to
forward as is, to modify part of its payload, or to create a
new packet. This functionality is really powerful as it en-
ables sophisticated on-path operations, e.g., opportunistic
caching or in-network aggregation [10].

2.2 CamCube Architecture
To simplify building CamCube applications, we developed

CamCubeOS, a novel networking stack, which represents the
core contribution of this paper. The overall CamCube soft-
ware architecture is depicted in Figure 2. The top boxes
represent the applications and services that we have imple-
mented for CamCube. These include fully fledged applica-
tions, e.g., a key-value store (described in Section 5) and
a MapReduce-like system (Section 6.2) but also lower-level
services like the file distribution service (Section 6.1) that
can be used by other applications to disseminate large files
to a subset of the CamCube servers. We also developed a
TCP/IP service (Section 6.3) that allows to run unmodified
TCP/IP applications on top of CamCubeOS.

CamCubeOS consists of two parts: the CamCubeOS API,
which exposes a key- and server-based interface, and the
runtime, which handles the packet outbound queues and de-
multiplexes packets among applications and services. We



provide more details about both the API and the runtime
in the next section.

To communicate between the CamCubeOS runtime and
the specific underlying cluster hardware we use a shim layer.
We have implemented a shim layer for the prototype 27-
server testbed that we used in our evaluation and we are
currently developing one for a SeaMicro appliance. The only
functionality that we require from the underlying platform is
the ability to send and receive packets to/from the six neigh-
bors. No further functionality (e.g., multi-hop routing pro-
tocol) is assumed. Therefore, we expect that CamCubeOS
be able to support most (if not all) 3D torus-based platforms
currently available on the market with limited effort.

3. CamCubeOS OVERVIEW
We first describe the CamCubeOS API and then highlight

the main features of the CamCubeOS runtime.

3.1 API
An early choice in the design of the CamCubeOS API

was to support multi-hop key-based communication along
with the traditional server-based communication. Services
provide the reference to the packet (represented as a byte
array) to be transmitted and specify whether the final des-
tination is a key or server address. In the former case, the
packet is always delivered to the server that is currently re-
sponsible for the given key. If, instead, a server address is
used as destination, the packet is delivered only if that server
is reachable, otherwise it is dropped. The motivation for se-
lecting this model is that we wanted to make it easier to
write key-based applications and, in particular, to simplify
failure recovery.

One possible approach could have been to just run any
structured overlay, e.g., Chord [38] or Pastry [34], over the
underlying 3D torus network. This, however, would have
created a mismatch between the overlay virtual topology and
the physical network topology because each hop in the over-
lay would correspond to multiple links in the physical net-
work. This would destroy locality, by increasing the physical
hop count between two overlay neighbors, and induce fate
sharing of links [20]. Typical solutions to this usually reduce
failure resilience of the overlay, and still do not fully address
the mismatch between the physical and virtual topologies.
In contrast, in CamCubeOS we chose a virtual topology that
matches the underlying 3D torus physical topology. We se-
lected the virtual topology used by the Content Addressable
Network (CAN) [33] structured overlay, a 3D torus topology.
Hence, each link in the virtual overlay represents a single link
in the physical topology.

In contrast to most structured overlays, node identifiers
in CAN are not constant, and change over time as nodes
join and fail. Many other structured overlays, like Chord
and Pastry, have static node identifiers. This is necessary
in CAN because it uses greedy routing over the keyspace,
so failures with static identifiers can cause voids in the key-
space, that cause greedy routing to fail. In a structured
overlay, non-static node identifiers are not ideal because the
applications need to handle the mapping between nodes and
keyspace, which usually requires migration of keys, as well
as making maintaining consistency harder. In CamCubeOS
we want the identifier of servers to be fixed. We assign
a server identifier using its location in the initial physical
topology. We use the 3D torus to define a 3D coordinate

space. When a CamCube is first commissioned, a bootstrap
service assigns each server an (x, y, z) coordinate represent-
ing its offset within the 3D torus from an arbitrary origin.
The symmetry of the 3D torus means that any server can
be the origin: it has no special role other than having the
address (0,0,0). The bootstrap service on each server ex-
poses the coordinate and dimensions of the 3D torus to lo-
cal services. It also provides a mapping between the one-hop
neighbors and their coordinates. Intuitively, the coordinates
of one-hop neighbors will each differ in only one axis and by
+/-1 modulo the axis size. The assigned coordinate is the
address of the server and, once assigned, it is never changed.

CamCube services are partitioned horizontally, i.e., all
servers run an instance of the service. This means that the
services running on all servers on the path to the destina-
tion are able to intercept and arbitrarily modify a packet
or even drop it and create a new packet. For instance, a
cache service can intercept a query packet along the path
and, if a cache hit occurs, it can halt its propagation and
immediately reply to the originating server.

Although the multi-hop routing functionality can be used
to deliver packets end-to-end, in many cases, the key or
server address specified is not the final destination of the
packet but it is an intermediate destination. This allows ser-
vices to implement custom routing protocols by leveraging
the default routing protocol only between two intermediate
destinations (possibly just between 1-hop neighbors). For
instance, our key-value store (described in Section 5) uses
intermediate destinations as cache locations and adopts a
custom routing protocol to ensure that both query and re-
ply packets are routed through them.

Services can also query the CamCubeOS API to retrieve
up-to-date information about reachable and unreachable
servers, in case they need fine-grained control over routing.

Finally, services can access the custom APIs offered by
other services running on the same server. For example, a
de-duplication backup service could use in its implementa-
tion the functionality offered by the key-value store and the
file distribution service in addition to the standard Cam-
CubeOS API.

3.2 Keyspace Management
An important aspect of the CamCubeOS API is the key-

space management, especially in the presence of failures.
By default all keys are considered as 160-bit keys, but

only the least significant 64 bits are used when routing a
message to a key. Each key is mapped to a root server that
is responsible for that key. The highest bits1 of the 64-
bit key generate an (x, y, z) coordinate. If the server with
this coordinate–hereafter referred to as the home server–is
reachable then it is the root.

If the home server is unreachable, then a naive solution
would be to simply map the failed coordinate onto another
single coordinate. Although this would preserve correctness,
it would incur significant load skew because a single server
would now be responsible for twice the number of keys of
the other servers. A more elegant and efficient solution is
to distribute the keys that the failed server was root for,
over the set of one-hop neighbors. This maintains locality

1In our deployment, we use 4 bits per dimension, which can
encode clusters of up to (24)3 = 4,096 servers. If 8 bits per
dimension were used, we could support clusters comprising
more than 16 million servers.



(a) The facets of server (2, 2). (b) The facet f = 0 of server (3, 2). (c) The facet f = 0 of server (1, 1, 1).

Figure 3: The facets in the 2D and 3D torus. Dark circles indicates the servers lying on facet 0.

and reduces load skew. To do this, when a root server is
unreachable, the remainder of the 64-bit key is used to de-
termine the coordinate of the server which will be the root.
Conceptually, the 64-bit key can be thought as an (x, y, z, w)
coordinate in a 4D space. The first three dimensions, x, y,
and z, identify the home server while the fourth dimension
w is used to select the neighbor to remap the key to if the
current root server becomes unreachable.

This key-to-server mapping in the presence of failures
should achieve the following design goals:

• G1: Correctness. If there is at least one server that
has not failed, every key must have a valid (i.e., not
failed) root server.

• G2: Efficiency. In case of failure, the keys of the
failed server should be remapped to nearby servers (to
achieve locality) while minimizing load skew.

A straw-man approach would be to simply represent the
fourth dimension w as a ring like in Chord [38] and then
assign each key range to a different reachable server. While
this would satisfy G1 and would ensure good key distribu-
tion, it would completely disregard locality (G2), since the
keys of a failed server F would end up on all servers, includ-
ing severs located several hops away from F .

In CamCubeOS, we implemented a novel keyspace man-
agement solution that ensures correctness and that achieves
high locality with a good load distribution. CamCubeOS
provides a function GetServersForKey(key,r) that given a
key and an integer r returns an ordered list of reachable
servers L = [S0, S1, . . . , Sr−1] with the following property.
S0 is the server that is currently responsible for key. S1, is
the one that would become responsible for key if S0 failed.
Likewise, S2 would take over the key if both S0 and S1

should fail and so on.
If GetServersForKey is invoked with r=1, it just returns

the current root of key. Invoking the function with higher
values of r can be used to implement n-way replication. For
example, GetServersForKey(key,n) returns the list L of the
n servers that should store a replica of the object indexed by
key. In this way, if the primary replica becomes unreachable,
the new root server for key is one of the secondary replicas.

We now explain how we implemented the function Get-

ServersForKey in CamCubeOS and how it achieves both
design goals G1 and G2. To simplify the exposition, we

start by describing it using a 2D torus and then we extend
it to cover the 3D case.
2D torus. We first introduce the notion of a facet. Let
us consider a home server S = (x, y) and let us divide the
coordinate space into four sub-spaces (i.e., squares in the
2D cases), each with a corner located in S. We call facets
the lines connecting the neighbors of S in each sub-space.
Figure 3(a) shows the four facets of server (2, 2). The dark
neighbors, (2, 3) and (3, 2), are the ones belonging to facet
f = 0.

Given a key k = (x, y, w), we can use some of the bits of w
to select one of the four facets. Once we have selected a facet
f , e.g., f = 0, we need to choose the order o in which the two
neighbors should appear in L. We can reuse the remainder
bits of w to decide whether to pick first the neighbor on the
x axis and then the one on the y axis (o = xy) or vice versa
(o = yx). As an example, consider the scenario depicted in
Figure 3(a) and a key k = (2, 2, w) and suppose that the bits
in w yield f = 0 and o = xy. In this case, the home server
would be S0 = (2, 2) and S1 and S2 would be, respectively,
(3, 2) (i.e., the neighbor on the x axis) and (2, 3) (i.e., the
neighbor on the y axis).

The next servers Si are retrieved by proceeding recursively
in a breadth-first fashion. S1 is taken as home server and
its two neighbors on the chosen facet are appended at the
end of the list. Next, the two neighbors on S2’s facet are
appended to the list, unless they are already part of it. The
process terminates when either r servers are retrieved or all
reachable servers have been visited at least once. In our
example, if we consider S1 = (3, 2) as the new home server
and assume again f = 0 and o = xy, we have S3 = (4, 2) and
then S4 = (3, 3) (see Figure 3(b)). Therefore, assuming no
failures, GetServersForKey(k,5) would return the following
ordered list of servers: L = [(2, 2), (3, 2), (2, 3), (4, 2), (3, 3)].

Since the keyspace is wrapped, eventually all servers will
be visited at least once, which satisfies G1. Further, it is easy
to see that this strategy ensures that, in case of failure, all
the keys of the failed server are equally distributed among
its four 1-hop neighbors (assuming all of them are reach-
able), which fulfills both the locality and the load-balance
requirements of G2. This is particularly important if n-way
replication is used because the closer the secondary replicas
are to the primary, the higher bandwidth would be available.

In the 2D case, we have four facets per server and two
possible orderings between the two neighbors of each facet.



Therefore, in total, for a home server S = (x, y) we have
eight possible different sequences of r-servers that can be
generated, all starting from S. For efficiency, we pre-compute
offline a lookup table containing these sequences and then,
given a key k = (x, y, w), we use the index i = (w mod 8)
to retrieve the correct sequence for k.
3D torus. The main difference between the 2D and the
3D case is that in the latter the facet is a plane rather than
a line. This is depicted in Figure 3(c), which shows the facet
f = 0 for the home server (1, 1, 1). This means that instead
of two neighbors per facet, we now have three neighbors per
facet. Therefore, there are six (as opposed to two for the
2D case) possible orderings to select these neighbors, corre-
sponding to the six permutations of xyz. Further, instead
of four facets per home server, we now have eight facets, one
for each of the equal-size sub-cubes in which the cube can
be divided. This yields 8 × 6 = 48 (as opposed to eight in
the 2D case) possible entries in the lookup table.

3.3 Runtime
The runtime component is responsible for handling packet

queuing and forwarding, and sharing the network resources
across services. As already mentioned, CamCube services
run on every server. Services are independent and can be
registered and de-registered. Each service has a unique iden-
tifier. The packet header is a service identifier and when the
runtime receives a packet it uses this to de-multiplex the
packet and deliver it to the correct service. In most cases,
services include their own identifier in the packet header but
they could also include the identifier of a different service if
the packet needs be received by a different service.

The runtime uses a simple link-state routing protocol and
shortest paths to support key- and server-based multi-hop
routing. Control traffic for maintaining the link-state is neg-
ligible, as failures are comparatively rare. When packets
need be transmitted, the multi-hop routing protocol returns
the set of outbound links that can be used to forward the
packet towards a key or server, as required. In general, due
to the high-degree of multi-path in the 3D torus, for a given
destination the routing protocol is likely to yield multiple
outbound links. Instead of arbitrarily selecting one of this,
e.g., randomly, the runtime keeps track of the set of valid
outbound links and transmits the packet over the link that
becomes available first.

Each service maintains its own outbound packet queue.
Services are polled, in turn, by the runtime for packets to
be sent on each of the six outbound links, when there is
capacity on the link. This means there is implicit per-link
congestion control; if a link is at capacity then a service will
not be polled for packets for that link. A service is able to
control link queue sizes, packet drop policy, and packet pri-
oritization. We provide a number of parameterizable default
queue implementations, but services are free to implement
their own. By default the runtime provides a fair queuing
mechanism, meaning that each service is polled at the same
frequency, and if s services wish to send packets on the same
link then each will get 1/sth of the link bandwidth. Parti-
tioning the per-link bandwidth, combined with the fact that
all packets on a single link are explicitly sourced by only two
servers, means that they do not interfere. If services need to
be partitioned into foreground and background tasks then a
weighting queuing can be used.

4. THE CAMCUBE TESTBED
To evaluate the feasibility and performance of CamCubeOS

and the services written on top of it, we built a small-scale
testbed using commodity hardware. We now describe its
setup and evaluate its base performance.

4.1 Setup
The testbed consists of 27 servers, interconnected in a 3D

torus (3x3x3) like the one in Figure 1. We use Dell Preci-
sion T3500 servers with quad-core Intel Xeon 5520 2.27 GHz
processors and 12 GB RAM, running an unmodified version
of Windows Server 2008 R2. Each server has a 32 GB Solid
State Drive (Intel X-25E SATA). In the current prototype
platform we use a 1 Gbps Intel PRO/1000 PT Quadport
NIC and two 1 Gbps Intel PRO/1000 PT Dualport NICs in
PCIe slots to provide sufficient per-server ports. This lim-
its the server form factors we can use as this requires three
PCIe slots. However, we have started to use Silicom PE2G6I
PCIe cards with six 1 Gpbs ports per NIC, requiring only a
single PCIe slot. All experimental results are qualitatively
and quantitatively the same when using a Silicom card, but
as we have only a small number of cards for evaluation, we
configured all servers identically using the Intel cards. One
port is connected to a dedicated commodity 48-port 1 Gbps
NetGear GS748Tv3 switch that uses store-and-forward rout-
ing (as opposed to cut-through). This provides the external
connectivity to the CamCube. Six of the remaining ports,
two per multi-port NIC, provide the 3D torus network. In
all the experiments, intra-CamCube traffic is routed using
the 3D torus topology, and all inbound and outbound traffic
to / from the CamCube uses the switch.

The Intel NICs support jumbo Ethernet frames of 9,014
bytes (including the Ethernet header). In the experiments,
unless otherwise stated, we use jumbo frames and use default
settings for all other parameters on the Ethernet cards.

Due to space constraints, we omit the full details of the
shim layer implementation. However, we used techniques
similar to those presented in [16,25]. In particular, we follow
a zero-copy approach and use a pool of pre-allocated packet
buffers. We also batch multiple asynchronous I/O requests
to minimize the number of transfers across the kernel-user
boundary. Further, whenever possible, we exploit aggre-
gation at the packet level by concatenating multiple small
packets into a single jumbo frame to reduce the overhead of
Ethernet headers and the interrupts generated at the receiv-
ing server. Finally, we keep the transmit and receive paths
separate by using two distinct threads per link to minimize
interference between them. We also allow processing of in-
coming packets on the receive thread, provided the com-
putation performed on the packet is small, to reduce the
overhead of context switching on each packet.

In order to demonstrate how our platform scales we also
present results using a packet-level discrete event simulator.
The simulator allows the same codebase used on the testbed
to be compiled for the simulator. It accurately simulates
the Ethernet network links, assuming 1 Gbps links and with
jumbo frames.

4.2 Benchmarking
This set of experiments benchmark the performance of

our CamCube testbed. We also include simulation results
to show the impact of server failure and scale.



0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6N
o

rm
al

iz
e

d
 a

gg
. t

h
ro

u
gh

p
u

t 

Number of links (L) 

9,000-byte packets
1,500-byte packets (aggregated)
1,500-byte packets

(a) Normalized aggregate throughput.

0

20

40

60

80

100

0 1 2 3 4 5 6

C
P

U
 u

ti
liz

at
io

n
 (

%
) 

Number of links (L) 

1,500-byte packets

1,500-byte packets (aggregated)

9,000-byte packets

(b) CPU utilization.

0

100

200

300

400

500

600

700

800

900

1000

1,500-byte packets 9,000-byte packets

R
o

u
n

d
 t

ri
p

 t
im

e
 (

m
ic

ro
se

c)
 UDP (x-cable)

Camcube (1 hop)
UDP (switch)
TCP (x-cable)
TCP (switch)

(c) Average round trip time.

Figure 4: Throughput and CPU utilization versus number of links and average round trip time.

4.2.1 Throughput and CPU overhead
For the purpose of performance analysis, we developed a

benchmarking service that attempts to saturate 1 ≤ L ≤ 6
links with full payload packets, and records the number of
packets delivered per second per server across the servers
inbound links and the CPU utilization. The benchmarking
service ensures that when L = k, all servers have k inbound
links receiving packets. This service runs the same code
used by CamCubeOS to route packets. Therefore, this ex-
periment allows us to quantify the network performance and
CPU overhead of using the servers to route packets. We
ran the experiments using standard packets (1,500 bytes)
and using jumbo frames. We measure the CPU utilization
by using Windows performance counters that provide, per
core, an estimate of the CPU utilization. As we have a quad
core processor, with hyper-threading, we have eight CPU
readings per server. The CPU utilization per server is the
average of these eight readings. We also confirmed that the
per-core CPU utilization is not skewed across the cores.

Figure 4(a) shows the median aggregate throughput per
server for L = 1 to 6 normalized with respect to the maxi-
mum achievable for that value of L. We do not show error
bars, but across all experiments the maximum and min-
imum throughput observed per-server is within 1.28% of
the median value. We define the aggregate throughput per
server as the total number of packets per second received
by the server and the total number of packets received by
one-hop neighbors of that server that are sourced by this
server. The maximum aggregate throughput for a server,
when L = 6, is 12 Gbps. Passing packets across the kernel
user-space boundary induces overhead, and intuitively, us-
ing larger packets is more efficient. Figure 4(a) shows that
for jumbo frames all servers are able to sustain close to the
maximum aggregate throughput. At 1500-byte packets the
results show CamCubeOS is able to achieve about 0.97 of the
maximum aggregate throughput for up to L = 5. This is less
than the jumbo frames as we are not including the Ether-
net header overhead, and at 1500-byte packets this overhead
is higher and accounts for the difference. When L = 6 the
1500-byte packet experiment achieves approximately 0.91. If
we use the packet-level aggregation optimization described
above, where multiple packets are aggregated into a sin-
gle jumbo frame, the throughput increases, as the Ether-
net headers are removed, and close to maximum aggregate
throughput is achieved for all values of L.

With servers using CPU resources to handle packets, we
next look at the CPU load during the experiment. Fig-
ure 4(b) shows the average per-server CPU overhead for
L = 0 to 6. We do not show error bars, but the maxi-

mum and minimum are within 10.6% of the median value
for all results. When L = 0 there is no network load and the
CPU utilization is close to zero. Figure 4(b) shows that for
jumbo packets, the CPU utilization is low despite the over-
head associated with passing each packet across the kernel
user-space boundary. When all six links are being saturated,
CPU utilization is less than 22%. Using 1500-byte packets
incurs a higher CPU overhead, over 87% when saturating all
links. When we use the packet aggregation optimization this
drops to less than 45%. This demonstrates the effectiveness
of packet aggregation optimization: it increases throughput
and decreases CPU overhead.

4.2.2 Latency
Next, we use a ping service to measure the increase in com-

munication latency introduced by CamCubeOS. The ping
service uses the routing service to route packets between
two arbitrary servers. The source generates a packet and
then forwards it towards the destination server. Each server
on path receives the packet, modifies a counter in the pay-
load, and then forwards it. When it reaches the destination,
the destination reverses the source and destination identities
in the packet and then routes the packet back towards the
source. On-path the runtime and the ping service ensure
that the packet is zero-copied. The source sends 10,000 ping
packets, sequentially, for 1,500-byte and jumbo packets, and
then reports the average round trip time (RTT).

To show the relative performance of the runtime, we also
measured the performance of the standard Windows TCP/IP
stack performing a ping operation between two servers using
UDP and TCP over the switch for both packet sizes. The
jumbo frame performance over the switch is poor, presum-
ably because it is a commodity store-and-forward switch.
Therefore, we also ran the TCP/IP experiments using a
standard cross-over cable directly connecting two servers.
In the case of TCP, the source creates a new socket for each
ping. This is consistent with a recent analysis of data center
network traces [19], which shows that most flows are smaller
than 10 KB. If, instead, persistent TCP connections were
used, we expect the RTTs to match those obtained with
UDP and, hence, we did not run this configuration.

Figure 4(c) shows the average RTT for the different con-
figurations, split by 1,500 and 9,000 byte packets. For Cam-
CubeOS we show the results for a single hop. In all cases, the
CamCubeOS performance is comparable to UDP using the
cross-over cable. As would be expected, the TCP latency is
much higher due to the additional round trips needed to cre-
ate and close a TCP socket. To support arbitrary routing,
multi-hop routing will be required for CamCubeOS. To ex-
plore this performance we also configured the ping service to



0

0.5

1

1.5

2

2.5

3

27 64 125 216 343 512 729 1,000 1,331 1,728 2,197 2,744 3,375 4,096

Th
ro

u
gh

p
u

t 
(G

b
p

s)
 

Number of servers 

Expected

Achieved

(a) Per-server throughput versus num-
ber of servers with an all-to-all traffic
pattern.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

Th
ro

u
gh

p
u

t 
(G

b
p

s)
 

Failure ratio 

(b) Median throughput per-server ver-
sus server failure ratio with an all-to-all
traffic pattern (512 servers).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

Fr
ac

ti
o

n
 o

f 
p

ac
ke

ts
 

Churn rate (events/s) 

Packets dropped
Packets misdelivered

(c) Fraction of packets dropped and
misdelivered versus churn rate (512
servers).

Figure 5: Simulation results.

use a 15-hop path. This is the maximum hop count between
two servers in a 1,000-server CamCube (i.e., a 10x10x10,
with an average path length of 7.5 hops). The average RTT
is 2.22 ms for 1,500-byte packets and 5.87 ms for jumbo pack-
ets, respectively about 4.2 times and 6.73 times slower than
TCP. This is the worst case and demonstrates the latency
overhead of routing through servers. In an 8x8x8 CamCube,
e.g. 512 servers, the maximum hop count is 6 and the av-
erage only 3. The latency would be comparable to using
TCP in a traditional 512 switch-based cluster. Further, as
many services induce locality often the average hop count is
further reduced. As we demonstrate in Section 5, a service
built on top of CamCubeOS can significantly outperform
the same service running on a traditional switched setup.

4.2.3 Scaling
Next, we explore how our testbed would scale with the

number of servers. We do this in simulation with an all-to-
all traffic pattern, emulating the shuffle phase in a MapRe-
duce job. Each server sends packets to N − 1 servers, and
receives packets from N − 1 servers. All packets are routed
on shortest paths using the multi-hop routing protocol. To
keep the experiment simple we do not use a flow control
protocol, but instead calculate the expected throughput per
server, given N servers, and then have each server gener-
ate packets at that rate. In the experiment we measure the
achieved throughput per-server, which includes only packets
delivered to the server, not packets forwarded by the server.

Figure 5(a) shows the expected and achieved throughput
per server as we scale the number of servers. The achieved
and expected results are close and, as N increases, the ex-
pected throughput drops. At 27 servers the throughput is
2.7 Gbps, at 512 servers this has dropped to 1 Gbps and at
4,096 servers this is 500 Mbps. Recall that in a traditional
data center this would represent an over-subscription rate
of only 1:2 at 4,096 and full bisection bandwidth at 512 (1:1
over-subscription). At core routers over-subscription is nor-
mally much higher, 1:20 is not unusual and can be as high
as 1:240 [19], and 1:4 at a rack level is considered good.

4.2.4 Server failure sensitivity
So far we have not considered the impact of server and

link failures. Figure 5(b) shows the median throughput per
server with 512 servers using the same all-to-all traffic pat-
tern used in the previous experiment, when up to 20% of
the servers are failed. Failed servers are selected randomly.
The results show that the throughput drops linearly with

the number of failures. When 20% of the servers have failed
throughput has dropped by 38.77%.

4.2.5 Maintaining keyspace consistency
The final experiment in this benchmarking section evalu-

ates the keyspace consistency. We run an experiment on the
simulator using 512 servers, and we induced server churn.
The churn rate represents the number of servers that join
and fail per second. The inter-failure times are selected
randomly from an exponential distribution with a mean of
1/(failure rate), where the failure rate is (churn rate)/2.
When a server fails, after a failure duration period, it rejoins
the CamCube. The failure duration is set as a function of
a target fraction of servers to have failed at any point in
time and in these experiments this was set to 10% of the
servers failed. The experiment runs for 10 minutes of sim-
ulated time. Every active server generates packets destined
to a random key at a rate of 1,000 per second. All packet
deliveries and drops are recorded. We use an oracle, which
has global knowledge, to determine if a packet has been cor-
rectly delivered to the server responsible for the key (e.g.
the key root server).

Figure 5(c) shows the fraction of packets misdelivered and
dropped. Delivering a packet to the wrong server (misdeliv-
ered) is an issue with correctness, as the server will handle
the packet as though it was responsible for the key. Across
all experiments we had no misdelivered packets. Dropped
packets impact performance, as the source of the packet will
probably need to re-transmit the packet. Even at high churn
rates for a data center (two failures per second), the packet
drop rate is below 1%. For higher churn rates, the packet
drop rate increases up to 27.41% but these correspond to ex-
treme, unrealistic, scenarios in which on average 15 servers
would fail every second.

5. KEY-VALUE STORE
To show how to build an application on top of Cam-

CubeOS, we describe and evaluate on our testbed the im-
plementation of a key-value store. Key-value stores such as
Amazon Dynamo [15], Google BigTable [9] and Facebook
Haystack [6] are widely used and often represent the critical
component of a complex system. To achieve high perfor-
mance, we augmented our persistent key-value store service
with a caching service, similar to memcached [26], to cache
the results of popular queries.

In this section, we first distill the main design features of
the caching and the store service and then we evaluate the



performance of the two services combined against a similar
setup using a switch-based network.

5.1 Caching Service
Typically, distributed in-memory key-value caches have an

API that allows read, write and delete operations on key-
value pairs, with the key specified as a string and the value
as a byte array. For example in an image store the key could
be image:user3:picture.jpg, which encodes service, user
and image name.

We have implemented a distributed key-value cache that
exploits caching techniques from structured overlay appli-
cations to improve performance [32, 35]. In particular, the
string key is converted into a 160-bit key, memId, by taking
its SHA1 hash. The key-value pair is stored on the server
that is responsible for the key. Hashing ensures that the
memIds will be uniformly distributed across the keyspace.
On writes the value is simply routed, using key-based rout-
ing, to the root server for the memId where the value is
stored in memory. On a read the request is routed to the
root server, using key-based routing, which looks up the as-
sociated value and returns it or produces an error message.

To demonstrate the flexibility of CamCubeOS, we ex-
tended the basic cache to handle hot spots, which are not
supported in memcached. This is done by dynamically cre-
ating replicas of cached values on-demand, as done in many
structured overlay applications. We use a function that,
given a memId, generates k additional keys that are uni-
formly distributed in the keyspace. On reads, the lookup
source generates the k keys, and then selects the closest
in the keyspace from the k keys and memId. The read is
routed, using key-based routing, to this key. When a server,
C, receives the lookup and it is the destination, it checks if
the key-value pair is locally cached. In case of a cache miss,
if the server is not the root for memId, the key is routed to
memId. When the root for memId receives the read it sends
a response to C and records that C has a copy. When the
response is received by C, it is cached (so that future re-
quests for the same key can be handled locally) and routed
to the original server that performed the lookup request.

When a server is notified by the CamCubeOS API that
another server has failed it flushes all cached items for which
the failed server would be the root for the memId. If a new
value is associated with a key, then the root ensures all other
cached copied are flushed, by explicitly contacting servers it
knows requested copies of the key to cache.

This is an example of a service inducing locality, to limit
load skew caused by hot keys, and to reduce the average
lookup hop count. Having the k additional keys uniformly
distributed means that average number of hops traversed to
perform a lookup is lower.

5.2 Key-value Store Service
Our implementation of a key-value store maintains r repli-

cas of each value inserted. Each value is associated with a
160-bit objId, and a replica is stored on the r servers re-
turned by GetServersForKey (see Section 3.2). Therefore,
unlike in the key-value cache, the r replicas will be stored on
servers that will, under normal operation, be one-hop neigh-
bors in the network. If the server responsible for objId fails,
one of the r − 1 replicas will become the primary, and the
replica selected will be the one responsible for the keyspace
in which objId lies after the failure. The store is configurable

to use a disk-based or memory-based store for the key-value
pairs. By default we use r = 3. It supports versioning of key
values, and provides insertion, lookup, delete and a compare
and swap operation.

The key-value store is failure tolerant, leveraging the remap-
ping of keys to servers on failure. In the presence of failures,
the meta-data is immediately updated to reflect the failure,
but re-replication of data is delayed by t seconds, currently
t = 180, so that servers being rebooted do not generate
significant data migration. If a failed server rejoins after t
seconds, a recovery protocol updates the stale data on the
server in the background. This can involve the transfer of a
significant amount of data, and the key-value store is able to
continue to service read and write operations concurrently
with the recovery protocol.

The key-value store can be used with the key-value cache,
and normally, the memId = objId. The cache service is
optimized so that, if it is caching items that are stored in
the key-value store, it does not locally duplicate the storage.

5.3 Evaluation
In order to evaluate the performance of the key-value store

and memory cache, we implemented a simple image store on
top of them. Images are stored in a disk-backed key-value
store using three-way replication. External clients can insert
images into the store, which also causes a small thumbnail
image to be automatically generated and inserted into the
memory cache. Clients outside the CamCube can lookup
the original or thumbnail image. Images and thumbnails are
associated with a unique 160-bit key. Similar image stores
underpin many social networking-like applications.

In order to generate a workload to drive the experiments
we attached ten additional servers to the switch used by
CamCube (the load generators). Each load generator has
a single 1 Gbps link to the switch, therefore supporting an
aggregate throughput of 10 Gbps. Each load generator can
issue up to 15 concurrent requests, providing an aggregate
peak load of 150 concurrent requests. Whenever a request
is satisfied a new request is immediately generated, and a
request can be an image insertion or lookup. All CamCube
servers are front-end servers (FEs) that accept incoming
TCP connections from the load generators. Load genera-
tors randomly select a FE and send a request to it.

We compare against a switch-based configuration, inspired
by traditional cluster architectures, in which servers commu-
nicate only through the switch, using a standard TCP/IP
network stack. In this configuration, each server uses only
1 Gbps link. The reason is that in a multi-tier tree net-
work topology, adding a second network interface to each
server increases the bandwidth over-subscription. Maintain-
ing the bandwidth over-subscription requires the uplink ca-
pacity from the top of rack switch to be doubled (as well
as the capacity of aggregation/core switches). This would
be expensive. Without doing this, the increased bandwidth
within the rack would only help in-rack communication, not
across racks. This would provide no benefit for workloads
like MapReduce. We therefore decided, as has prior work,
e.g., [3, 21, 22], to keep the currently used network topol-
ogy, without increasing the number of links per server. To
provide a fair comparison, we created a shim that allowed
the image store to use TCP for communication. In this
way, the same core key-value store code is used in the two
configurations and just the communication layer is different.



0

1

2

3

4

5

6

0 25 50 75 100 125 150

In
se

rt
 t

h
ro

u
gh

p
u

t 
(G

b
p

s)

Concurrent insert requests

CamCubeOS (no disk)
CamCubeOS (disk)
switch (no disk)
switch (disk)

(a) Insert throughput.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0 25 50 75 100 125 150

Lo
o

ku
p

 r
at

e
 (

re
q

s/
s)

Concurrent lookup requests

CamCubeOS
switch
CamCubeOS (no cache)

(b) Lookup requests per second.

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

In
se

rt
 t

h
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

(c) Insert throughput when failing a
server every 10 s (dotted lines indicate
the time of each failure).

Figure 6: Image store performance for insertion and lookup workloads.

We present results for two simple workloads: an insertion
workload where all requests are to insert an image, and a
lookup workload. For the insertion workload the load gen-
erators have 233 JPEG image files, cached in memory, with
an average size of 1.47 MB and the minimum and maximum
size of 0.50 MB and 2.63 MB, respectively. A unique key
is generated per insertion and an image selected at random.
For the lookup workload 23,300 images are inserted, and
we then generate requests for thumbnail images, selecting
uniformly at random from the set of images inserted.

Figure 6(a) shows the aggregate insertion throughput at
the load generators versus the number of concurrent inser-
tion requests, varied from 15 to 150. We show the results for
the TCP switch-based version (switch) and CamCubeOS.
We found that for the CamCubeOS version the bottleneck
in performance was the low disk I/O rate and, hence, we
show performance with and without the disk write (labeled
disk and no disk, respectively). We use only a single disk
per server, and adding further disks would increase the disk
bandwidth rates per server to the point where they were not
the bottleneck. With and without disk writes enabled, the
CamCubeOS implementation outperforms the switch-based
version. At 150 concurrent requests, the insert throughput
achieved by CamCubeOS is 1.31 times (disk) and 1.93 times
(no disk) higher than the switch-based version. The reason
is twofold. First, in the switch-based version, the server up-
link bandwidth is used for external and internal traffic while
for CamCubeOS two distinct networks are used. Second, as
explained in Section 3.2, CamCubeOS ensures that, under
normal operation, the secondary replicas are one-hop neigh-
bors of the primary replica. This means that the primary
replica can use two distinct links to copy the data to the
secondary replicas. In contrast, in the switch-based version
the traffic to the secondary replicas is sent through the same
single uplink that is also handling the external traffic, which
significantly reduces the overall throughput.

Figure 6(b) shows the achieved lookup rate in requests per
second versus the number of concurrent thumbnail lookup
requests. The thumbnails are retrieved from the in-memory
cache service, and are on average 3.55 KB in size. To under-
stand the impact of the distributed key-value cache, we run
two configurations of the image store on CamCubeOS, one
using the key-value store only (disabled cache) and one using
also the distributed key-value cache. When running without
the cache, the CamCubeOS version achieves a slightly lower
rate of lookup requests per second than the switch-based
version. However, if cache is enabled, the CamCubeOS ver-

sion is able to scale linearly with the number of concurrent
requests and sustain the full load of the 10 generators. The
reason is that caching exploits locality and reduces latency
by decreasing the hop count of each lookup request. At 150
concurrent requests, the median latency for CamCubeOS
with distributed cache is 0.83 ms and the 95th percentile is
1.70 ms (respectively 0.97 ms and 2.13 ms with the cache
disabled) while the switched based implementation has a
median latency of 0.95 ms and a 95th percentile of 2.22 ms.

We also measured the CPU utilization for all CamCube
servers. Across all insert workloads, the median CPU uti-
lization among all servers is always lower than 33% and
the 95th percentile is always lower than 77% (respectively
16% and 19% for the lookup workloads). This shows that,
although all CamCube traffic is being routed hop-by-hop
through the servers, the CPU is not the bottleneck.

Last, to evaluate the impact of failures when running on
CamCubeOS, we ran an experiment in which we perma-
nently failed 9 randomly selected servers, one every 10 s. We
used the insert workload as this is the most critical for our
system because it is both computationally and bandwidth
intensive. We disabled disk writes and we generated a load
of 150 concurrent requests. In Figure 6(c), we plot the insert
throughput (one second moving average) versus the experi-
ment time. We let the system run for 50 s to reach a steady
state and then we started failing servers. Results show that
server failures have small impact on the insert throughput:
after 9 servers have been removed from the system, the in-
sert throughput is only 38.85% lower. The reason is that,
as explained in Section 3.2, the load of the failed server is
evenly distributed across its one-hop neighbors and, hence,
the impact of a failure is minimized. Also, the availability
of multiple paths partly compensate for the loss of the links
attached to the failed servers.

5.4 Source Code Size
CamCubeOS is designed to provide an easy platform on

which to design and implement services. It is very difficult to
quantify this, but as an indication, we counted the number
of lines code for our key-value store (counting semi-colons).
The distributed key-value cache service, including its ability
to handle hot spots by exploiting physical locality, and the
persistent key-value store required only 1,335 lines of C# in
total. In contrast memcached version 1.4.5, which does not
provide support for replication nor hot spots, is written in
4,671 lines of C. The point-to-point or point-to-key reliable
transport service used by the key-value store is 569 lines of
C#, respectively. Finally, the image store application is only



151 lines of C#, of which the majority is to implement front
end server functionality, as most of the other functionality is
achieved using the key-value store and the distributed key-
value cache service.

6. BUILDING SERVICES ON CamCubeOS
Many of the applications running in modern data cen-

ter clusters are key-based and adopt the so-called partition-
aggregate model [4]. These include key-value stores, e.g., [15,
24,26], large-scale data analytics platforms such as MapRe-
duce [42] and Dryad/DryadLINQ [23,40] as well as real time
stream processing and web applications, e.g., [7, 43,48].

These applications represent a great match for CamCubeOS
as they can naturally leverage its key-based API and its
efficient support for custom forwarding and arbitrary pro-
cessing of packets on path rather than relying on inefficient,
application-level overlay networks.

In the previous section, we demonstrated the benefits of
CamCubeOS in the context of the key-value store applica-
tion. In this section, we provide further examples of its
flexibility. First, as an example of custom forwarding, we
report on the design and evaluation of a file distribution
service. Next, we illustrate the benefits of in-network pro-
cessing by briefly discussing the design and implementation
of Camdoop. Finally, to show the support for legacy ap-
plications, we discuss the TCP/IP service, which enables
running existing unmodified TCP/IP applications on top of
CamCubeOS.

6.1 File Distribution Service
The file distribution service allows to transmit a file to

an arbitrary subset of CamCube servers using a multicast
tree. The key-based API offered by CamCubeOS greatly
simplifies this task. The tree is built using techniques similar
to those used in prior work on building multicast trees on
structured overlays [8]. The tree vertexes are represented by
keys in the keyspace and parent and children are chosen such
that the edges of the trees map onto a single link. Key-based
routing is used to route packets from vertex to vertex.

Traditionally, application-level multicast are inefficient
due to the mismatch between the physical and the logical
topology, which causes link sharing (multiple logical links
mapped to the same physical link) and path stretch (a sin-
gle logical link is mapped to multiple physical links). The
CamCubeOS API, instead, exposes the key locality to the
developers and makes it easier to ensure that, when there
are no failures, there is a one-to-one correlation between the
next hop in the keyspace and a link in the physical topology.
This allows the full 1 Gbps per server to be achieved.

Building a single distribution tree limits the throughput
to the data rate of a single link, i.e., 1 Gbps. In order to
increase throughput the service builds six disjoint trees, al-
lowing all six links per server to be used. Without failures
this enables a file distribution rate of 6 Gbps. In general, if
a server is distributing a file to the N − 1 other servers in
the CamCube then 6(N − 1) (unidirectional) links will be
utilized, with each link being traversed by a single tree.

This further shows the benefits of knowing the topology
and control the routing. However, one of the main benefits of
the key-based abstraction supported by CamCubeOS is that
it minimizes the effort of maintaining the tree connected in
the presence of failures. When a server fails, then the key-
based routing will ensure that packets are still delivered to

Throughput (Gbps)
Single instance 5.662

Three concurrent instances 1.852 1.854 1.848

Table 1: Minimum per-member throughput for mul-
ticast with a single and three concurrent instances.

the vertex in the keyspace, but the vertex will be mapped
to a different server. This means that the packets for that
edge will now traverse one or more physical links. If there
are multiple paths available, these will be exploited.

6.1.1 Evaluation
To evaluate the performance of this service, we multicast

a 750 MB file to a subset of the servers. In the experiments,
we measure the achieved throughput by determining the
time from when the first packet is sent to when each group
member has successfully received the entire file (including
any time required for re-transmissions due to packet loss).
We then divide 750 MB by the elapsed time to determine
the multicast throughput in Gbps. To ensure bandwidth is
the bottleneck resource, the file is cached in memory on the
source, and the group members store the file in memory.

The link-level queue management provided by CamCubeOS
allows the per-link bandwidth to be efficiently shared across
competing services. To demonstrate this, we also ran multi-
ple instances of the file distribution service concurrently and
we measured the throughput achieved by each.

Table 1 compares the minimum throughput per mem-
ber when running the service in isolation and when run-
ning three instances of the file distribution service concur-
rently, each distributing a 750 MB file to 26 servers. The
first observation is that when running in isolation the multi-
cast service achieves a throughput close to the theoretically
maximum achievable of 6 Gbps. We also ran with group
sizes of 1, 6, and 13 members and obtained similar results,
but we omit these for space reasons. In a traditional data
center files can be distributed using unicast, IP multicast
or application-level multicast. If the servers have 1 Gbps
links to the ToR switch, as is normal, this will be the upper
throughput bound for any of these approaches.

The results also show that when running three concurrent
instances the bandwidth is split evenly between the three
instances. Each instance achieves approximately one third
(1.9 Gbps) of the throughput achieved by a single instance.
This demonstrates that CamCubeOS ensures fair-sharing of
the bandwidth across multiple services. It would be trivial
to configure weighted-sharing of links.

6.2 Large-scale Data Analytics
For completeness, we briefly report on Camdoop, a Cam-

Cube service to run MapReduce jobs. We extensively de-
scribe its design and evaluation in [10]. Here, instead, we
focus on how it benefited from the CamCubeOS API.

MapReduce-like systems such as Apache Hadoop [42] and
Microsoft Dryad [23, 40] are used daily by large-scale com-
panies as well as small and medium businesses to process
large amount of data. These systems typically operate in a
partition-aggregate fashion. Input data is partitioned across
multiple servers and locally processed. These intermediate
results are then merged and aggregated together. These sys-
tems significantly stress network resources, due to the large
amount of data that needs to be shipped across the network
during the aggregation phase.



A common property of MapReduce-like jobs is that the
output size is often a small fraction of the input size, due to
the high degree of aggregation occurring during the process.
We leveraged this property in Camdoop by performing par-
tial aggregation of packets on path. This drastically reduces
the traffic (and, hence, the job running time) because at each
hop, only a fraction of the data received is forwarded. This
enables achieving a speed-up of up to two orders of magni-
tude compared to Hadoop and Dryad/DryadLINQ [10].

CamCubeOS greatly simplified the implementation of Cam-
doop. Camdoop uses six aggregation disjoint trees, built in
a way similar to the file distribution service. Due to the
ability of CamCubeOS to intercept packets on path, the
Camdoop service can easily receive the packets, aggregate
their content in a new packet and forward it to the upstream
server. Since each vertex is represented by a key, little effort
is required to deal with fault tolerance because we lever-
aged the CamCubeOS key-based routing to keep the tree
connected in the presence of link or server failures.

We used the key-based API also to map tasks to servers,
using the task ID as the key. In case of failure, tasks are
re-assigned using the re-mapping scheme described in Sec-
tion 3.2. This ensures that tasks get re-scheduled on neigh-
boring servers, thus preserving the tree locality.

6.3 Legacy Applications
Although CamCubeOS has been designed to efficiently

run key-based services, it can also support generic work-
loads, including legacy TCP/IP applications. To support
legacy applications we have created a TCP/IP service that
enables running unmodified TCP/IP applications on Cam-
CubeOS. To achieve this, we bound the TCP/IP stack to
a virtual Ethernet interface. All packets sent to this in-
terface, are intercepted and delivered to the CamCubeOS
runtime, which is also able to inject packets into the bottom
of the TCP/IP stack. The TCP/IP service encapsulates and
tunnels the intercepted IP packets across the CamCube to
the destination server, with the exception of ARP requests.
These are spoofed, and a MAC address generated that en-
codes the destination. Applications can use the standard
TCP/IP stack and socket API and are unaware that they
are running on top of a 3D torus, which is presented as a
single layer 2 IP network.

The 3D torus introduces multi-path, and when TCP/IP
tunneling this is a challenge. It increases the aggregate
throughput between servers, and provides a high resilience
to failures, but causes out of order packet delivery. Tradi-
tionally, TCP handles out of order packet delivery badly,
and it leads to throughput collapse which we also observed.
Making multi-path TCP work is a current active area of re-
search [31]. The TCP/IP service uses small buffers at the
destination, which allows the TCP/IP service to reorder the
packets of each flow.

6.3.1 Evaluation
To understand the performance of running TCP/IP ap-

plications on CamCubeOS, we ran an experiment in which
every server simultaneously transferred 1 GB of data to each
of the other 26 servers using TCP. This creates an all-to-all
traffic pattern, similar to the one generated by the MapRe-
duce shuffle phase. We obtained a median aggregate TCP
inbound throughput of 1.49 Gbps per server. This is higher
than the maximum throughput achievable in a conventional

cluster where servers have 1 Gbps uplinks to the switch.
However, the maximum throughput achievable is 2.7 Gbps,
but out of order packet delivery induced by multi-path limits
the throughput achieved.

7. RELATED WORK
Torus-based fabric interconnects have been very popular

in the High Performance Computing (HPC) and have re-
cently started being deployed also in data center clusters,
using proprietary technologies, e.g., SeaMicro Freedom fab-
ric [47], as well as open industry standards such as Hyper-
Transport [44], a consortium including, among others, AMD,
Broadcom, Cisco, Dell, HP, NVIDIA, Oracle, and Xilinx.

Compared to existing switched-based networks, these so-
lutions enable reducing capital and operational costs while
delivering higher throughput [49]. These systems, however,
still rely on traditional networking stacks like TCP/IP or
MPI, which completely hide the topology and provide an
end-to-end abstraction. This makes it impossible to perform
efficient in-network packet processing, which, as we demon-
strated in this paper, can significantly improve performance.
For instance, the IBM Project Kittyhawk [5] proposes using
the BlueGene/P supercomputer in a data center, and then
runs unmodified TCP/IP applications, by making the 3D
torus topology appear as a flat layer 2 IP network, as does
our TCP/IP service. In contrast, CamCubeOS explicitly
exposes the topology to allow services to exploit it.

Another key difference between CamCubeOS and main-
stream networking stacks is that CamCubeOS natively sup-
ports a key-based API. Many of the applications running in
clusters are key-based, e.g., [15,24,26]. CamCubeOS makes
it easier to implement these applications, because it removes
the burdens of managing the key space and ensuring consis-
tency in the presence of failures. HPC clusters usually do not
handle failures, e.g. BlueGene/L can tolerate three failed
links [30], and indeed they use routing protocols that do not
necessarily converge with link failure [13,18,39]. Failures are
handled by stopping the system and restarting it [17,27]. In
contrast, CamCubeOS uses key-based routing to mask fail-
ures and simplify failure recovery.

In the networking community there have been several pro-
posals for new networking topologies for the data center, in-
cluding direct-connect or hybrid ones, e.g., [21, 22, 37]. The
goal of these proposals is to increase the bisection band-
width, often motivated by MapReduce-like workloads, but
they still assume that TCP/IP is used on top. CamCubeOS
challenges this view and shows that these new topologies
provide a great opportunity to rethink established practices
in networking in order to achieve high performance and re-
duce development complexity.

8. CONCLUSIONS
CamCubeOS explores the question: are the current com-

munication abstractions for clusters, derived from network-
ing principles used in enterprise networks and the Internet,
the best? Based on the observation that many clusters run
key-based applications and the increasing availability of 3D
torus fabric interconnects, CamCubeOS is designed from the
ground up to support developing and running key-based ser-
vices. It represents a very different design point from tradi-
tional data centers, but the results show that it is feasible
and efficient.



Acknowledgements. We thank Thomas Zahn for his
contribution to an early version of CamCubeOS, and the
anonymous reviewers and our shepherd, Prasenjit Sarkar,
for their insightful feedback and advice.

9. REFERENCES
[1] Abu-Libdeh, H., Costa, P., Rowstron, A., O’Shea, G.,

and Donnelly, A. Symbiotic Routing in Future Data
Centers. In SIGCOMM (2010).

[2] Adiga, N. R., Blumrich, M. A., Chen, D., Coteus, P.,
Gara, A., Giampapa, M. E., Heidelberger, P., Singh,
S., Steinmacher-Burow, B. D., Takken, T., Tsao, M.,
and Vranas, P. Blue Gene/L torus interconnection
network. IBM Journal of Research and Development 49, 2
(2005).

[3] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable,
commodity data center network architecture. In
SIGCOMM (2008).

[4] Alizadeh, M., Greenberg, A. G., Maltz, D. A.,
Padhye, J., Patel, P., Prabhakar, B., Sengupta, S.,
and Sridharan, M. Data center TCP (DCTCP). In
SIGCOMM (2010).

[5] Appavoo, J., Uhlig, V., and Waterland, A. Project
Kittyhawk: building a global-scale computer: Blue Gene/P
as a generic computing platform. OSR 42, 1 (2008).

[6] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and
Vajgel, P. Finding a Needle in Haystack: Facebook’s
Photo Storage. In Usenix OSDI (2010).

[7] Borthakur, D., Gray, J., Sarma, J. S.,
Muthukkaruppan, K., Spiegelberg, N., Kuang, H.,
Ranganathan, K., Molkov, D., Menon, A., Rash, S.,
Schmidt, R., and Aiyer, A. Apache Hadoop Goes
Realtime at Facebook. In SIGMOD (2011).

[8] Castro, M., Druschel, P., Kermarrec, A.-M., and
Rowstron, A. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE JSAC 20,
8 (2002).

[9] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., Chandra, T., Fikes, A.,
and Gruber, R. E. Bigtable: A Distributed Storage
System for Structured Data. In OSDI (2006).

[10] Costa, P., Donnelly, A., Rowstron, A., and O’Shea,
G. Camdoop: Exploiting In-network Aggregation for Big
Data Applications. In NSDI (2012).

[11] Costa, P., Zahn, T., Rowstron, A., O’Shea, G., and
Schubert, S. Why Should We Integrate Services, Servers,
and Networking in a Data Center? In WREN (2009).

[12] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J.,
and Stoica, I. Towards a Common API for Structured
Peer-to-Peer Overlays. In IPTPS (2003).

[13] Dally, W. J., and Seitz, C. L. Deadlock-free message
routing in multiprocessor interconnection networks. IEEE
ToC 36, 5 (1987).

[14] Dean, J., and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI (2004).

[15] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. Dynamo: Amazon’s
Highly Available Key-value Store. In SOSP (2007).

[16] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G.,
Fall, K., Iannaccone, G., Knies, A., Manesh, M., and
Ratnasamy, S. Routebricks: Exploiting parallelism to
scale software routers. In SOSP (2009).

[17] Duato, J. A Theory of Fault-Tolerant Routing in
Wormhole Networks. IEEE TPDS 8, 8 (1997).

[18] Glass, C. J., and Ni, L. M. The turn model for adaptive
routing. SIGARCH Comput. Archit. News 20, 2 (1992).

[19] Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S.,
Kim, C., Lahiri, P., Maltz, D. A., Patel, P., and
Sengupta, S. VL2: A Scalable and Flexible Data Center
Network. In SIGCOMM (2009).

[20] Gummadi, K. P., Gummadi, R., Gribble, S. D.,
Ratnasamy, S., Shenker, S., and Stoica, I. The impact

of DHT routing geometry on resilience and proximity. In
SIGCOMM (2003).

[21] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y.,
Tian, C., Zhang, Y., and Lu, S. BCube: A High
Performance, Server-centric Network Architecture for
Modular Data Centers. In SIGCOMM (2009).

[22] Guo, C., Wu, H., Tan, K., Shiy, L., Zhang, Y., and
Luz, S. DCell: A Scalable and Fault-Tolerant Network
Structure for Data Centers. In SIGCOMM (2008).

[23] Isard, M., Budiu, M., Yu, Y., Birrell, A., and
Fetterly, D. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys (2007).

[24] Lakshman, A., and Malik, P. Cassandra: A Decentralized
Structured Storage System. OSR 44, 2 (2010).

[25] Morris, R., Kohler, E., Jannotti, J., and Kaashoek,
M. F. The Click modular router. In SOSP (1999).

[26] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M.,
Lee, H., Li, H. C., McElroy, R., Paleczny, M., Peek,
D., Saab, P., Stafford, D., Tung, T., and
Venkataramani, V. Scaling Memcached at Facebook. In
NSDI (2013).

[27] Nordbotten, N. A., Flich, J., Skeie, T., Gomez, M. E.,
Lopez, P., Robles, A., Duato, J., and Lysne, O. A
routing methodology for achieving fault tolerance in direct
networks. IEEE ToC 55, 4 (2006).

[28] Oran, D. OSI IS-IS Intra-domain Routing Protocol. IETF
RFC 1142.

[29] Parhami, B. Introduction to Parallel Processing:
Algorithms and Architectures. Kluwer Publishers, 1999.

[30] Puente, V., and Gregorio, J. A. Immucube: Scalable
Fault-Tolerant Routing for k-ary n-cube Networks. IEEE
TPDS 18, 6 (2007).

[31] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda,
M., Duchene, F., Bonaventure, O., and Handley, M.
How Hard Can It Be? Designing and implementing a
deployable Multipath TCP. In NSDI (2012).

[32] Ramasubramanian, V., and Sirer, E. G. Beehive: O(1)
lookup performance for power-law query distributions in
peer-to-peer overlays. In NSDI (2004).

[33] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
and Shenker, S. A Scalable Content-addressable Network.
In Proceedings of SIGCOMM (2001).

[34] Rowstron, A., and Druschel, P. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Middleware (2001).

[35] Rowstron, A., and Druschel, P. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In SOSP (2001).

[36] Scott, S. L., and Thorson, G. Optimized Routing in the
Cray T3D. In PCRCW (1994).

[37] Shin, J.-Y., Wong, B., and Sirer, E. G. Small-world
Datacenters. In SOCC (2011).

[38] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and
Balakrishnan, H. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM (2001).

[39] Valiant, L. G., and Brebner, G. J. Universal schemes
for parallel communication. In STOC (1981).

[40] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Úlfar
Erlingsson, Gunda, P. K., and Currey, J. DryadLINQ:
A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language. In OSDI (2008).

[41] AMD Completes Acquisition of SeaMicro.
http://bit.ly/OuOaHm.

[42] Apache Hadoop. http://hadoop.apache.org/.

[43] Google Distribution of Requests . http://bit.ly/hUTaVQ.

[44] HyperTransport Consortium.
http://www.hypertransport.org.

[45] Intel acquires Cray Interconnect. http://intel.ly/I8VIAR.

[46] SeaMicro SM10000-XE. http://bit.ly/KlIyAp.

[47] SeaMicro Technology Overview. http://bit.ly/MAwJ4S.

[48] Storm. http://storm-project.net.

[49] Why Torus-Based Clusters? http://bit.ly/MBuGOE.


