SplitStream: High-bandwidth content distribution in cooper ative environments*

Miguel Castrot Peter Druschel?

Antony Rowstron!

Anne-Marie Kermarrec! Animesh Nandi?

Atul Singh?

IMicrosoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 OFB, UK.
2Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA.

Abstract

In tree-based multicast systems, a relatively small num-
ber of interior nodes carry the load of forwarding multi-
cast messages. This works well when the interior nodes
are dedicated infrastructure routers. But it poses a prob-
lem in cooperative application-level multicast, where par-
ticipants expect to contribute resources proportional to the
benefit they derive from using the system. Moreover, many
participants may not have the network capacity and avail-
ability required of an interior node in high-bandwidth mul-
ticast applications. SplitStream is a high-bandwidth con-
tent distribution system based on application-level multi-
cast. It distributes the forwarding load among all the par-
ticipants, and is able to accommaodate participating nodes
with different bandwidth capacities. We sketch the design
of SplitStream and present some preliminary performance
results.

1 Introduction

End-system or application-level multicast [2, 11, 21, 6, 18,
14, 1] has become an attractive alternative to IP multicast.
Instead of relying on a multicast infrastructure in the net-
work, which is not widely available, the participating hosts
pool their resources to route and distribute multicast mes-
sages using only unicast network services. In this paper
we are particularly concerned with application-level mul-
ticast in cooperative environments. In such environments
the participants contribute resources in exchange for us-
ing the service and they expect that the forwarding load be
shared among all participants.

Unfortunately, conventional tree-based multicast is in-
herently not well matched to a cooperative environment.
The reason is that in any efficient (i.e. low-depth) multi-
cast tree a small number of interior nodes carry the burden
of splitting and forwarding multicast traffic, whilst a large
number of leaf nodes contribute no resources. This con-
flicts with the expectation that all members should share
the forwarding load. The problem is further aggravated in

*This research was supported in part by Texas ATP (003604-0079-
2001) and by NSF (ANI1-0225660), htt p: / / proj ect-iris. net.

high-bandwidth applications like video or bulk file distri-
bution, where many nodes may not have the capacity and
availability required of an interior node in a conventional
multicast tree. SplitStream is designed to address these
problems.

SplitStream enables efficient cooperative distribution of
high-bandwidth content, whilst distributing the forwarding
load among the participating nodes. SplitStream can also
accommodate nodes with different network capacities and
asymmetric bandwidth on the inbound and outbound net-
work paths. Subject to these constraints, it balances the
forwarding load across all the nodes.

The key idea is to split the multicast content into k
stripes, and multicast each stripe in a separate multicast
tree. Participants join as many trees as there are stripes
they wish to receive. The aim is to construct this forest of
multicast trees such that an interior node in one tree is a
leaf node in all the remaining trees. In this way, the for-
warding load can be spread across all participating nodes.
We show that it is possible, for instance, to efficiently con-
struct a forest in which the inbound and outbound band-
width requirements of each node are the same, while main-
taining low delay and link stress across the system.

The SplitStream approach also offers improved robust-
ness to node failure and sudden node departures. Since
ideally, any given node is an interior node in only one tree,
its failure can cause the temporary loss of at most one of
the stripes. With appropriate data encodings such as era-
sure coding [3] of bulk data or multiple description coding
(MDC) [13, 15] of streaming media, applications can thus
mask or mitigate the effects of node failures even while the
affected tree is being repaired.

SplitStream assumes that the available network band-
width among nodes is typically limited by the hop con-
necting the nodes to the wide-area network (WAN), rather
than the WAN backbone. This scenario is increasingly
common as private and business subscribers move to ded-
icated Internet connections with DSL-level or better band-
width, and the capacity of the Internet and corporate In-
tranet backbones is rapidly increasing.

The key challenge in the design of SplitStream is to effi-
ciently construct a forest of multicast trees that distributes
the forwarding load, subject to the bandwidth constraints
of the participating nodes in a decentralized, scalable, and



self-organizing manner. SplitStream relies on a structured
peer-to-peer overlay network called Pastry [19], and on
Scribe [6], an application-level multicast system built upon
this overlay to construct and maintain these trees.

The rest of this paper is organized as follows. Section 2
outlines the SplitStream approach in more detail. A brief
description of Pastry and Scribe is given in Section 3. We
sketch the design of SplitStream in Section 4. Section 5
describes related work and Section 6 concludes.

2 The SplitStream approach

In this section, we give a more detailed overview of Split-
Stream’s approach to cooperative, high-bandwidth content
distribution.

Tree-based multicast In all multicast systems based on
a single tree, participating nodes are either interior nodes
or leaf nodes. The interior nodes carry all the burden of
forwarding multicast messages. In a k-level balanced tree

with arity f, the number of interior nodes is % and

the number of leaf nodes is fK. Thus, the fraction of leaf
nodes increases with f. For example, more than half of the
nodes are leaves in a binary tree, and over 90% of nodes
are leaves in a tree with arity 16. In the latter case, the
forwarding load is carried by less than 10% of the nodes;
whilst all nodes have equal inbound bandwidth, the inter-
nal nodes have an outbound bandwidth requirement of 16
times the inbound bandwidth. Even in a binary tree, which
would be impractically deep in most circumstances, the
outbound bandwidth required by the interior nodes is twice
that of their inbound bandwidth.

SplitStream SplitStream is designed to overcome the
inherently unbalanced forwarding load in conventional
tree-based multicast systems. SplitStream strives to dis-
tribute the forwarding load over all participating nodes,
and respects different capacity limits of individual partic-
ipating nodes. SplitStream achieves this by splitting the
multicast content into multiple stripes, and using separate
multicast trees to distribute each stripe.

Figure 1 illustrates how SplitStream balances the for-
warding load among the participating nodes. In this simple
example, the original content is split into two stripes and
multicast in separate trees. For simplicity, let us assume
that the original content has a bandwidth requirement of
B, and that each stripe has half the bandwidth requirement
of the original content. Each node other than the source
subscribes to both stripes, inducing an inbound bandwidth
requirement of B. As shown in Figure 1, each node is an in-
ternal node in only one tree and forwards the stripe to two
children, yielding an outbound bandwidth requirement of
no more than B.

In general, the content is split into k stripes. Participat-
ing nodes may subscribe to a subset of the stripes, thus
controlling their inbound bandwidth requirement in incre-
ments of B/k. Similarly, participating nodes may control
their outbound bandwidth requirement in increments of

Source

@ ‘‘‘‘‘‘‘‘‘‘‘‘‘ stripe 2

Figure 1. A simple example illustrating the basic ap-
proach of SplitStream. Original content is split into two
stripes. An independent multicast tree is constructed for
each stripe such that a node is an interior node in one mul-
ticast tree and a leaf in the other.

B/k by limiting the number of children they adopt. Thus,
SplitStream can accommodate nodes with different band-
widths, and nodes with unequal inbound and outbound net-
work capacities.

Applications SplitStream provides a generic infrastruc-
ture for high-bandwidth content distribution. Any applica-
tion that uses SplitStream controls how the content it dis-
tributes is encoded and divided into stripes. SplitStream
constructs the multicast trees for the stripes while adher-
ing to the inbound and outbound bandwidth constraints
of the nodes. Applications need to (i) encode the con-
tent such that each stripe requires approximately the same
bandwidth; (ii) ensure that each stripe contains approxi-
mately the same amount of information and there is no
hierarchy among stripes; and (iii) provide mechanisms to
tolerate the intermittent loss of a subset of the stripes.

In order to tolerate the intermittent loss of a subset of
stripes, some applications may provide explicit mecha-
nisms to fetch content from other peers in the system, or
applications may choose to use redundancy in encoding
content, requiring more than B/k per stripe in return for the
ability to reconstitute the content from less than K stripes.
For example, a media stream could be encoded using MDC
so that the video can be reconstituted from any subset of
the k stripes, with video quality proportional to the num-
ber of stripes received. If an interior node in the multicast
tree for the stripe should fail, then clients deprived of the
stripe are able to continue displaying the media stream at
reduced quality until the multicast tree is repaired. Such
an encoding also allows low-bandwidth clients to receive
the video at lower quality by explicitly requesting fewer
stripes.

Another example is the multicasting of file data, where
each data block can be encoded using erasure codes to gen-
erate k blocks, such that only a subset of the k blocks are
required to reconstitute the original block. Each stripe is
then used to multicast a different one of the k blocks. Par-
ticipants subscribe to all stripes and once a sufficient subset
of the blocks is received, the clients are able to reconsti-



tute the original data block. If a client misses a number of
blocks from a particular stripe for a period of time (while
the stripe multicast tree is being repaired after an internal
node has failed), the client can still reconstitute the origi-
nal data blocks due to the redundancy. An example where
multicasting of file data could be useful is the distribution
of software patches and upgrades to institutions or end-
users.

In general, while the contributed nodes could be the
computers belonging to individual Internet subscribers or
the desktop machines in a corporation, they could also
be dedicated servers. For example, in Enterprise Content
Delivery Networks (eCDNs), dedicated servers are placed
through out a corporate network to facilitate access to com-
pany data and streaming media. Such eCDNs could utilize
SplitStream to distribute content to the servers.

3 Background: Pastry and Scribe

In this section, we briefly sketch Pastry, a scalable, self-
organizing, structured p2p overlay network, and Scribe, a
scalable application-level multicast system based on Pas-
try. Both systems are key building blocks in the design of
SplitStream.

Pastry In Pastry, nodes and objects are assigned random
identifiers (called nodelds and keys, respectively) from a
large sparse id space. Keys and nodelds are 128 bits in
length and can be thought of as a sequence of digits in
base 2° (b is a configuration parameter with a typical value
of 3 or 4). Given a message and a key, Pastry routes the
message to the node with the nodeld that is numerically
closest to the key, which is called the key’s root.

In order to route messages, each node maintains a rout-
ing table and a leaf set. A node’s routing table has about
log,sN rows and 2° columns. The entries in row n of the
routing table refer to nodes whose nodelds share the first
n digits with the local node’s nodeld; the (n+ 1)th nodeld
digit of a node in column m of row n equals m. The col-
umn in row n corresponding to the value of the (n+ 1)th
digits of the local node’s nodeld remains empty. Routing
in Pastry requires that at each routing step, a node normally
forwards the message to a node whose nodeld shares with
the key a prefix that is at least one digit longer than the
prefix that the key shares with the present node’s id. If no
such node is known, the message is forwarded to a node
whose nodeld shares a prefix with the key as long as the
current node, but is numerically closer to the key than the
present node’s id.

Each Pastry node maintains a leaf set of neighboring
nodes in the nodeld space, both to ensure reliable message
delivery, and to store replicas of objects for fault tolerance.

The expected number of routing hops is less than
log,,N. The Pastry overlay construction observes prox-
imity in the underlying Internet. Each routing table en-
try is chosen to refer to a node with low network delay,
among all nodes with an appropriate nodeld prefix. As a

result, one can show that Pastry routes have a low delay
penalty: the average delay of Pastry messages is usually
less than twice the IP delay between source and destina-
tion [5]. Similarly, one can show the local route conver-
gence of Pastry routes: the routes of messages route to the
same key from nearby nodes tend to converge at a nearby
intermediate node. Both of these properties are important
for the construction of efficient multicast trees, described
below. A full description of Pastry can be found in [19].

Scribe Scribe is an application-level multicast system
built upon Pastry. A pseudo-random Pastry key, known
as the groupld, is chosen for each multicast group. A
multicast tree associated with the group is formed by the
union of the Pastry routes from each group member to the
groupld’s root (which is also the root of the multicast tree).
Messages are multicast from the root to the members using
reverse path forwarding [9].

The properties of the Pastry overlay ensure that the mul-
ticast trees are efficient. The delay to forward a message
from the root to each group member is low due to the low
delay penalty of Pastry routes. Pastry’s local route conver-
gence ensures that the load imposed on the physical net-
work is small because most message replication occurs at
intermediate nodes that are close in the network to the leaf
nodes in the tree.

Group membership management in Scribe is decentral-
ized and highly efficient, because it leverages the existing,
proximity-aware Pastry overlay. Adding a member to a
group merely involves routing towards the groupld until
the message reaches a member of the tree, followed by
adding the route traversed by the message to the group
multicast tree. As a result, Scribe can efficiently support
large numbers of groups, arbitrary numbers of group mem-
bers, and groups with highly dynamic membership.

The latter property, combined with an anycast [7] prim-
itive recently added to Scribe, can be used to perform
distributed resource discovery. As we will show in the
next section, SplitStream uses this mechanism to discover
nodes with spare forwarding capacity. A full description
and evaluation of Scribe multicast can be found in [6].
Scribe anycast is described in [7].

4 SplitStream design

In this section, we sketch the design of SplitStream.
Building interior-node-digoint trees SplitStream uses
a separate Scribe multicast tree for each of the k stripes.
SplitStream exploits the properties of Pastry routing to
construct trees with disjoint sets of interior nodes (called
interior-node-digoint trees). Recall that Pastry normally
forwards a message towards nodes whose nodelds share
progressively longer prefixes with the message’s key.
Since a Scribe tree is formed by the routes from all mem-
bers to the groupld, the nodelds of all interior nodes have a
common prefix of at least one digit with the tree’s groupld.
Therefore, we can ensure that k Scribe trees have a disjoint



set of interior nodes simply by choosing grouplds for the
trees that all differ in the most significant digit.

Setting k = 2° ensures that each participating node has
an equal chance of becoming an interior node in some tree.
If kis chosen such that k= 2" and i < b, then it is still pos-
sible to ensure this fairness by exploiting certain properties
of the Pastry routing table, but we omit the details to con-
serve space. Without loss of generality, we assume that
k = 2° in the rest of this paper.

Limiting node degree The resulting forest of Scribe
trees is interior-node-disjoint and satisfies the nodes’ con-
straints on the inbound bandwidth, but it does not necessar-
ily satisfy the individual nodes’ outgoing bandwidth con-
straints. Let us first consider the inbound bandwidth. A
node’s inbound bandwidth is proportional to the number
of stripes to which the node subscribes. Note that every
node has to subscribe to at least one stripe, the stripe whose
stripeld shares a prefix with its nodeld, because the node
may have to serve as an interior node for that stripe.

The number of children that may attempt to attach to
a node is bounded by its indegree in the Pastry overlay,
which is influenced by the physical network topology. In
general, this number may exceed the number of children a
node is able to support. For a SplitStream node to limit its
outbound network bandwidth, it must limit its outdegree in
the SplitStream forest, i.e., the total number of children it
takes on.

Scribe has a built-in mechanism to limit a node’s outde-
gree. When a node that has reached its maximal outdegree
receives a request from a prospective child, it provides the
prospective child with a list of its current children. The
prospective child then seeks to be adopted by the child with
lowest delay. This procedure continues recursively down
the tree until a node is found that can take another child. In
Scribe, this procedure is guaranteed to terminate because a
leaf node is required to take on at least one child.

However, this procedure is not guaranteed to work in
SplitStream. The reason is that a leaf node in one tree
may be an interior node in another stripe tree, and may
have already reached its outdegree limit with respect to
that stripe tree. Next, we describe how SplitStream re-
solves this problem.

Locating parents The following algorithm is used to
resolve the case where a node that has reached its outde-
gree limit receives a join request from a prospective child.
First, the node adopts the prospective child regardless of
the outdegree limit. Then, it evaluates its new set of chil-
dren to select a child to reject. This selection is made in an
attempt to maximize path independence and to minimize
delay and link stress in the SplitStream forest.

First, the node looks for children that are subscribed to
stripes whose stripelds do not share a prefix with the local
node’s nodeld. (How the node could have acquired such
a child in the first place will become clear in a moment).
If the prospective child is among them, it is selected; else,
one is chosen randomly from the set. If no such child ex-
ists, then the current node is an interior node for only one

stripe tree, and it selects the child whose nodeld has the
shortest prefix match with that stripeld. If multiple such
nodes exist and the prospective child is among them, it is
selected; else, one is chosen randomly from the set. The
chosen child is then notified that it has been orphaned for
a particular stripeld.

The orphaned child then seeks to locate a new parent
in up to three steps. In the first step, the orphaned child
attempts to attach to a former sibling that shares a prefix
match with the stripeld for which it seeks a parent. The
former sibling either adopts or rejects the orphan, using the
same criteria as described above. This process continues
recursively down the tree until the orphan either finds a
new parent or no children share a prefix match with the
stripeld.

Spare capacity group If the orphan has not found a par-
ent, it sends an anycast message to a special Scribe group
called the spare capacity group. All SplitStream nodes
whose total number of stripe children is below their for-
warding capacity limit are members of this group. Scribe
delivers this anycast message to a node in the spare capac-
ity group tree that is near the orphan in the physical net-
work. This node forwards the message to a child, starting
a depth-first search (DFS) of the spare capacity group tree.
If the node has no children or they have all been checked,
the node checks whether it receives the stripe to which the
orphaned child seeks to subscribe. If so, it verifies that the
orphan is not an ancestor in the corresponding stripe tree,
which would create a cycle. To enable this test, each node
maintains its path to the root of each stripe tree of which it
is a member.

If both tests succeed, then the node takes on the orphan
as a child; if as a result, the node has now reached its out-
degree limit, it leaves the spare capacity group. If one of
the tests fails, the node forwards the message to its parent,
continuing the DFS of the spare capacity group tree until
an appropriate member is found.

Anycasting to the spare capacity group may fail to lo-
cate an appropriate parent for the orphan, even after an ap-
propriate number of retries with sufficient timeouts. There
are two circumstances in which this can happen. If the
spare capacity group is empty, then the SplitStream forest
construction is infeasible, since an orphan remains after all
forwarding capacity has been exhausted. In this case, the
application on the orphaned node is notified that there is
no forwarding capacity left in the system.

Deadlocks Otherwise, each member of the spare capac-
ity group either does not provide the desired stripe, or it
is a successor of the orphan in the stripe tree. If follows
that none of the nodes in the desired stripe tree has unused
forwarding capacity, although forwarding capacity exists
in other stripes. This is a type of deadlock and can be re-
solved as follows. The orphan sends an anycast message
to the desired stripe tree, which performs a randomized
search of the stripe tree until it reaches a leaf node. The
forwarding capacity of this leaf node must either be zero,
or it must be consumed by children in different stripes



(else, it would have been a member in the spare capac-
ity group). In the former case, we ask the leaf’s parent to
drop the leaf and attach the orphan instead. Otherwise, the
leaf node adopts the orphan and drops one of its current
children randomly.

One can show that the above procedure is guaranteed
to locate an appropriate parent for the orphan if one exists.
Moreover, the properties of Scribe trees and the DFS of the
spare capacity tree ensure that the parent is near the orphan
in the physical network, among all prospective parents.
This provides low delay and low link stress in the physical
network. However, the algorithm as described may sac-
rifice interior-node-disjointedness, because the new par-
ent may be already an interior node in another stripe tree.
Thus, should the node fail, it may cause the temporary loss
of more than one stripe for some nodes. Simulation results
show that only a small number of nodes and stripes are
typically affected.

Maintaining path independence It is possible to mini-
mize this partial loss of path independence at the expense
of higher delay, link stress, and cost of the forest construc-
tion. Note that completely path independent forest con-
struction may be impractically expensive if the problem is
highly constrained. However, one can bias the construc-
tion towards path independence at moderate cost.

One approach to preserving path independence is to add
a third test during the DFS in the spare capacity group tree,
which verifies that the prospective parent is not a predeces-
sor to the orphan in any of the stripes to which the orphan
subscribes. This ensures path independence, but may re-
quire a more extensive exploration of the spare capacity
group tree, may yield a parent that is more distant in the
physical network, and may not always locate a parent in
the absence of sufficient excess forwarding capacity. One
may balance these concerns by limiting the scope of the
DFS, and relax the third test if no parent was found within
that scope.

SplitStream can allow applications to control this trade-
off between independence, delay, link stress, total required
forwarding capacity and overhead of forest construction
according to its needs. A full evaluation of heuristics
to maximize path independence is the subject of ongoing
work.

Preliminary results We have performed a prelimi-
nary performance evaluation of SplitStream, by running
40,000 SplitStream nodes over an emulated network with
5050 core routers based on the Georgia Tech network
topology generator. We constructed a SplitStream forest
with 16 stripes, and assigned per-node inbound and out-
bound bandwidth limits that follow a distribution mea-
sured among Gnutella clients in May 2001 [20].

The result are very encouraging. During the SplitStream
forest construction, the mean and median number of con-
trol messages handled by each node were 56 and 47, re-
spectively. When multicasting a message in each stripe,
the medians of the relative average delay penalty (RAD)
and the relative maximum delay penalty (RMD), com-

pared to IP multicast, where 2.17 and 2.88, respectively.
These value are about 1.35 and 1.8 times higher, respec-
tively, than the values measured in a single Scribe tree on
the same topology. This increase reflects the principal cost
of balancing the forwarding load across all participants in
SplitStream.

We also considered the degree of independence in the
SplitStream forest. Without any of the independence-
preserving techniques described above, and with a highly
constrained bandwidth allocation (outbound bandwidth
not to exceed inbound bandwidth at any node), we found
that over 95% of the nodes had independent (i.e., node dis-
joint) paths to the source in 12 or more of the 16 stripes to
which they subscribed. Thus, even in pessimal cases, the
loss of independence is modest. A more comprehensive
evaluation of SplitStream will be presented in a forthcom-
ing full paper.

5 Reated work

Many application-level multicast systems have been pro-
posed recently, e.g. [8, 14, 18, 21, 6, 1]. All are based on a
single multicast tree.

Several systems use application-level multicast for
streaming media [14, 10, 17]. Spreadlt [10] utilizes the
participants, as SplitStream does, but creates a single mul-
ticast tree. However, unlike Spreadlt, SplitStream dis-
tributes the forwarding load over all participants using
multiple multicast trees, thereby reducing the bandwidth
demands on individual peers and increasing robustness.

Overcast [14] organizes dedicated servers into a source-
rooted multicast tree using bandwidth estimation measure-
ments to optimize bandwidth usage across the tree. The
main differences between Overcast and SplitStream are
(i) that Overcast uses dedicated servers whilst SplitStream
utilizes the participants; (ii) Overcast creates a single band-
width optimized multicast tree whereas SplitStream cre-
ates a forest of multicast trees assuming that the available
network bandwidth among peers is typically limited by
bandwidth of the links connecting nodes to the network
rather than the network backbone. This scenario is increas-
ingly common as the capacity of the Internet and corporate
Internet backbones rapidly increase.

CoopNet [17] implements a hybrid system for streaming
media, which utilizes multiple application-level trees with
striping and Multiple Description Encoding (MDC) [13,
15]. The idea of using MDCs and exploiting path di-
versity for robustness was originally proposed by Apos-
tolopoulos [?, ?] to increase robustness to packet loss when
streaming media. In CoopNet a centralized server is used
to stream media. Clients contact the server requesting the
media stream. If the server is not overloaded, it supplies
the client with the stream. If the server becomes over-
loaded, then it redirects clients to already participating
nodes. The stream is striped and several application-level
multicast trees rooted at the server are created. There are



two fundamental differences between CoopNet and Split-
Stream: (i) CoopNet uses a centralized algorithm (running
on the server) to build the trees whilst SplitStream is com-
pletely decentralized and more scalable; and (ii) CoopNet
does not explicitly attempt to manage the bandwidth con-
tribution of individual nodes; however, it is possible to add
this capability to CoopNet.

Nguyen and Zakhor [16] propose streaming video from
multiple sources concurrently, thereby exploiting path di-
versity and increasing tolerance to packet loss. They sub-
sequently extend the work in [16] to use Forward Error
Correction [3] encodings. The work assumes that the client
is aware of the set of servers from which to receive the
video. SplitStream constructs multiple end-system based
multicast trees in a decentralized fashion and is therefore
more scalable.

In [4], algorithms and content encodings are described
that enable parallel downloads and increase packet loss
resilience in richly connected, collaborative overlay net-
works by exploiting downloads from multiple peers. Split-
Stream provides a complete system for content distribu-
tion in collaborative overlay networks. It explicitly stripes
content and creates a multicast tree for each stripe. Also,
SplitStream’s primary goal is to spread the forwarding load
across all participants.

FCast [12] is a reliable file transfer protocol based on IP
multicast. It combines a Forward Error Correction [3] en-
coding and a data carousel mechanism. Instead of relying
on IP multicast, FCast could be easily built upon Split-
Stream, for example, to provide software updates cooper-
atively.

6 Conclusions

We have sketched the design of SplitStream, a high-
bandwidth content distribution system based on end-
system multicast in cooperative environments. Prelimi-
nary performance results are very encouraging. The sys-
tem is able to distribute the forwarding load among the
participating nodes, subject to individual node bandwidth
limits. When combined with redundant content encoding,
SplitStream yields resilience to node failures and unan-
nounced departures, even while the affected multicast tree
is repaired. The overhead of the forest construction is mod-
est and well balanced, and the resulting increase in delay
penalty and link stress is modest, when compared to a con-
ventional tree-based application-level multicast system. A
forthcoming paper will present comprehensive results, in-
cluding results of experiments using the PlanetLab Internet
testbed.

References

[1] J. G. Apostolopoulos. Reliable video communication over lossy
packet networks using multiple state encoding and path diversity.
In Visual Communications and Image Processing, Jan. 2001.

(2]

(3]
(4]

(5]
(6]

[7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

J. G. Apostolopoulos and S. J. Wee. Unbalanced multiple descrip-
tion video communication using path diversity. In |EEE Interna-
tional Conference on Image Processing, Oct. 2001.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable ap-
plication layer multicast. In ACM S GCOMM, Aug. 2002.

K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM TOCS 17(2):41-88, May
1999.

R. Blahut. Theory and Practice of Error Control Codes. Addison
Wesley, MA, 1994,

J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed content delivery across adaptive overlay networks. In
S GCOMM'’ 2002, Pittsburgh, PA, USA, Aug. 2002.

M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting
network proximity in peer-to-peer overlay networks, 2002. Tech-
nical report MSR-TR-2002-82.

M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. |EEE JSAC, 20(8), Oct. 2002.

M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scal-
able peer-to-peer anycast for distributed resource management,
2003. Submitted.

Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
In ACM Sigmetrics, pages 1-12, June 2000.

Y. K. Dalal and R. Metcalfe. Reverse path forwarding of broad-
cast packets. CACM, 21(12):1040-1048, 1978.

H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming live
media over a peer-to-peer network, Apr. 2001. Stanford Univer-
sity, CA, USA.

P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec,
and P. Kouznetsov. Lightweight probabilistic broadcast. In DSN,
July 2001.

J. Gemmell, E. Schooler, and J. Gray. Fcast multicast file distri-
bution. |1EEE Network, 14(1):58-68, Jan 2000.

V. K. Goyal. Multiple description coding: Compression meet the
network. |EEE Sgnal Processing Magazine, 18(5):74-93, Sept.
2001.

J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’ Toole.
Overcast: Reliable multicasting with an overlay network. In
OSDI 2000, San Diego, CA, 2000.

A. Mohr, E. Riskin, and R. Ladner. Unequal loss protection:
Graceful degredation of image quality over packet erasure chan-
nels through forward error correction. |EEE JSAC, 18(6):819-
828, June 2000.

T. Nguyen and A. Zakhor. Distributed video streaming with for-
ward error correction. In Packet Video Workshop, Pittsburgh,
USA., 2002.

V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Dis-
tributing streaming media content using cooperative networking.
In NOSSDAV, Miami Beach, FL, USA, May 2002.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level multicast using content-addressable networks. In NGC, Nov.
2001.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov. 2001.

S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In MMCN, San Jose,
CA, Jan. 2002.

S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant wide-area
data dissemination. In NOSSDAV, June 2001.



