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Abstract—Structured peer-to-peer overlay networks such as
CAN, Chord, Pastry, and Tapestry can be used to implement
Internet-scale application-level multicast. There are two general
approaches to accomplishing this: tree building and flooding.
This paper evaluates these two approaches using two different
types of structured overlay: 1) overlays which use a form of
generalized hypercube routing, e.g., Chord, Pastry and Tapestry,
and 2) overlays which use a numerical distance metric to route
through a Cartesian hyper-space, e.g., CAN. Pastry and CAN are
chosen as the representatives of each type of overlay.

To the best of our knowledge, this paper reports the first head-
to-head comparison of CAN-style versus Pastry-style overlay
networks, using multicast communication workloads running on
an identical simulation infrastructure. The two approaches to
multicast are independent of overlay network choice, and we
provide a comparison of flooding versus tree-based multicast
on both overlays. Results show that the tree-based approach
consistently outperforms the flooding approach. Finally, for tree-
based multicast, we show that Pastry provides better performance
than CAN.

I. INTRODUCTION

The lack of deployment of IP multicast has led to an
interest in application-level multicast, e.g., [1], [2], [3], [4],
[5]. A number of application-level multicast systems have
been proposed that are built using structured peer-to-peer
(p2p) overlays and that claim to support large numbers of
members in a highly scalable manner, e.g., Bayeux [3], CAN-
Multicast [4] and Scribe [5], [6].
Each uses a different p2p overlay and implements

application-level multicast using either flooding (CAN-
Multicast) or tree-building (Bayeux and Scribe). The p2p over-
lays provide similar high-level functionality, but use different
underlying algorithms. They fall into two categories: one using
a generalized hypercube routing algorithm (e.g., Chord [7],
Pastry [8] and Tapestry [9]), the other using a numerical
distance metric to guide routing through a Cartesian hyper-
space (CAN [10]).
The flooding approach to providing multicast creates a

separate overlay network per multicast group and leverages the
routing information already maintained by a group’s overlay to
broadcast messages within the overlay. The tree approach uses
a single overlay and builds a spanning tree for each group, on
which the multicast messages for the group are propagated.
There has been no attempt to compare the performance of

these approaches using different p2p overlays. In this paper we
examine the performance of both approaches, on both types
of p2p overlay. The same network simulator and workloads

have been used consistently for all experiments to enable a
fair comparison.
We chose Pastry and CAN as representatives for each cat-

egory of structured p2p overlay. We selected CAN-Multicast
and Scribe as the representatives for the flooding and the tree-
building approaches to providing application-level multicast.
The Scribe tree-building approach, based on reverse path for-
warding [11], provides better scalability than Bayeux, which
requires the root of the tree to handle group membership.
Our results show that the tree-building approach to multicast

achieves lower delay and overhead than flooding over per-
group overlays, regardless of the underlying p2p overlay. The
biggest disadvantage of per-group overlays is the cost of
constructing an overlay for each group. We also show that
multicast trees built using Pastry provide higher performance
than ones built using CAN.
Section II provides an overview of CAN and Pastry. Flood-

ing and tree-building are described in Section III. Section IV
explores configurations and results of detailed simulation
experiments to compare the performance of both approaches
using both CAN and Pastry. This comparison is summarized
in Section V. Related work is reported in Section VI. Section
VII concludes.

II. PEER-TO-PEER OVERLAY NETWORKS

Structured peer-to-peer overlays (e.g. CAN [10], Chord [7],
Pastry [8] and Tapestry [9]) provide efficient routing over an
abstract namespace. They assign a portion of the namespace
to each node and provide a primitive to send messages to
keys, which are points in the namespace. The overlay routes
a message to the node responsible for the portion of the
namespace that contains the destination key. There are two
main classes of p2p routing algorithms: Chord, Pastry, and
Tapestry use a divide-and-conquer approach to route in a ring;
and CAN routes in a Cartesian hyper-space by choosing a
neighboring node closer to the destination at each hop. The
different algorithms exploit network locality for efficiency with
varying degrees of success but they are all scalable, fault
resilient, and self-organizing.
In this section, we provide an overview of the p2p overlays

we have chosen for this study as representative of the two
main classes, namely CAN and Pastry.

A. CAN Overlay Network

The Content Addressable Network (CAN) [10] organizes
overlay nodes into a d-dimensional hypercube. Each node



takes ownership of a specific hyper-rectangle in the space,
such that the entire space is covered, and it maintains a routing
table with its immediately adjacent neighbors. Nodes join the
hypercube by routing a join message to a randomly chosen
point in the space, causing the node owning that region of
space to split its region into two, giving half to the new node
and retaining half for itself. A node routes a message by
forwarding it to a neighbor closer to the destination in the
CAN hyper-space. This process is repeated until the message
reaches the node whose region contains the destination key.
For a d-dimensional space partitioned into n equal zones, the
average routing path length is (d/4) d

√
n hops and individual

nodes maintain 2d neighbors, meaning that, with constant per-
node state, routing scales as O( d

√
n).

Beyond the basic CAN algorithm described above, CAN has
a number of tunable parameters that can be used to improve
its routing performance. While these were described in [10],
we summarize them here:
Dimensions: Dimensionality of the CAN hypercube.
Network-aware Routing: Ordinary CAN routing chooses

the neighbor closest to the destination in CAN space. Ratio-
based routing chooses the neighbor with the best ratio of
progress in CAN distance to network delay cost. We developed
a new greedy routing strategy, network-delay routing (NDR),
that chooses the neighbor with least network delay cost,
subject to the constraint that the message moves closer to the
destination on each hop.
Multiple Nodes per Zone: This parameter allows more

than one node to inhabit the same hyper-rectangle. CAN
delivers messages to any one of the zone inhabitants in an
anycast manner.
Uniform Partitioning: When a node joins the CAN net-

work, the node responsible for the destination key compares
the volume of its region with the volumes of neighboring
regions rather than immediately splitting its region in two.
If any neighboring zone is larger than the current zone, the
join message is forwarded to the neighbor. This test is applied
repeatedly, until a local maximum size is reached, at which
point that zone is split in two, with the new node obtaining
half the split zone.
Landmark-Based Placement: Landmark-based placement

causes nodes, at join time, to probe a set of well known ”land-
mark hosts”, estimating each of their network distances. Each
node measures its round-trip-time to the landmark machines,
and orders the landmarks from the nearest to the most distant
in the underlying network. Nodes with the same landmark
ordering are clustered into a bin. Rather than choosing a
random CAN address at which to join, the CAN space is
divided into evenly sized bins, and the CAN join address is
randomly chosen from within the bin area. The effect is that
nodes with the same landmark ordering end up closer to each
other in CAN space.
One of our earliest steps was to produce an independent

implementation of CAN for our simulator. To validate this
implementation we then set about reproducing the results
presented in the original CAN paper. In nearly all cases we
were able to reproduce these results within a few percent of

the original values.

B. Pastry Overlay Network

Pastry [8] uses a circular 128-bit namespace. It assigns to
each overlay node a nodeId chosen randomly with uniform
probability from the namespace. Given a message and a
destination key, Pastry routes the message to the node whose
nodeId is numerically closest to the key. The expected number
of hops is log2bN (where N is the number of nodes in
the overlay and b is a configuration parameter with typical
value 4). Eventual delivery is guaranteed unless �l/2� nodes
with adjacent nodeIds fail simultaneously (l is a configuration
parameter with value 16 in this paper).
For the purpose of routing, nodeIds and keys are interpreted

as a sequence of digits in base 2b. A node’s routing table
is organized into 128/b levels with 2b entries in each level.
The entry in column m at level n of a node p’s routing table
points to a node whose nodeId shares the first n digits with
p’s nodeId and whose n + 1th digit is m. The routing table
entry is left empty if no such node is known. Additionally,
each node maintains IP addresses for the nodes in its leaf set:
the set of l nodes that are numerically closest to the current
node, with l/2 being larger and l/2 being smaller than the
current node’s id.
The uniform distribution of nodeIds ensures an even popu-

lation of the nodeId space; only �log2bN� levels in the routing
table are populated on average. Additionally, only 2b−1 entries
per level are populated because one corresponds to the local
node. Thus, each node maintains only (2b−1)×�log2bN�+2l
entries on average. Moreover, after a node failure or the arrival
of a new node, the tables can be repaired by exchanging
O(log2bN) messages among the affected nodes.
At each routing step, a node normally forwards the message

to a node whose nodeId shares with the destination key a
prefix that is at least one digit (or b bits) longer than the
prefix that the key shares with the present node’s id. If no
such node is known, the message is forwarded to a node whose
nodeId shares a prefix with the key as long as the current node
but is numerically closer to the key than the present node’s
id. Such a node must be in the leaf set unless the message
has already arrived at the node responsible for the key or its
immediate neighbor. One of these nodes must be live unless
�l/2� adjacent nodes in the leaf set have failed simultaneously.
Pastry exploits network locality to reduce routing delays. It

measures the delay (RTT) to a small number of nodes when
building routing tables. For each routing table entry, it chooses
one of the closest nodes in the network topology whose nodeId
satisfies the constraints for that entry. Since the constraints are
stronger for the lower levels of the routing table, the average
IP delay of each Pastry hop increases exponentially until it
reaches the average delay between two nodes in the network.

III. OVERLAY-BASED APPLICATION-LEVEL MULTICAST

Two approaches have been taken to implementing
application-level multicast on peer-to-peer overlays: flooding
and tree building. Flooding leverages the information that



nodes already maintain for overlay routing to provide broad-
cast functionality. Therefore, if most nodes participating in
an existing overlay network are interested in receiving a
broadcast message this potentially provides a cheap way of
propagating it. However, for groups consisting of a small
subset of the overlay network’s membership, it is not efficient
to broadcast the message to the entire overlay network and
mini-overlay networks have to be separately constructed and
utilized instead. One advantage the flooding approach has is
that the only nodes participating in the dissemination of a
broadcast message are group members.
The alternative tree-based approach builds a tree for each

group instead of a separate overlay network. Multicast mes-
sages related to a group are propagated through its associated
forwarding tree. This form of application-level multicast is
leveraging the object location and routing properties of the
overlay network to create groups and join groups. The ap-
plication then creates and manages the tree and uses it to
propagate messages. There are several possible ways to build
such trees [3], [5].

A. Overlay-Per-Group Implementations

Multicasting by means of flooding to separate overlay net-
works for each group has certain features that are independent
of the choice of overlay network employed. In particular,
clients wishing to join a group must first find the overlay that
represents the group. To implement this lookup function in a
scalable manner requires a distributed name service. For our
experiments we implemented this functionality by means of
a separate global overlay network that is used to implement
a distributed hash table. Both CAN and Pastry support this
capability very naturally.

1) CAN Flooding: The broadcast algorithm we imple-
mented for CAN is based on the flooding algorithm described
in [4], with some significant modifications. The naive approach
to implement flooding on a CAN overlay network is for each
node that receives a message to forward that message to all
its neighbors. Nodes cache the sequence number of received
messages to filter duplicates. The CAN Multicast [4] study
presents a more efficient flooding algorithm that exploits the
structure of the CAN coordinate space to limit the directions
in which each node will forward the messages it receives. This
approach vastly reduces the number of duplicate messages.
We discovered and fixed two flaws in the published CAN

efficient flooding algorithm. The first flaw is a race condition
that can lead to certain nodes in the CAN overlay that never
receive the broadcast message. The second is an ambiguity
in the algorithm that leads to a larger number of duplicate
messages than specified. The details of our fixes to the efficient
flooding algorithm are beyond the scope of this paper and are
thoroughly described in [12].

2) Pastry Flooding: The Pastry broadcast algorithm uses
the entries in each node’s routing table to flood messages. A
node wishing to broadcast a message forwards copies to all the
nodes in its routing table and tags each copy with the level l of
the destination node in the routing table. When a node receives
a copy of the message tagged with l, it forwards copies to

all nodes in levels greater than l in its routing table. As
before, each copy is tagged with the level l′ of the destination
node. This is repeated until the nodes receiving copies of the
message have no other nodes to forward the message to.
At any stage a node may have missing entries in its routing

table. If a missing entry is detected at level l in domain d,
this may lie within the leafset of the node. If so, nothing
else is done; otherwise the message is routed using Pastry
to the midpoint of domain d at level l. The message is tagged
with level l and marked as a midpoint request. The node that
receives the midpoint request is the one with the numerically
closest nodeId. If the nodeId is within the requested domain, it
forwards the message to all entries in its routing table at levels
greater than l. If the nodeId is not within the domain but the
nodeId of a leafset node is, the message is forwarded to that
node. Otherwise, the message is a duplicate and is discarded.

B. Tree-Per-Group Implementations

As a representative example of tree-based multicast, we use
Scribe’s approach [5], [6]. Scribe is a generic application-level
multicast infrastructure originally implemented using Pastry.
Scribe uses reverse path forwarding [11] to build a multicast
tree per group, formed by the union of the overlay routes from
the group members to the root of the tree.
Each group is identified by a key called the groupId, for

example, a hash of the group’s textual name concatenated
with its creator name. The node responsible for the namespace
segment containing the groupId is the root of the tree.
To join a group, a node routes a message through the overlay

to the groupId. This message is routed towards the root of the
tree. Each node along the route checks whether it is already
in the tree. If it is, it registers the source node as a child
and does not forward the message any further. Otherwise, it
creates a children table for the group, adds the source node
as a child, and sends a join message for itself to the groupId.
Nodes with children in the tree are called forwarders, and may
not be members of the group.
Scribe scales well because of its decentralized algorithm. In

particular, randomization of overlay addresses ensures that the
tree is well balanced. The load to forward multicast messages
and handle membership changes is well distributed among the
group members. Additionally, Scribe provides a mechanism to
remove bottlenecks: should a node decide that the load on it
is too high, some of the children of this node can be made
grandchildren, by the overloaded node passing some of its
children to its other children. This is done in such a way to
minimize the impact on latency and link stress. This bottleneck
remover is described in [6].
Scribe may create trees that are deeper than necessary for

small groups. It is possible to collapse long paths in the tree by
removing nodes that are not members of the group and have
only one entry in the group’s children table. This mechanism
is described and evaluated in [6].
Scribe also tolerates both forwarder and root failures. How-

ever, a study of reliability properties is out of the scope of
this paper and more details about this and Scribe in general
are available in [6].



Whereas Scribe maps onto Pastry in a straight-forward
manner, it requires the addition of replicated state coordination
when implemented on top of CAN. This is because messages
routed with CAN will be directed to any single node that is a
cohabitant of the zone that the groupId is part of.

IV. EVALUATION

A. Experimental Setup

We used a simple packet-level, discrete event simulator to
evaluate the different approaches. The simulator counts the
number of packets sent over each physical link and assigns a
constant delay to each link. It does not model either queuing
delay or packet losses because modeling these would prevent
simulation of large networks.
The simulations ran on five network topologies with 5050

routers, which were generated using the Georgia Tech [13]
random graph generator according to the transit-stub model (as
described in [6]). The routers did not run the code to main-
tain the overlays and implement application-level multicast.
Instead, this code ran on 80000 end nodes that were randomly
assigned to routers in the core of each topology with uniform
probability. Each end system was directly attached by a LAN
link to its assigned router (as in [2]). We used different random
number generator seeds for each topology.
We used the routing policy weights generated by the Geor-

gia Tech random graph generator [13] to perform IP unicast
routing. IP multicast routing used a tree formed by the union
of the unicast routes from the source to each recipient. This is
similar to what could be obtained in our experimental setting
using protocols like Distance Vector Multicast Routing Pro-
tocol (DVMRP) [14]. To provide a conservative comparison,
we ignored messages required by the IP multicast protocols
to maintain the trees. The delay of each LAN link was 1ms
and the average delay of core links (computed by the graph
generator) was approximately 40ms.
We ran two sets of experiments. The first set ran with a

single multicast group and all the overlay nodes were members
of the group. These experiments provide a simple setting
to evaluate different ways to implement the overlays and
application-level multicast on top of them. In particular, we
evaluated tradeoffs between the amount of state maintained
by each overlay node and routing efficiency, and between
different ways of taking advantage of network locality to
improve routing performance.
The second set of experiments ran with a large number of

groups (1500) and with a wide range of membership sizes.
Since there are no obvious sources of real-world trace data to
drive these experiments, we adopted a Zipf-like distribution
for the number of members to each group. The number of
members of a group is defined by �Nr−1.25 + 0.5�, where r
is the rank of the group and N is the number of nodes. The
actual group members were selected using both a uniform
distribution and a distribution where group members were
likely to be close in the network topology. These allow
us to evaluate the ability of the different implementations
to concurrently support multiple applications with varying
requirements.

Both sets of experiments were divided in two phases: first all
group members subscribed to their groups, and then a message
was multicast to each group. To provide a fair comparison,
we were careful to ensure that each group contained the same
set of end nodes and that the sender was the same end node
in the experiments ran on different implementations. We also
ran each experiment five times using a different topology and
different random number generator seeds for each run. We
present the average of the results obtained in the five runs.

B. Evaluation Criteria

We used several metrics to evaluate the different application-
level multicast implementations. These metrics evaluate the
delay to deliver multicast messages, the load on the network,
and the load imposed on end nodes. The metrics are described
in more detail below.
Relative Delay Penalty. Using application-level multicast
increases the delay to deliver messages relative to IP multicast.
To evaluate this penalty, we measured the distribution of delays
to deliver a message to each member of a group using both
application-level and IP multicast. We compute two metrics
of delay penalty using these distributions: RMD is the ratio
between the maximum delay using application-level multicast
and the maximum delay using IP multicast, and RAD is
the ratio between the average delay using application-level
multicast and the average delay using IP multicast. These
metrics avoid the anomalies associated with the method used
to compute the delay penalty in [2].
Link Stress. Application-level multicast also increases the
load on the network relative to IP multicast. We evaluated
the load on the network using the link stress metric described
in [2]. We measured the stress of each directed link in the
network topology by counting the number of packets sent over
the link. The stress was measured both during the phases when
members join the group and when messages are multicast.
Node Stress. In application-level multicast, end nodes are
responsible for maintaining routing information and for for-
warding and duplicating packets whereas routers perform these
tasks in IP multicast. To evaluate the stress imposed by
application-level multicast on each node, we measured the
number of nodes in each node’s routing table and the number
of messages received by each node when members join the
groups. The first metric is both a proxy for the amount of
routing information maintained by each node, the cost of
maintaining that information, and the number of messages sent
by the node.
Duplicates. Some of the application-level multicast implemen-
tations that we evaluated generate duplicate messages that both
waste network resources and increase load on end nodes. We
measured the number of duplicates received by end nodes.

C. CAN Results

1) Parameters: CAN has a large number of parameters
that can be used to tune its performance. We performed an
extensive exploration of this parameter space attempting to
understand which combinations of parameters lead to the
best RAD values for unicast communication. We varied the



State Dimensions Nodes Per Uniform
(d) Zone (z) Partitioning

18 10 1 enabled
29 9 2 enabled
38 12 3 enabled
59 10 5 enabled
111 8 10 enabled

TABLE I

REPRESENTATIVE GOOD CONFIGURATIONS, AS A FUNCTION OF NEIGHBOR

STATE, FOR AN 80,000 NODE CAN.

following parameters during our exploration: the number of
dimensions; the number of nodes per zone; turning on and
off uniform partitioning; choosing either random or landmark-
based node assignment; and choosing a routing policy from
CAN distance, CAN ratio, or NDR. To allow direct compar-
isons between different CAN configurations, we measured the
average amount of neighbor state that each node maintains and
only compared instances of CAN that used similar amounts
of neighbor state. The importance of neighbor state is not the
actual memory overhead of neighbor lists, but the commu-
nication overhead that it represents. Our exploration of the
CAN parameter space and resulting conclusions are presented
in greater detail in [12].
Our primary conclusion is that the CAN parameter space

is difficult to navigate. Configurations that work well with
one state budget do not scale up or down in linear fash-
ion. Nonetheless, we can provide some general guidelines.
Enabling landmark-based topological assignment provides the
largest improvement in RAD out of all the CAN parameters.
Enabling uniform partitioning often provides a significant re-
duction in terms of the neighbor state overhead, especially for
the landmark-based assignment where nodes often end up clus-
tered close together in the CAN space. Furthermore, uniform
partitioning never causes RAD to become significantly worse.
The NDR routing metric appears to perform consistently better
than the other routing metrics. Increasing the number of nodes
per zone provides predictable improvements in RAD and the
neighbor state overhead increases linearly. As the number of
nodes in the system varies, the CAN parameters that perform
well also vary - especially the number of dimensions. Table I
lists a set of representative good configurations for an 80,000
node CAN at a variety of different state overheads.
For the CAN multicast experiments that follow, we use the

configurations listed in Table I. We enable uniform partitioning
in all cases, and we vary the routing metric (CAN distance,
NDR, or ratio-based) and the node assignment policy (RAND
or TOP). For the topological assignment (TOP) policy, we use
a set of 32 landmarks. This results in 30 different experimental
configurations of our CAN overlay network. We run each
of our application-level multicast implementations on each of
these variations of CAN.

2) Flooding-Based Results: In this section we explore the
behavior of flooding on CAN. We start by describing the
impact of the various parameters on delays. Figures 1 and 2
plot the delay penalty of flooding relative to IP. Both the ratio
between the maximum delays (RMD) and the ratio between
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Fig. 1. Relative delay penalty for CAN flooding with different values of d
and z.
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Fig. 2. Relative delay penalty for CAN flooding with and without topology-
aware optimizations using a d=10,z=5 CAN configuration.

the average delays (RAD) are shown.
Figure 1 plots the delay penalty of the “best” representative

CAN configurations at each routing table state size. The best
representative was considered to be one using landmark-based
assignment and the NDR routing metric.
Figure 2 shows the effect on delays of varying the routing

metric and the node assignment policy with the best CAN
configuration (d=10, z=5) from Figure 1. For flooding-based
multicast, all other CAN configurations showed the same
effects as are evident for this one. Several interesting things are
noticeable: we confirmed that the benefit of landmark-based
assignment translates over from unicast communications to
flooding-based communications. In all cases, landmark-based
assignment proved to dominate random address assignment.
Improvements of up to 40% were observed. In contrast, the
choice of routing metric did not have much effect. All variation
was under 10%.
For flooding-based multicast, the benefit to be gained from

increased amounts of routing table state is uneven. Increasing
the state from 59 to 111 actually yielded slightly poorer delay
penalty values, whereas increases up to 59 yielded better delay
penalty values. The difference between best and worst values
was just under 20%. The independence of delay penalty to
routing table state size is unsurprising when one considers that
the CAN flooding algorithm cannot take advantage of most of
the optimizations that CAN employs.
We also evaluated link stress results for both the subscrip-

tion and publication phases of multicasting. As with delay
penalty, landmark-based assignment yielded uniformly better
link stress numbers and the choice of routing metric did not
make a significant difference. Table II shows both maximum
and average link stress values only for the best representative
CAN configurations at each routing table state size.
The most noticeable feature in the table is that the link stress



Configuration d=10 d=9 d=12 d=10 d=8
z=1 z=2 z=3 z=5 z=10

State size 18 29 38 59 111

Joining phase
Max 91615 149341 197977 309212 416361
Average 154 183 219 281 431

Flooding phase
Max 1958 1595 1333 985 631
Average 3.49 3.27 2.93 2.73 2.69

TABLE II

LINK STRESS FOR FLOODING IN CAN.
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Fig. 3. Relative delay penalty for CAN tree-based multicast with different
values of d and z.

caused by having 80,000 members join a multicast group is
huge and grows significantly as a function of the amount of
routing table state the CAN maintains. In contrast, the link
stress caused when a multicast message is sent to 80,000 group
members is considerably smaller and drops as a function of
routing table state size.
The rise in link stress values as a function of routing table

state size during subscription is due to the increased neighbor
traffic that must occur when each group member joins the
CAN. The equivalent fall in values for the publication phase
can be understood as follows: maintenance of more neighbor
state implies that there are a greater number of routing paths
out of each node. This increases the chances that a given node
will employ all possible network links emanating from it when
forwarding a broadcast message.
Finally, we counted the number of duplicate messages

received by overlay nodes. With our improved flooding al-
gorithm we never saw more than a few duplicate messages
in any of our experimental runs. Many runs encountered no
duplicate messages at all.

3) Tree-Based Results: In this section we explore the
behavior of tree-based multicast over CAN. We start by
describing the impact of the various parameters on delays in
Figures 3 and 4.
Figure 3 shows the delay penalty for the “best” CAN con-

figurations varying the amount of routing table state. Although
we observe some benefit from increasing amounts of routing
table state, the benefit is moderate. The improvement from the
smallest to the largest configuration was 36%.
Figure 4 shows the effect on delays of using topology-aware

routing and topology-aware address assignment for the best
CAN configuration (d=8, z=10) from Figure 3. All other CAN
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Fig. 4. Relative delay penalty for CAN tree-based multicast with and without
topology-aware optimizations using a d=8,z=10 CAN configuration.

Configuration d=10 d=9 d=12 d=10 d=8
z=1 z=2 z=3 z=5 z=10

State size 18 29 38 59 111

Max 323 220 198 184 225
Average 1.69 1.49 1.42 1.37 1.36

TABLE III

LINK STRESS FOR CAN TREE-BASED MULTICAST.

configurations showed the same effects as this one.
As with the flooding-based results, we observed that

landmark-based assignment dominated random assignment.
Improvements of up to 30% were observed. However, unlike in
the flooding-based results, the choice of routing metric does
matter: routing based purely on CAN hyper-space distance
does noticeably worse than routing based on the NDR metric
or the ratio-based routing metric. Of the latter two routing
metrics the NDR metric consistently performed slightly better
than the ratio-based metric, as was the case for unicast.
Overall, we observe that tree-based multicast seems to

outperform flooding-based multicast on CAN by a factor of
two to three with respect to delay penalties.
Table III shows both maximum and average link stress

values for the best representative CAN configurations at each
routing table state size. Unlike with flooding-based multicast,
the link stresses during the subscription and publishing phases
are essentially the same and we show only the latter. Further-
more, whereas there is a noticeable difference in link stress
values for flooding-based multicast as the amount of routing
table state is increased, there is only a relatively minor change
in values for tree-based multicast.
As with delay penalty, landmark-based assignment yielded

uniformly better link stress numbers than did random assign-
ment. However, the improvement in link stress is far more
dramatic than the improvement for delay penalties. Typical
improvement for maximum link stress was about a factor of
6, while typical improvement for average link stress was about
a factor of 2 to 3. In contrast, choice of routing metric made
a small difference, with the NDR metric doing the best.
Finally, we examined the size of the forwarding tables that

tree-based multicast must maintain on each node and how
many nodes must act as forwarders for multicast messages.
Table IV shows the maximum number of entries seen on any
node as a function of routing table state size, and the number
of nodes having to act as forwarders as a function of routing



Configuration d=10 d=9 d=12 d=10 d=8
z=1 z=2 z=3 z=5 z=10

State size 18 29 38 59 111

Max number
of forwarding 19 26 32 49 87
entries on
any node
# of forwarder 43726 39384 34318 28101 22548
nodes

TABLE IV

CAN TREE-BASED MULTICAST FORWARDING STATISTICS.

table state size. As the size of the routing tables increases, we
see that individual nodes risk suffering a concomitant increase
in the maximum number of forwarding table entries they need
to support as well. At the same time, the number of nodes that
have to perform forwarding duties goes down. Thus, going to
larger CAN state configurations seems to concentrate more
load onto fewer nodes.
A similar node “concentration” effect was observed with

respect to the use of landmark-based address assignment.
Use of this feature results in an increase in the maximum
number of forwarding entries per node of about 20% compared
to random address assignment. But, as mentioned earlier,
employing landmark-based assignment dramatically reduces
link stress in the system. Thus employing landmark-based
assignment seems to trade a substantial decrease in link stress
on the system for a minor increase in node load across the
system. Furthermore, Scribe’s bottleneck remover can be used
to bound a node’s forwarding load. For example, we reran all
the experiments with the bottleneck remover and a bound of
32 forwarding entries. The bound was achieved with negligible
impact on link stress and delay.

D. Pastry Results

1) Parameters: We studied the impact of several Pastry
parameters on the performance of both implementations of
application-level multicast.
We varied the value b from 1 to 4. Recall that b is the

number of bits of the destination key that Pastry attempts to
match at each hop. A small value of b reduces the amount of
space used in routing tables at the expense of an increase on
the expected number of Pastry hops to reach a destination.
We also evaluated two orthogonal optimizations that take

advantage of topology information to improve routing per-
formance in Pastry: topology-aware routing table construction
(TART), and topology-aware nodeId assignment (TOP). TART
is similar to NDR in CAN but it builds the routing tables
such that they point to nearby nodes in the network topology
whereas NDR optimizes the choice of neighbor at each routing
hop but does not control the set of neighbors.
Pastry uses topology-aware routing table construction as

described in Section II-B: nodes probe each other to esti-
mate the delay between them and these topological distance
estimates are used to optimize routing tables to achieve a
low delay penalty. We ran experiments with and without
this optimization. For each slot in the routing table, Pastry
normally chooses a topologically close node whose nodeId
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Fig. 5. Relative delay penalty for Pastry flooding with different values of b.

satisfies the constraints for that slot. Without the optimization,
it chooses a random node with uniform probability from the
set that satisfies the constraints.
The current version of Pastry does not use topology-aware

nodeId assignment. NodeIds are assigned randomly with uni-
form probability from a 128-bit name space. This is important
for reliability because it ensures that the nodes in each leaf set
are randomly scattered over the network. Therefore, they are
more likely to fail independently. However, topology-aware
nodeId assignment could potentially improve performance.
To evaluate its benefits, we ran a version of Pastry where
nodes with numerically close nodeIds are topologically close.
We did this by assigning each node a name obtained by
concatenating the identifiers of its transit domain, the transit
node its stub attaches to, the stub its LAN attaches to, and the
actual stub node the LAN is attached to. Then, we sorted the
overlay nodes using their name and assigned random nodeIds
to each one such that the ordering of nodeIds matched the
ordering of names. We should note that this is not a practical
implementation because it uses global knowledge and assumes
a fixed population of overlay nodes. We use it to show that
even this near-perfect, topology-aware nodeId assignment has
significant problems that outweigh its benefits.
When we refer to Pastry without qualification, we mean the

version of Pastry with random nodeId assignment (RAND)
and with TART.

2) Flooding-Based Results: We evaluated the impact of
varying b and using topology-aware optimizations on the
performance of flooding on Pastry. We start by describing
the impact of the various parameters on delays. Figure 5
plots the delay penalty of flooding relative to IP for different
values of b. It shows that both the ratio between the maximum
delays (RMD) and the ratio between the average delays (RAD)
decrease when b increases. For example, RAD with b = 4 is
50% lower than with b = 1. This happens because increasing
the value of b decreases the number of Pastry hops, which is
approximately equal to log2b(N).
Figure 6 shows the effect on delays of using topology-aware

routing tables (TART) and topology-aware nodeId assignment
(TOP) with b = 4. It shows that both optimizations are
effective at reducing the delay penalty relative to the version
of pastry without topology-aware optimizations (Pastry with
RAND and without TART): they both reduce the RAD by a
factor of about 2 and combining them reduces the RAD by a
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Fig. 6. Relative delay penalty for Pastry flooding with and without topology-
aware optimizations for b = 4.

with TART without TART
RAND TOP RAND TOP

Max 6801.4 65.4 2119.0 61.0
Average 4.3 1.4 4.6 1.4

TABLE V

LINK STRESS FOR PASTRY FLOODING WITH AND WITHOUT

TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.

factor of almost 3.
We also evaluated the effect of the various parameters on

the link stress induced by flooding. Our results show that
increasing the value of b increases both the maximum and
average link stress but by a relatively small amount: the
average link stress with b = 4 is 16% higher than with b = 1.
This is expected because increasing b increases the number of
entries in each level of the routing table and, therefore, the
number of messages sent by each forwarding node.
Table V shows the impact of the topology aware optimiza-

tions on link stress. TOP reduces the average link stress by
more than a factor of 3 and the maximum link stress by more
than a factor of 30. TOP is very effective at reducing the link
stress because the assignment of nodeIds matches the network
hierarchy. The Pastry hops used by flooding form a spanning
tree rooted at the sender. At the top level, messages travel a
long IP (and namespace) distance but there is only a small
number of them. The number of messages increases exponen-
tially towards the leaves of the tree and these messages travel
increasingly shorter IP (and namespace) distances. Therefore,
most messages travel over a small number of links and the
resulting link stress is low.
On the other hand, TART reduces the average link stress

slightly but it increases the maximum link stress. The re-
duction in link stress is a result of the reduced number of
links traversed on average by each message. However, the IP
distance traversed by messages increases as one moves down
the spanning tree. Therefore, the link stress reduction is not as
significant as with TOP because most messages traverse a large
number of physical links. The maximum link stress increases
because the nodes that flood from the levels at the top of the
routing table (which are the ones that send the most messages)
are likely to be in the stub of the sender using TART. This
causes the link from the sender’s stub to its transit to have a
high link stress.
Table VI shows the routing state size, i.e., the average

b 1 2 3 4
State size 20.7 29.2 42.7 64.6
Duplicates 13.2 224.6 2201.6 12579.6

TABLE VI

NUMBER OF UNIQUE ENTRIES IN ROUTING TABLE AND LEAFSET, AND

NUMBER OF DUPLICATE MESSAGES.
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Fig. 7. Relative delay penalty for Pastry tree-based multicast for different
values of b.

number of unique nodes in a Pastry node’s routing table and
leaf set for different values of b. This number increases with b
as expected; it is approximately equal to (2b−1)log2b(N)+L′,
where L′ is the small number of nodes that are in Pastry’s leaf
set but not in the routing table. The average number of nodes
is less than 65 and the maximum number of nodes is only 79
even when b = 4. The topology-aware optimizations have no
measurable effect on these numbers.
Finally, we counted the number of duplicate messages re-

ceived by overlay nodes for different values of b. These results
appear in Table VI. The duplicates are due to missing entries in
Pastry routing tables. Since the probability of missing entries
increases with b, the number of duplicates also increases with
b. The number of duplicates with b = 4 is large (approximately
16%) but we can repair the routing tables at low cost to
prevent almost all duplicates in subsequent multicasts. The
topology-aware optimizations have no effect on the number
of duplicates.

3) Tree-Based Results: Next we present results of experi-
ments to evaluate the impact of varying b and using topology-
aware optimizations on the performance of tree-based multi-
cast on Pastry.
Figure 7 shows that the delay penalty decreases when b

increases. This is similar to what we observed with flooding
and it is also explained by a reduction in the average number
of hops in Pastry routes. The effect of the TART and TOP
optimizations on the delays with tree-based multicast is also
similar to what we observed for flooding. These results are
shown in Figure 8.
Table VII shows the impact of the TART and TOP optimiza-

tions on link stress during multicasts. The link stress during
group joins is almost identical for the tree-based approach.
These results are quite different from what we observed
with flooding. TOP reduces average link stress slightly but
it increases the maximum link stress. Whereas, TART reduces
both the maximum and average link stress significantly.
The reason is that in tree-based multicast the messages
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Fig. 8. Relative delay penalty for Pastry tree-based multicast with and without
topology-aware optimizations for b = 4.

with TART without TART
RAND TOP RAND TOP

Max 286.2 22,073.8 1,910.6 23,999.4
Average 1.17 3.34 3.87 3.90

TABLE VII

LINK STRESS FOR PASTRY TREE-BASED MULTICAST WITH AND WITHOUT

TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.

follow the reverse of the Pastry routes from each group
member to the root. With TART and RAND, the longest hops
will be at the top of the tree. Therefore, most messages will
travel over a small number of physical links and the link stress
will be low. With TOP, the longest hops are at the bottom of the
tree. Therefore, most messages will travel over a large number
of physical links and link stress will be high. Combining TART
and TOP reduces the average link stress but it increases the
maximum link stress significantly. This is because of a bad
interaction between TOP and the node joining algorithm used
in TART. This interaction causes information about new nodes
that join the network to be propagated only among the nodes
with numerically close nodeIds. This results in a large number
of nodes with pointers to the same representative in a domain.
Decreasing b reduces both the average and maximum link

stress, for example, with b = 1, TART, and RAND, the
maximum link stress is 226.8 and the average is 1.07.
The tree-based multicast scheme adds a forwarding table per

node. Table VIII shows the maximum number of forwarding
table entries per-node for different values of b in Pastry. The
maximum number of forwarding table entries is 346 with
b = 3. This is relatively high but Scribe’s bottleneck remover
can be used to bound the number of forwarding table entries
per node. We reran the experiment using TART and RAND
with b = 4 and an upper bound of 32 forwarding table entries.
The results show that the bound is achieved with a negligible
impact on delay; the RMD does not change and the RAD
increases by 2%. The maximum link stress during joining
increases from 286.2 to 580.75 and the average from 1.17

b 1 2 3 4
Maximum 215.4 268.8 346 286.2

TABLE VIII

MAXIMUM NUMBER OF FORWARDING TABLE ENTRIES PER NODE FOR

DIFFERENT VALUES OF b

to 1.79. This is reasonable because joins are less frequent
than multicasts in most applications and the link stress during
multicasts decreases; the maximum decreases from 286.2 to
72 and the average from 1.17 to 1.11.

4) Discussion: It is clear from the results that flooding
only works well in Pastry when using topology-aware nodeId
assignment. On the other hand, topology-aware nodeId assign-
ment performs poorly when using tree-based multicast. Tree-
based multicast performs better with topology-aware routing
tables and random nodeId assignment.
Flooding cannot support multicast efficiently on Pastry

because it requires creation of a separate overlay per group.
Creating a separate Pastry overlay is significantly more expen-
sive than creating a tree and it induces a large load on the node
that is responsible for the group in the base overlay. A tree-
based approach can reuse the same overlay for many groups
and amortize the cost of creating an overlay with good locality
properties using topology-aware optimizations. Therefore, the
choice for Pastry is clear: use tree-based multicast with random
nodeId assignment and topology-aware routing tables.
We chose a value b = 4 because it provides a good balance

between low delay penalty and low link stress while requiring
only a small amount of space per node. The remaining
experiments ran with these choices.

E. CAN/Pastry Results for Multiple Multicast Groups

This section describes the set of experiments we ran with
1500 multicast groups instead of just one. The group sizes
varied according to a Zipf-like distribution, as described
earlier. We explored two cases: group members uniformly
distributed over the network, and localized members. The
degree of locality of group members was determined by a
Zipf-like distribution as well.
We ran these experiments against three different application-

level multicast implementations: tree-based multicast on top
of Pastry and on top of CAN, and flooding on top of
CAN. For each multicast implementation we picked the “best”
configuration for the overlay network used. In particular, for
Pastry we set b to 4 and used TART and RAND. For CAN we
used configurations with topological address assignment and
the NDR routing metric.
Figures 9 and 10 show the cumulative distribution function

for RMD for the non-localized and localized group members,
respectively. Figure 11 shows the corresponding cumulative
distribution function for RAD for localized group members.
We omit the RAD results for non-localized group members
because they are almost identical. The y-value of a point
represents the proportion of groups with a delay penalty less
than or equal to the point’s x-value.
In all cases tree-based multicast on top of Pastry yielded the

best delay penalty values, with the differences being roughly
comparable to those observed in the single-group experiments.
Aside from this, the most notable feature is the noticeably
shallower shape of the CDF curve for the CAN-based flooding
implementation. Thus, whereas tree-based users can expect
fairly tightly bounded delay penalties, users of the flooding
approach must be prepared to deal with substantially greater
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Fig. 9. CDF for RMD for 1500 concurrent multicast groups with localized
group members.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7
Relative Maximum Delay Penalty

C
um

ul
at

iv
e 

P
ro

po
rt

io
n 

of
 G

ro
up

s

Pastry/Tree 

CAN/Tree

CAN/Flood

Fig. 10. CDF for RMD for 1500 concurrent multicast groups with globally
distributed group members.

variances in multicast delivery times. Interestingly, while
flooding did considerably worse than tree-based in the single-
group experiments, it compares much more favorably in the
1500 group experiments.

V. COMPARISONS AND TRADEOFFS

Per-Group Overlays versus Per-Group Multicast Trees: Our
results show that per-group multicast trees have several advan-
tages over flooding using a mini-overlay network per group.
If using CAN, per-group multicast trees are noticeably more
efficient in their network usage, with relative delay penalties
typically better by factors of 2-3. If using Pastry, there is
no major difference. Probably more significantly, the creation
of individual overlays per group incurs significant overheads.
When a node joins an overlay network it needs to discover
other nodes in the network and, in CAN create the neighbor
state and in Pastry create the routing table and leafsets.
This may involve finding out about and potentially contacting
dozens of other nodes. In contrast, multicast trees built using
a single overlay network can take advantage of the routing
state already established in the existing overlay network. This
makes joining the group lightweight in terms of both space
and time.
The advantage of using a separate overlay per multicast

group is that traffic for the group is carried only by members
of the group. If this property is important for administrative
or other reasons, then the overlay-per-group approach should
be considered. But otherwise our results argue against it.
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Fig. 11. CDF for RAD for 1500 concurrent multicast groups with localized
group members

CAN versus Pastry with Per-Group Multicast Trees: Our
results indicate that, with equivalent per-node state, with
representative tuned settings, and with identical workloads,
the relative delay penalty values obtained using Pastry are
typically on the order of 20% to 50% better than those obtained
using CAN. When looking at link stress, Pastry exhibited an
average link stress that was roughly 15% lower than that seen
with CAN, while CAN exhibited a maximum link stress that
was roughly 25% lower than that seen with Pastry. Similarly,
the maximum number of forwarding entries that had to be
maintained under CAN was about a third of that seen with
Pastry but the average was similar. The bottleneck remover
allows Pastry to retain its delay advantage while lowering the
maximum link stress and the maximum number of forwarding
table entries to values as low as CAN’s. Overall, we conclude
that multicast trees built using Pastry can provide higher
performance than ones built using CAN.
An interesting difference between using tree-based multicast

on top of CAN or Pastry is that topologically-aware address
assignment turns out to have a diametrically opposite effect on
link stress in each case. Topologically-aware address assign-
ment drastically improves link stress values in CAN while
doing exactly the opposite in Pastry.

VI. RELATED WORK

Tapestry [9] and Chord [7] are similar to Pastry; they also
use a divide-and-conquer approach to route within a ring. A
head-to-head comparison of Chord and Tapestry with Pastry
and CAN would be interesting, but was beyond the scope of
this work. We do believe that the top-level results from this
study are likely to also apply to these systems; Pastry without
locality optimizations provides a good emulation of Chord, and
Pastry with locality provides a good emulation of Tapestry.
Another proposal for doing multicast using general-purpose

overlay networks is the Bayeux [3] system for Tapestry.
Bayeux builds a multicast tree per group differently from
the approach examined in this paper. Each request to join a
group is to the root, which records the identity of the new
member and uses Tapestry to route another message back to
the new member. Every Tapestry node along this route records
the identity of the new member. Requests to leave the group
are handled in a similar way. This introduces two scalability



problems when compared to tree based approach used here.
Firstly, it requires nodes to maintain more group membership
information. Secondly, Bayeux generates more traffic when
handling group membership changes. In particular, all group
management traffic must go through the root. Bayeux proposes
a mechanism to ameliorate these problems, but this only
improves scalability by a small constant factor. It should be
noted, that if all nodes in a Bayeux network join a single group,
then this will produce similar poor results to the flooding
approach evaluated on Pastry.
Another scalable overlay multicast system is Overcast [1].

Like Bayeux, Overcast requires that joining nodes coordinate
with a central root node.
A significant amount of work has also gone into overlay

networks and application-level multicast systems not designed
to scale, such as Resilient Overlay Networks (RONs) [15],
End System Multicast [2], and ISIS/Horus-style Virtual Syn-
chrony [16], but which provide other benefits.
Of course, all the work for constructing multicast distribu-

tion trees builds upon the techniques originally developed for
IP Multicast [14], [17].

VII. CONCLUSION

We have explored some of the possibilities for imple-
menting scalable application-level multicast using peer-to-peer
overlay networks. Observing that the style of application-
level multicast chosen is largely independent of the style of
overlay network selected, we compared four combinations of
application-level multicast implementations and peer-to-peer
overlay choices. Two approaches to application-level multicast
using peer-to-peer overlay networks were considered. One
uses reverse path forwarding to build a distribution tree per
multicast group. The second builds a separate overlay network
per group and uses intelligent flooding algorithms. These
approaches were each run on top of two different peer-to-peer
overlay networks, each representative of a class of peer-to-peer
routing schemes.
All experiment combinations were run on the same sim-

ulation infrastructure, using the same placement within the
simulated network of nodes participating in the overlay net-
work, and using the same workloads. This enabled us to
perform head-to-head comparisons of flooding versus tree-
based implementations of application-level multicast, as well
as of CAN-style versus Pastry-style overlay routing in the
context of multicast communications. To the best of our
knowledge, we are the first to have done such a head-to-head
comparison.
The results of our explorations demonstrate several things.

Principal among these is that a tree-based approach to multi-
cast dominates the flooding over per-group overlays approach
regardless of the peer-to-peer overlay network employed. This
is true both in terms of relative delay penalties and in general
overhead. The biggest disadvantage of per-group overlays—
and therefore of flooding—is the cost of overlay construction
required for each group. We also showed that multicast trees
built using Pastry can provide higher performance than ones
built using CAN.

A factor that was beyond the scope of this paper is how
the various configurations we explored would compare from
a fault-tolerance point-of-view. This represents an important
area of future work.
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