
PASTRY

Please do not cite this document.
The information contained in this document is available in [5] and [2].

Version 1.0

1 Introduction

In this note we describe the current design of Pastry, a
peer-to-peer location and routing substrate upon which
Scribe was built. Pastry forms a robust, self-organizing
overlay network in the Internet. Any Internet-connected
host that runs the Pastry software and has proper creden-
tials can participate in the overlay network.

There have been three primary papers written talking
about different aspects of Pastry:

In [5] the original design of Pastry was described. Since
this paper was published we have removed the neighbor-
hood set, and simplified the joining algorithm [2]. We
have also examined how to make Pastry resilient to fail-
ure and attacks [1].

2 Pastry

Each Pastry node has a unique, 128-bit nodeId. The set
of existing nodeIds is uniformly distributed; this can be
achieved, for instance, by basing the nodeId on a secure
hash of the node’s public key or IP address. Given a mes-
sage and a key, Pastry reliably routes the message to the
Pastry node with the nodeId that is numerically closest to
the key, among all live Pastry nodes. Assuming a Pastry
network consisting of N nodes, Pastry can route to any
node in less than dlog2bNe steps on average (b is a config-
uration parameter with typical value 4). With concurrent
node failures, eventual delivery is guaranteed unless l=2
or more nodes with adjacent nodeIds fail simultaneously
(l is an even integer parameter with typical value 16).

The tables required in each Pastry node have only
(2b � 1) � dlog2bNe + l entries, where each entry maps
a nodeId to the associated node’s IP address. Moreover,

after a node failure or the arrival of a new node, the in-
variants in all affected routing tables can be restored by
exchanging O(log2bN) messages.

For the purposes of routing, nodeIds and keys are
thought of as a sequence of digits with base 2b. A node’s
routing table is organized into dlog2bNe rows with 2b� 1
entries each. The 2b�1 entries in row n of the routing ta-
ble each refer to a node whose nodeId matches the present
node’s nodeId in the first n digits, but whose n+1th digit
has one of the 2b�1 possible values other than the n+1th
digit in the present node’s id. The uniform distribution of
nodeIds ensures an even population of the nodeId space;
thus, only dlog2bNe levels are populated in the routing
table. Each entry in the routing table refers to one of po-
tentially many nodes whose nodeId have the appropriate
prefix. Among such nodes, the one closest to the present
node (according to a scalar proximity metric, such as the
round trip time) is chosen.

In addition to the routing table, each node maintains
IP addresses for the nodes in its leaf set, i.e., the set of
nodes with the l=2 numerically closest larger nodeIds, and
the l=2 nodes with numerically closest smaller nodeIds,
relative to the present node’s nodeId.

Figure 2 shows the path of an example message. In
each routing step, the current node normally forwards the
message to a node whose nodeId shares with the key a
prefix that is at least one digit (or b bits) longer than the
prefix that the key shares with the current nodeId. If no
such node is found in the routing table, the message is
forwarded to a node whose nodeId shares a prefix with the
key as long as the current node, but is numerically closer
to the key than the current nodeId. Such a node must exist
in the leaf set unless the nodeId of the current node or its
immediate neighbour is numerically closest to the key, or

1



0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

Figure 1: Routing table of a Pastry node with
nodeId 65a1x, b = 4. Digits are in base 16, x
represents an arbitrary suffix. The IP address
associated with each entry is not shown.

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

O 2128 - 1

Figure 2: Routing a message from node
65a1fcwith key d46a1c. The dots depict live
nodes in Pastry’s circular namespace.

l=2 adjacent nodes in the leaf set have failed concurrently.

2.1 Locality

Next, we discuss Pastry’s locality properties, i.e., the
properties of Pastry’s routes with respect to the proxim-
ity metric. The proximity metric is a scalar value that
reflects the “distance” between any pair of nodes, such as
the round trip time. It is assumed that a function exists
that allows each Pastry node to determine the “distance”
between itself and a node with a given IP address.

We limit our discussion to two of Pastry’s locality prop-
erties that are relevant to Scribe. The short routes prop-
erty concerns the total distance, in terms of the proximity
metric, that messages travel along Pastry routes. Recall
that each entry in the node routing tables is chosen to re-
fer to the nearest node, according to the proximity metric,
with the appropriate nodeId prefix. As a result, in each
step a message is routed to the nearest node with a longer
prefix match. Simulations performed on several network
topology models show that the average distance traveled
by a message is between 1.59 and 2.2 times the distance
between the source and destination in the underlying In-
ternet [2].

The route convergence property is concerned with the

distance traveled by two messages sent to the same key
before their routes converge. Simulations show that, given
our network topology model, the average distance trav-
eled by each of the two messages before their routes con-
verge is approximately equal to the distance between their
respective source nodes.

2.2 Node addition and failure

A key design issue in Pastry is how to efficiently and dy-
namically maintain the node state, i.e., the routing table,
leaf set and neighborhood sets, in the presence of node
failures, node recoveries, and new node arrivals.

Briefly, an arriving node with the newly chosen nodeId
X can initialize its state by contacting a nearby node A
(according to the proximity metric) and asking A to route
a special message using X as the key. This message is
routed to the existing node Z with nodeId numerically
closest to X1. X then obtains the leaf set from Z, and
the ith row of the routing table from the ith node encoun-
tered along the route from A to Z. One can show that
using this information, X can correctly initialize its state
and notify nodes that need to know of its arrival.

1In the exceedingly unlikely event that X and Z are equal, the new
node must obtain a new nodeId.

2



To handle node failures, neighboring nodes in the
nodeId space (which are aware of each other by virtue of
being in each other’s leaf set) periodically exchange keep-
alive messages. If a node is unresponsive for a period T , it
is presumed failed. All members of the failed node’s leaf
set are then notified and they update their leaf sets. Since
the leaf sets of nodes with adjacent nodeIds overlap, this
update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leaf sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are de-
scribed in [5, 2].

2.3 Pastry API

In this section, we briefly describe the application pro-
gramming interface (API) exported by Pastry to applica-
tions such as Scribe. The presented API is slightly simpli-
fied for clarity. Pastry exports the following operations:

nodeId = pastryInit(Credentials) causes the local node
to join an existing Pastry network (or start a new
one) and initialize all relevant state; returns the lo-
cal node’s nodeId. The credentials are provided by
the application and contain information needed to
authenticate the local node and to securely join the
Pastry network. A full discussion of Pastry’s secu-
rity model is beyond the scope of this paper.

route(msg,key) causes Pastry to route the given message
to the node with nodeId numerically closest to key,
among all live Pastry nodes.

send(msg,IP-addr) causes Pastry to send the given mes-
sage to the node with the specified IP address, if that
node is live. The message is received by that node
through the deliver method.

Applications layered on top of Pastry must export the fol-
lowing operations:

deliver(msg,key) called by Pastry when a message is re-
ceived and the local node’s nodeId is numerically
closest to key among all live nodes, or when a mes-
sage is received that was transmitted via send, using
the IP address of the local node.

forward(msg,key,nextId) called by Pastry just before a
message is forwarded to the node with nodeId = nex-
tId. The application may change the contents of the
message or the value of nextId. Setting the nextId to
NULL will terminate the message at the local node.

newLeafs(leafSet) called by Pastry whenever there is a
change in the leaf set. This provides the application
with an opportunity to adjust application-specific in-
variants based on the leaf set.

3 Applications

A number of applications have been built using Pastry,
including PAST, a persistent, global storage utility [3, 6],
Scribe, an application level-multicast system [7, 8], and a
cooperative web cache [4].

For more information please visit the Pastry web
site: www.research.microsoft.com\˜antr\
Pastry

References

[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Security for peer-to-peer routing overlays, 2002.
Submitted for publication.

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Topology-aware routing in structured peer-to-peer overlay
networks, 2002. Submitted for publication.

[3] P. Druschel and A. Rowstron. PAST: A large-scale, per-
sistent peer-to-peer storage utility. In Proc. HotOS VIII,
Schloss Elmau, Germany, May 2001.

[4] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decen-
tralized peer-to-peer web cache. In 12th ACM Symposium
on Principles of Distributed Computing (PODC 2002), July
2002.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. IFIP/ACM Middleware 2001, Heidelberg,
Germany, Nov. 2001.

[6] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proc. ACM SOSP’01, Banff, Canada, Oct.
2001.

3



[7] A. Rowstron, A.-M. Kermarrec, P. Druschel, and M. Castro.
Scribe: The design of a large-scale event notification infras-
tructure. In Proc. NGC’2001, London, UK, Nov. 2001.

[8] A. Rowstron, A.-M. Kermarrec, P. Druschel, and M. Castro.
SCRIBE: A large-scale and decentralized publish-subscribe
infrastructure, 2002. Accepted for Journal Selected
Areas in Communications. http://www.research.
microsoft.com/˜antr/SCRIBE/.

4


