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Abstract— Wireless sensor networks are being deployed to
monitor a wide range of environments. Since energy efficiency is
critical in these deployments, previous work proposed in-network
aggregation and approximation techniques to reduce the energy
consumed collecting data. In-network aggregation can be used to
compute statistics such as max, min, and average accurately and
energy-efficiently, but it does not work well for order statistics
such as median. Current approximation techniques to compute
order statistics cannot deliver both good accuracy and energy
efficiency. This is unfortunate because order statistics are more
resilient to faulty sensor readings than max, min, or average.

We present the design and implementation of POS, an in-
network service that computes accurate order statistics energy-
efficiently. POS returns a stream of periodic samples from any
order statistic. It initially computes the value of the order statistic
and then periodically runs a validation protocol to determine
whether the value is still valid. If not, it uses an optimized binary
search to determine the new value and then resumes periodic
validation. POS uses in-network aggregation and transmission
suppression to reduce communication complexity. Results from
both experiments on a mote testbed and simulations show that
POS can compute order statistics accurately while consuming less
energy than the best techniques to compute averages in common
cases.

I. INTRODUCTION

Wireless sensor networks are currently used to monitor a
number of different environments, including the Golden Gate
Bridge [1], Great Duck Island [2] and Tungurahua volcano [3].
Energy is the critical resource in sensor nodes because they are
battery powered and replacing batteries in these environments
is expensive, difficult, or even dangerous. Typically, wireless
communication is the biggest drain on energy. Users query
the sensor readings through a base station and the sensor
nodes form a multi-hop wireless network connected to the base
station. It is important to reduce the communication induced
by user queries to conserve energy and extend the lifetime of
the sensor nodes.

Previous work has developed techniques to compute certain
types of queries accurately and with low communication
complexity. For example, queries for max, min, and average
sensor readings can be computed accurately and with low
communication complexity.

However, previous techniques to compute order statistics
(such as median) cannot provide both good accuracy and low
communication complexity. This is unfortunate because order

statistics can provide a more complete characterization of the
distribution of sensor readings than max, min, or average.
Additionally, they are more robust to outliers, which are
common in sensor networks due to failures, poor calibration,
or interference from the environment. For example, a single
reading from a faulty sensor can significantly change the
average reading value, but order statistics like the median,
95th percentile and 5th percentile are resilient to these failures.
This paper describes techniques to compute order statistics
accurately and with low communication complexity.

TAG [4] maintains a spanning tree rooted at the base station
to execute user queries. It computes order statistics by sending
all sensor readings to the base station. This technique is
accurate (in the absence of mote failures and message losses),
but it does not scale. It imposes a communication complexity
of O(N) on the sensor nodes near the base station, where N is
the number of nodes in the network. These nodes are critical
because when their batteries expire, users can no longer query
the sensor network.

Other projects have studied approximation techniques for
computing order statistics [5], [6]. These techniques cannot
provide both good accuracy and energy efficiency. Recently,
Patt-Shamir [7] introduced a technique to compute order statis-
tics accurately by using in-network aggregation to compute the
number of sensors with readings greater than a threshold. It
performs a binary search by repeating the query with adjusted
thresholds until the threshold equals the desired order statistic.
This technique achieves O(1) communication complexity per
sensor node but our results show that the constants involved
are large; this technique requires more energy to compute a
median than sending all the readings to the base station even
for relatively large networks.

We propose POS, a practical service to compute order
statistics. POS implements persistent queries [4]: it returns a
stream of periodic samples from an order statistic specified
by the user with a period specified by the user. POS starts by
computing the initial value of the order statistic and then stores
that value at all sensor nodes using a spanning tree rooted
at the base station [4]. Periodically, POS runs a validation
protocol to determine if the value is still valid. If not, it uses an
update protocol to determine the new value and then resumes
periodic validation. The update protocol uses an optimized



version of the binary search algorithm in [7]. POS can also
answer top-k queries [8].

POS implements in-network aggregation and transmission
suppression techniques that exploit the properties of order
statistics to reduce communication complexity during both
the validation and update protocols. Instead of counting the
number of sensor readings greater than a threshold [7], POS
counts the number of sensor readings that become larger and
smaller than the previous value of the order statistic. These
counts can be aggregated in the network and they enable very
effective transmission suppression. For example, leaf sensors
do not send messages if the order of their reading relative to
the previous value of the order statistic did not change. Simi-
larly, interior nodes in the tree can suppress transmission and
the base station can avoid the update protocol if the number
of movements of both types is equal. POS computes the exact
value of the order statistic (in the absence of mote failures and
message losses) and achieves O(1) communication complexity
per node with a small constant. Our mote implementation uses
acks to mitigate the effects of message losses.

We implemented POS and evaluated its performance using
both the TOSSIM simulator [9] and experiments on Harvard’s
MoteLab [10]. Our results show that POS can compute ac-
curate order statistics with significantly lower communication
complexity than the techniques used by Patt-Shamir [7] and
TAG [4]. POS does particularly well in the common case when
sensor reading change slowly relative to the period specified
by the user. In this case, POS requires less energy to compute
order statistics than TAG requires to compute averages.

The rest of the paper is organized as follows. Section II lays
out the basic communication model used by POS. Section III
describes the initialization, validation, and update protocols
POS uses to maintain persistent order statistics. Section IV
describes and evaluates our POS prototype. Finally, Section V
describes related work and Section VI contains our conclu-
sions.

II. BACKGROUND

Typically, sensor networks are connected to the outside
world through a base station. These networks use sensors such
as the Crossbow motes [11] with a CPU, memory, battery,
several sensors, and a low-power wireless radio. In most cases,
the motes are distributed over an area large enough that most
are unable to communicate directly with the base station.
Therefore, they self-organize into a multi-hop, ad-hoc wireless
network. Users interact with the sensor network through the
base station: a query is sent to the base station, the base station
communicates with the motes to compute a reply to the query,
which is forwarded to the user. This section discusses the
basic communication primitives that POS uses to broadcast
messages from the base station to all motes and to collect
data from all motes at the base station.

The base station broadcasts a message reliably to all sensors
using controlled flooding. The base station starts by broadcast-
ing the message to the motes in its radio range. After receiving
a message, a mote queues the message and waits for some time

t before broadcasting it to its neighbors. t is chosen randomly
from the interval between zero and a forwarding window,
w. While waiting, the mote counts the number of times it
receives the enqueued message. Once the wait is over, the mote
broadcasts the enqueued message to its neighbors and checks
how many copies of the message it received while waiting. If
a mote received the enqueued message an additional k times,
it does not broadcast the message again. Otherwise, the mote
broadcasts the message again. In our prototype implementation
k is three. This is similar to one of the techniques proposed
in Trickle [12].

Redundant broadcasts like this have two important proper-
ties. First, motes in dense clusters will normally broadcast only
once because they are likely to overhear the message from k
of their neighbors while waiting. This saves transmissions and
energy. However, in less dense areas, where motes have fewer
neighbors and individual links are more important, motes may
have to rebroadcast their message. These rebroadcasts reduce
the impact of temporary link failure and ultimately help ensure
that the message reaches all motes.

POS uses a routing tree rooted at the base station to collect
statistics from the sensor network and schedules communica-
tion using the same techniques as TAG [4]. Each mote in the
tree maintains a pointer to its parent, the overall depth of the
tree, and its own depth but motes do not know their children.

Data is collected in epochs that are divided up into dmax

communication slots, where dmax is the overall depth of the
tree. During an epoch data flows up the tree with only one level
transmitting in each slot to reduce the chance of collisions and
enable nodes to switch off their radios to save energy. A mote’s
depth in the tree determines both the slot in which it receives
data and the slot in which it transmits data. Motes at depth
dmax do not receive data from children and they transmit data
in the slot number one in the epoch. Other motes switch their
radios on to receive data in slot number dmax−d, aggregate the
data, and then transmit the aggregated data to their parent in
slot dmax−d+1, where d is their depth in the tree. Nodes pick
a random instant in their slot to transmit data to their parent
to avoid interference. The base station receives the aggregate
values from its children in slot number dmax.

Each mote begins with a static value of dmax. When the
network is initialized, the base station broadcasts a request for
network statistics. This request returns a count of all motes
as well as the maximum known depth. If a mote has a depth
greater than its initial dmax, it participates in the first slot and
sets the maximum depth appropriately. If the request returns a
maximum depth that is larger than the initial dmax, the base
station sets dmax to this value and broadcasts it to all motes.

III. DESIGN

POS implements persistent queries that return a stream of
periodic samples of an order statistic. The user specifies the
order statistic such as median or 95th percentile, together with
the period between samples, referred to as the epoch. We call
these queries persistent order statistics.



POS implements persistent order statistics using three pro-
tocols; initialization, validation, and update. The initialization
protocol computes the current value of the order statistic at
the base station (using a technique similar to TAG [4]) and
replicates this value at all motes. Every epoch, POS runs a
validation protocol that uses these replicas and new readings
taken by the motes to determine if the current value of the
order statistic is still accurate. If the current value is accurate,
it is returned to the user. Otherwise, POS runs the update
protocol to compute the new value of the order statistic and
then replicates this value at all motes.

Next, we briefly describe the state maintained in the base
station and motes. The remainder of this section describes each
protocol in detail.

A. State

POS maintains a small amount of state at the base station
and motes in addition to the state required to maintain the
routing tree. It maintains four values at the base station: the
current estimate of the specified order statistic or percentile,
p, and the number of motes whose readings are greater than
p, less than p, and equal to p, which are denoted by g, l, and
e respectively. For example when computing the median, p is
a value for which both g and l are less than or equal to half
the number of readings.

Each mote stores the latest value of the order statistic, p
(broadcast by the base station) and the order of its previous
reading relative to p. The order of a reading r can take three
values that correspond to the three possible orderings of r
relative to p, i.e., r < p, r > p or r = p. The mote can store
both p and the order of its previous reading in flash memory
to survive reboots.

B. Initialization protocol

The initialization protocol computes the initial values of p,
g, l, and e by asking all motes to forward their readings up
the tree to the base station as in TAG [4]. The communication
mechanisms described in the previous section are used to
broadcast the request and collect the readings. The base station
sorts the readings and computes the values. These values will
be exact in the absence of mote failures and message losses.

Each mote sends its readings and the readings of their
descendants to its parent using the least possible number of
packets. However, the total number of bytes and the total
number of packets still grows linearly with the number of
motes. Motes that are leafs in the tree only send a packet with
a single reading but nodes close to the root of the tree can
send many packets with many readings. When this procedure
is repeated often, this can result in short battery life for the
nodes near the root of the tree, which limits the useful life
of the entire sensor network. Since initialization is expensive,
POS only does this once when the user first issues the query.

The initialization protocol replicates the value of the order
statistic computed by the base station, p, at all motes using a
broadcast. Motes then compute the order of the reading they
sent to the base station relative to p and store p and the order.

Oi−1 Oi into< into> outof< outof>

< > 0 1 1 0
< = 0 0 1 0
> < 1 0 0 1
> = 0 0 0 1
= < 1 0 0 0
= > 0 1 0 0

Fig. 1. Order Changes and Report Values

C. Validation protocol

The validation protocol runs at the beginning of every epoch
i after the initialization protocol. Each mote takes a new
reading ri and then checks if this reading can invalidate the
values of p, g, l, and e stored by the base station.

The check is performed by computing the order Oi of ri

relative to p (which is replicated locally) and comparing the
result with the order of the previous reading relative to p,
Oi−1, which is also stored locally. If Oi = Oi−1, the mote
does not need to report anything to the base station, which
saves a message transmission. For example, if a new reading
is less than p just as the previous reading was, this cannot
possibly affect p, g, l, or e. For readings that change slowly
relative to the epoch duration, this will be the common case
and will remove many expensive transmissions.

If the order changes from the previous reading to the
new one, the mote must report the change to the base
station through its parent. The reports sent by motes have
four integer fields that encode all possible order changes:
into<, into>, outof<, and outof>. Figure 1 shows how these
fields are computed for the different combinations of values
of Oi−1 and Oi. The fields are currently represented using 16
bits.

Sending reports back to the base station has a big advantage
relative to sending back readings — reports can be easily
aggregated up the tree such that each node transmits a small
constant number of bits to its parent. Each node aggregates its
report with the reports of its children by summing the values
of the corresponding fields before forwarding the result to its
parent.

Once the base station receives reports from all its children,
it aggregates those reports and uses the result to update g, l,
and e as follows:

g := g − outof> + into>

l := l− outof< + into<

e := n− g − l

where n is the number of motes in the network. We assume
that the number of nodes in the network is computed pe-
riodically using the technique described in [4] to take into
account mote failures. This is a lightweight operation that can
be performed infrequently in most settings, e.g., every fifteen
minutes or half hour.



After updating its state, the base station checks if g and l
are correctly distributed. If they are, the previous value of the
order statistic is still valid and can be returned back to the user.
For example, if both g and l are less than or equal to n/2,
the previous value of the order statistic is still a valid median.
Otherwise, the base station initiates the update protocol.

POS performs even more aggressive transmission suppres-
sion by using the observation that if the order of one mote’s
reading changes from < to > and the order of another mote’s
reading changes from > to <, the two changes cancel each
other. This allows motes to filter reports as they move up
the tree. Before sending the aggregated report to its parent,
each mote subtracts the larger of into< and outof< from the
smaller and does the same with into> and outof>. If the
result of both subtractions is zero, the mote does not transmit
the report to its parent.

The validation protocol is efficient because it suppresses
many message transmissions and triggers the update protocol
only when necessary. Suppressing message transmissions re-
duces energy consumption, but it also reduces message loss
due to radio interference. The fewer motes transmitting, the
more likely those who are will succeed without having to fall
back on retransmissions. The cost of the validation protocol
is O(1) per mote; each mote transmits at most one message.

Statistics such as min, max, and average can also be com-
puted with a single message per mote. However, transmission
suppression techniques to compute these statistics cannot be as
effective (without loosing accuracy) as those we described for
order statistics. When computing exact values for min, max,
and average, leaf motes can suppress transmission of their
readings only when their readings did not change since the
last epoch. This makes computing min, max, and average more
expensive than computing order statistics when the readings
change slowly relative to the epoch specified by the user. The
same resilience to noise that makes order statistics more robust
to sensor failures and miscalibrated sensors than min, max,
and average also enables more efficient computation of order
statistics in the common case.

D. Update protocol

The update protocol is invoked when the validation protocol
determines that the value of the order statistic stored at the
base station does not reflect the current sensor readings. Upon
completion, it returns a new value for the order statistic. We
expect it to be invoked infrequently when readings change
slowly relative to the epoch duration. Nonetheless, the update
protocol is very efficient. It uses a binary search over the range
of possible sensor readings to compute the new value of the
order statistic.

The initial interval for the binary search is determined using
the values of l, g, and e computed at the end of the validation
protocol and the previous value of the order statistic p. For
example, when computing the median, p is greater than the
current median if l > n/2 and less than if g > n/2. If p is
greater than the current value of the order statistic, the initial
interval for the search is between p and the minimum possible

value in the sensor range. Similarly, if p is less than the current
value of the order statistic, the initial interval for the search
is between p and the maximum possible value in the sensor
range.

After computing the initial interval for the search, the base
station sets p to the midpoint of the interval and broadcasts p
to all the motes indicating that it is updating its value. When
a mote receives this message, it computes the order of its
current reading relative to the new value p. Then it compares
this order with the order relative to the previous value of p,
stores the new order value, and generates a report if there is a
change (as in Figure 1). These reports are aggregated up the
tree with transmission suppression exactly as in the validation
protocol.

The base station uses the aggregated reports to update
l, g, and e as discussed before. If l and g are distributed
appropriately, the value of p is the current value of the order
statistic and it can be returned back to the user. Otherwise, the
base station halves the search interval and repeats the process.
It uses the updated values of l and g to determine which half
of the search interval contains the current value of the search
statistic.

The epoch duration is chosen such that the validation proto-
col and the update protocol can run during the epoch duration
before sensors take a new reading. This is important to ensure
that the sensor readings do not change during the search
process. Otherwise, POS could not guarantee convergence.

The number of iterations in the search process is bound
by the number of bits in a sensor reading, b, in the worst
case. Therefore, the number of messages sent and the energy
consumed by all motes in the update protocol, including those
closest to the base station, is O(b). The update protocol scales
very well because this bound is constant with the number of
motes.

However, if sensor readings are 16 bits, the update protocol
could require 16 rounds to update the value of the order
statistic. This is less energy efficient than simply forwarding
all values to the base station for networks as large as 100.
Because of this, we developed an optimized update protocol
that significantly reduces the number of iterations required to
update the order statistic, even in relatively small networks.

E. An optimized update protocol

The optimized update protocol adds hints to reports in
addition to the four movement counters. These hints are sensor
readings that allow the base station to shrink the search
intervals and reduce the number of iterations required to
complete the search.

To understand what hints to use and how they can be
aggregated up the tree, we start by analysing the effect of
individual order changes in sensor readings on the value of the
order statistic. Let U be the total number of “up” moves (i.e.,
order changes into >) that an omniscient observer would see
and let u1, u2, . . . , uU be the sequence of the sensor readings
after those moves sorted in increasing order (as shown in
Figure 2). Similarly, let D be the total number of “down”



moves (i.e., order changes out of >) and d1, d2, . . . , dD the
sequence of the sensor readings after those moves sorted in
decreasing order (as shown in Figure 2). Let p be the value
of the order statistic before the moves.

Moves in opposite directions cancel, for example, uU

cancels dD , uU−1 cancels dD−1 and so on. Therefore, we
can compute the minimum interval for the binary search as
follows:

• if U − D = k > 0 then the new value for the order
statistic is between p and uk.

• if D − U = k > 0 then the new value for the order
statistic is between dk and p.

Figure 2 demonstrates how the movements in opposite
directions cancel. The top line shows the distribution of sensor
readings (grey circles) with the current median (p). The bottom
line shows the new sensor values. If the new value differs from
the old value, the old value is shown as a white circle and the
new value is shown as a black circle. In this example, U = 3
and D = 2, so k = 1. Since d2 cancels u3 and d1 cancels u2,
the new median lies in the range from p to uk = u1.

Given this observation, the most obvious approach to com-
pute the interval for the binary search is to simply send all
readings corresponding to order changes back to the base sta-
tion. However, this is expensive and, in the worst case, it will
induce a communication complexity of O(N) on the motes
near the base station. Instead, we can reduce the overhead to
a small constant and obtain a conservative approximation. This
approximation will compute an interval that is guaranteed to
contain the order statistic, but that may be longer than the
intervals determined by an omniscient observer.

One way to achieve this is to add two fields to the reports
in addition to the four movement counters—a min and a max
reading. When a mote generates a change report, both the
max and min fields in the report are set to its latest reading.
These reports are aggregated in the obvious way. For example,
the max field in the aggregated report is set to the maximum
value in the max fields of the reports being aggregated. When
the base station computes the final report, it uses the updated
values of l and g to determine whether to use the interval
between p and the max field in the report or between the min
field in the report and p for the search.

This simple approach works, but has the disadvantage that
it is very conservative. We can do better by applying the
omniscient observer’s reasoning locally at every mote. Instead
of adding two hints to reports, the improved approach adds a
single hint containing a sensor reading. When a mote generates
a change report, it sets the hint value to its latest reading.
Motes aggregate hints using the pseudo code in Figure 3.

The invariant for this procedure is that the updated order
statistic obtained by applying all the changes accounted for
in a report must be between p and the report’s hint. This is
clearly true for reports generated by leaves in the tree. The
code in Figure 3 preserves this invariant.

It first decides whether there are more moves up or down in
the merged report at Line 14. If there are more moves up, it
only picks hints that are greater than p because the new value

AggregateHints (Report r1, Report r2)
1: lts1← 0, gts1← 0, lts2← 0, gts2← 0
2: if r1.into< > r1.outof< then
3: lts1← r1.into< − r1.outof<

4: end if
5: if r2.into< > r2.outof< then
6: lts2← r2.into< − r2.outof<

7: end if
8: if r1.into> > r1.outof> then
9: gts1← r1.into> − r1.outof>

10: end if
11: if r2.into> > r2.outof> then
12: gts2← r2.into> − r2.outof>

13: end if
14: if (lts1 + lts2) < (gts1 + gts2) then
15: if (gts1 6= 0) AND (gts2 = 0) then
16: return r1.hint
17: else if (gts2 6= 0) AND (gts1 = 0) then
18: return r2.hint
19: else if (gts1 + gts2)− (lts1 + lts2) = 1 then
20: return min (r1.hint, r2.hint)
21: else
22: return max (r1.hint, r2.hint)
23: end if
24: else
25: if (lts1 6= 0) AND (lts2 = 0) then
26: return r1.hint
27: else if (lts2 6= 0) AND (lts1 = 0) then
28: return r2.hint
29: else if (lts1 + lts2)− (gts1 + gts2) = 1 then
30: return max (r1.hint, r2.hint)
31: else
32: return min (r1.hint, r2.hint)
33: end if
34: end if

Fig. 3. Routine for aggregating report hints

of the order statistic must be greater than p. If both hints in
the merged report are greater than p and the balance of moves
up in the merged report is greater than one, it conservatively
picks the maximum hint value (Line 22).

The inductive hypothesis ensures that this preserves the
invariant because the interval between p and the maximum
hint contains the intervals of both reports. If both hints in the
merged report are greater than p and the balance of moves up
in the merged report is equal to one, it picks the minimum
hint value (Line 20). This also preserves the invariant because
extreme moves cancel as with the omniscient observer. The
case when there are more moves down is symmetric.

Another optimization reduces the number of iterations by
sending all readings in the search interval to the base station
when their number is known to be small. In the final iterations
of the binary search, it is often more power efficient to request
all sensor readings within the search interval than to continue



Median (p)

U = 3, D = 2 (k = 1)
d2 cancels u3 and d1 cancels u2 

u1 u2d1

New median

p

Range p to uk

d2 u3

Fig. 2. Example showing how the values crossing the median can be canceled. The top line shows the distribution of sensor readings (grey circles) with the
current median (p). The bottom line shows the new sensor values. If the new value differs from the old value, the old value is shown as a white circle and
the new value is shown as a black circle.

searching. This only requires the base station to remember
how many motes’ readings are less than the lower bound of
the search interval and how many are greater than the upper
bound.

If the number of readings known to be within the search
interval can fit in a single packet, the base station issues a
request for all motes with readings within the search interval
to forward their values up the tree. Because the number of
values requested fit in a single packet, motes will send no
more than one packet. In our prototype, 12 values fit in a
single packet.

Once the values have all arrived at the base station, they are
sorted. The base station then iterates through the sorted list,
incrementing l until it reaches its maximum value. When this
happens, the next value is the new value of the order statistic,
p, and the number of values left in the list are added to g.
Lastly, the base station broadcasts p to all motes, who store p
and update their order state.

F. Generalizations

Currently, our POS prototype supports only persistent
queries of a single order statistic at a time. However, our tech-
niques can easily be generalized to compute more complete
characterizations of the distribution of sensor readings. For
example, it can be used to compute several order statistics
simultaneously or to compute complete histograms.

For a single order statistic p, the base station maintains how
many readings are less than, greater than, and equal to p. There
are three intervals that any reading can fall into: [0, p), [p, p],
and (p, R], where R is the maximum value in the sensor’s
range. Reports simply summarize movement into and out of
these intervals. We can use the same idea to compute several
order statistics or to maintain a histogram.

For example to compute an histogram with n equal-length
bins, the sensor range is split up into n intervals, I1, I2, . . . , In,
where Ii = [R(i−1)

n
, Ri

n
). Each mote’s state is determined

by the interval its reading falls into. Whereas POS reports
contain four fields, persistent histogram reports would require

two fields—intoIi
and outofIi

—for each interval Ii giving
2n total. These reports can be aggregated in the network like
POS reports and transmissions can be suppressed as in POS.
Leaf motes can suppress the transmission of their report if
their new reading falls in the same interval as the last one
and interior motes in the tree can suppress the transmission of
reports when movement across intervals cancels out.

It is possible to compute several order statistics simulta-
neously in a similar way. One important difference between
persistent histograms and persistent order statistics is that the
interval boundaries are fixed by the choice of n for histograms
and they vary for persistent order statistics. Therefore, the base
station needs to maintain the interval boundaries for order
statistics using an update protocol but there is no need for
an update protocol when computing histograms.

POS can also be easily modified to answer top-k and
bottom-k queries [8] that return the k readings with the largest
or smallest values, respectively. For example to compute the
top k readings, POS can compute a value pk such that
only k readings are greater than or equal to pk using the
techniques described above. Then it can issue a query for
motes to return any readings greater than or equal to pk. This
approach provides an exact answer. Computing pk has O(1)
communication cost per mote and collecting the top-k readings
in the final query places a communication burden of O(k) on
the nodes close to the root of the tree, which is asymptotically
optimal.

IV. PROTOTYPE EVALUATION

We implemented a POS prototype and ran experiments
to evaluate its performance. Our experiments compared the
performance of the POS prototype, an aggregation service
similar to TAG [4], and our implementation of Patt-Shamir’s
algorithm [7] (which had not been implemented before). We
ran experiments to compare the communication overhead
incurred by the three systems when computing a persistent
query for the median sensor reading. To compare the overhead
of computing order statistics and averages, we also measured



the overhead required to compute a persistent query for the
average sensor reading using TAG [4]. The experiments ran
on Harvard University’s mote testbed (MoteLab). We also
performed simulations using TOSSIM [9].

The experiments were designed to answer the following
questions:

• How is the communication load distributed across motes
when computing medians in the three systems?

• How does the communication load compare when com-
puting averages and medians?

• How does POS behave across a spectrum of distributions
and temporal evolution models of sensor readings?

• What effect do the POS optimizations have on commu-
nication load?

A. Systems studied

Before presenting experimental results, we provide an
overview of the systems evaluated. All are implemented on
TinyOS-1.x.

Average computes the average of the sensor readings peri-
odically as in TAG [4]. It creates an ad-hoc spanning tree of
the sensor network that is rooted at the base station. Every
epoch motes aggregate their sensor readings up the tree and
the base station collects the average.

SendReadings computes the median as in TAG [4]. Each
epoch motes forward their sensor readings through the span-
ning tree to the base station. Each mote forwards its reading as
well as those of its children. TinyOS packets carry a 29 byte
payload, eight of which we used for an aggregation tree-related
header. This left 21 bytes to aggregate as many readings as
possible. Thus, for two byte readings each packet carried ten
readings. If a mote received more than ten readings from its
children, it sent the readings to its parent in multiple messages.

SendCount is our implementation of Patt-Shamir’s [7] al-
gorithm. It computes the median sensor reading periodically
using a binary search. Every epoch the base station computes
the network size, as well as the maximum and minimum
sensor readings. These are computed as in TAG by performing
aggregation up the spanning tree towards the base station.
After this initial count, the base station performs binary search
in the interval between the minimum and maximum readings.
It computes the average of the minimum and maximum to
generate an estimate for the median, which it broadcasts to the
motes. Motes respond with reports that count the number of
readings less than, equal to, and greater than this value. These
reports are also aggregated up the tree towards the base station.
The base station uses the aggregated report to determine the
half of the interval containing the median and broadcasts the
midpoint of the new interval. This process continues until the
base station determines the median.

The POS prototype consists of under 4,000 lines of code
residing in less than 50 nesC files. The POS implementation
incorporates all optimisations discussed in this paper.
B. MoteLab Results

MoteLab is a wireless sensor network deployed in the
Maxwell Dworkin building at Harvard University. It is com-

Fig. 4. MoteLab: Ad-hoc Tree and Grey Base Station

posed of 26 Xbow MicaZ motes [11] with Atmel AT-
MEGA128L processors running at 7.3MHz, 128KB of read-
only program memory, 4KB of RAM, and a Chipcon CC1000
radio operating at 433 MHz with an indoor range of approx-
imately 100 meters. Each mote has an attached sensor board
with photo, temperature, magnetometer, and various other
sensors. For each trial, motes logged transmitted messages to
their serial port, where the messages were stored in an SQL
database. For the experiments, we used only the photo sensor.

We ran POS, Average, SendReadings, and SendCount on
the same 26 mote Network for an hour with an epoch of 1.5
minutes. Each system generated 40 samples of the median
or average sensor reading during the experimental run. All
systems computed exact samples of the median or average in
these experiments.

The motes in all systems self-organized into a spanning tree
rooted at the base station which was used to communicate
sensor readings to the base station every epoch. Figure 4 shows
an example spanning tree observed in one of the experimental
runs. The base station is shaded. In this tree, the maximum
branching factor was four and the depth was six.

During each experiment, every mote recorded the total bytes
sent, including broadcasts and retransmissions. We used the
TinyOS Active Message (AM) layer [13] for communication.
Each AM packet contains a five byte header, a 29 byte payload,
and a two byte CRC footer. Therefore, packets have a fixed
length of 36 bytes.

Figure 5 shows the sorted communication load of all motes
under POS and Average. Since the mote photo sensor readings
changed slowly and the observed range of values was narrow,
POS’ update protocol rarely ran and traffic suppression signif-
icantly reduced the number of bytes sent during the validation
protocol. In Average, every mote transmitted reports to their
parent every epoch. Since each packet is 36-bytes long, each
mote was expected to transmit 1440 bytes over 40 epochs.
Figure 5(b) shows that some nodes transmit more bytes. This
is because of retransmissions. The TinyOS MAC layer for the
MicaZ mote provides message acknowledgments, which we
used to trigger retransmissions. The results show that POS
induces a lower communication overhead than Average.

Figure 6 shows the sorted communication load of all motes
for SendReadings and SendCount. These results show that the
overhead induced by SendCount is significantly higher than
the overhead induced by any other approach. At the beginning
of each epoch, SendCount computes the max and min sensor
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Fig. 5. MoteLab: POS and Average

readings, which requires each mote to send two packets. Then
the base station broadcasts the estimated median and collects
aggregate counts, which requires two more packets per mote.
For some epochs, further rounds may be required. Hence,
each mote is required to transmit at least four 36-byte packets
during each epoch or 5760 bytes in 40 epochs. The additional
messages are due to retransmissions.

The communication overhead induced by SendReadings is
almost constant across all motes because packets are fixed
size and no mote receives more than 10 readings in this small
network (as shown in Figure 4). Therefore, each mote sends a
single packet in each epoch or 1440 bytes over the 40 epochs.
Variations are due to packet retransmissions. In this small
network, SendReadings induces the same overhead to compute
the median as Average induces to compute the average.
However, SendReadings does not scale. Its performance would
be significantly worse than Average for large networks.

These figures show that POS has the lowest communica-
tion overhead of all the approaches, followed by Average,
SendReadings and SendCount. The maximum bytes transmit-
ted by a mote under SendReadings or Average is twice the
maximum bytes transmitted by a POS mote. The overhead
of SendCount is even higher. The maximum bytes sent by
a SendCount mote was nearly ten times the maximum bytes
sent by a POS mote. POS is not only more efficient for the
motes with the heaviest load. The Average, SendReadings, and
SendCount motes with the least load still sent one and a half
to 14 times more bytes than their POS counterparts.

In order to further understand the results, we also measured
the maximum and minimum number of packets transmitted
per mote in the different systems. These results are shown in
Figure 7. The minimum number of messages sent by a mote in
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Fig. 6. MoteLab: SendReadings and SendCount

Approach Max Msgs Min Msgs
POS 33 18

Average 84 42
SendReadings 50 44

SendCount 423 272

Fig. 7. MoteLab: Message Transmission Statistics

both Average and SendReadings is very close to the number of
epochs as would be expected. The additional messages are due
to retransmissions. The number of messages for SendCount
is much higher because each mote must transmit at least
four messages per epoch. In the absence of retransmissions,
all motes would be expected to send the same number of
packets. The POS results show the benefits of validation
and transmission suppression. POS sends significantly fewer
messages than all the other systems.

The photo readings we observed moved very slowly relative
to the epoch length. After an initial period during which
the sensors warmed up, the median reading did not change.
Because of this, POS transmitted almost no messages in
steady state. Each of the other approaches continued to send
information back to the base station. One could lengthen the
epoch period to reduce this overhead, but doing so would
compromise accuracy. POS requires no such compromise. It
provides accurate statistics at the lowest cost.

C. TOSSIM Results: Locality and Stability

The MoteLab results demonstrate that POS can offer sig-
nificant communication savings relative to other approaches
even in small sensor networks. Because SendReadings places
an O(N) load on motes near the base station, its overhead
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Fig. 8. TOSSIM: Average
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Fig. 9. TOSSIM: POS with Stable Readings

should increase as the number of motes, N , increases.
To evaluate the systems on a larger network, we used

the TinyOS simulator, TOSSIM [9]. TOSSIM simulations
compile directly from TinyOS sourcecode. Each mote in the
simulation had a radio with a radius of 30 meters. Links
were asymmetric and messages received simultaneously were
XORed to simulate interference. Unlike the motes used in
the MoteLab experiments, the TOSSIM MAC layer does not
provide message acknowledgments. Motes can still listen if
others are transmitting before they send a packet. Since there
are no retransmissions, some messages were lost but these
losses did not affect the accuracy of the medians computed
in the experiments. Our TOSSIM networks consisted of 100
motes arranged on a 300 meter by 300 meter grid. The
simulations ran until the base station recorded 20 median or
average values using an epoch of two minutes. As with the
MoteLab experiments, the packet length was fixed at 36 bytes.

POS’ communication overhead varies depending on both the
distribution of the readings (locality) and the way they change
over time (stability). In the MoteLab experiments, individual
readings were highly correlated and changed little over the
course of the experiment. Using TOSSIM, we evaluated POS
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Fig. 10. TOSSIM: SendReadings
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Fig. 11. TOSSIM: SendCount with Stable Readings
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Fig. 12. TOSSIM: POS with Unstable Readings
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Fig. 13. TOSSIM: SendCount with Unstable Readings

under more challenging conditions.
To control reading locality, motes chose their readings from

one of two distributions. In one group of experiments, motes
chose readings from a discrete, binomial distribution with
success probability 0.5 and 100 trials. This provided locality
around the value 50. In the other group of experiments, motes
chose readings from a uniformly random distribution, which
demonstrated no locality.

To control reading stability, we varied how readings changed
from epoch to epoch. In one group of experiments, motes
chose new readings after every epoch, independently of their
previous reading. In other experiments, after an initial reading
was chosen, motes chose subsequent readings by randomly
perturbing the previous epoch’s by -1, 0, or 1. We compared
POS’s communication overhead under each combination of
stability and locality to Average, SendReadings, and Send-
Count.

Average and SendReadings perform the same regardless of
locality or stability. Figures 8 and 10 show the distribution
of bytes sent under Average and SendReadings, respectively.
When running Average, each mote transmits a packet in every
epoch. Each mote was expected to transmit 720 bytes in 20
epochs, as shown in Figure 8. When running SendReadings,
most motes will also send just a single packet per epoch—
720 bytes over the length of the experimental run. However,
motes closer to the base station must send multiple packets.
If a single mote is required to forward all 100 readings to the
base station each epoch then it will send 10 packets per epoch,
or 7200 bytes in total. Figure 10 demonstrates the higher load
experienced by the motes closer to the base station.

Figure 9 shows the overhead of POS when readings are
stable. POS performs very well under these conditions. When

readings express locality (Figure 9 (a)), the most bytes sent
by a POS mote is nearly ten times less than the most bytes
sent by a SendReadings mote and is equal to the most bytes
sent by an Average mote.

When readings do not express locality (Figure 9 (b)), the
most bytes sent by a POS mote is nearly seven times less
than the most bytes sent by a SendReadings mote. As in the
MoteLab experiments, POS’s benefit is not limited to the most
burdened motes. The SendReadings motes who sent the fewest
bytes had an overhead of nearly ten times the POS motes that
sent the fewest bytes, regardless of distribution.

Unfortunately, without locality POS can be more expensive
than Average. The most burdened POS node transmits over
twice as many bytes as the most burdened Average node, but
the least burdened motes in each approach transmit approxi-
mately the same number of bytes. We expect the readings of
most deployments to exhibit some degree of locality.

Figure 11 shows the distribution of bytes sent under Send-
Count when readings are stable. With or without locality,
SendCount is much more expensive than any of the other
systems. The results without locality are worse because the
interval of observed sensor readings is wider and, therefore,
binary search requires more rounds to compute the median
every epoch. The overhead introduced by SendCount when
readings are not stable is shown in Figure 13. It is almost
identical to the overhead observed with stable readings because
SendCount does not implement validation or transmission
suppression optimizations that exploit stability.

To evaluate POS in more demanding conditions, Figure 12
shows the communication overhead of POS when readings are
not stable. These conditions are unlikely in real settings be-
cause it is unlikely for sensor readings to change independently
each epoch.

POS performs well when readings exhibit locality (Fig-
ure 12 (a)) even when they are not stable. The maximum
number of bytes sent by a POS node when readings follow
the binomial distribution is four times less than the maximum
number of bytes sent by a SendReadings node.

In the worst case, when readings exhibit neither locality
nor stability, POS’ advantage over SendReadings is less pro-
nounced (Figure 12 (b)). However, POS is still 25% more
communication efficient than SendReadings and the perfor-
mance advantage would be larger for larger networks because
POS scales better.

D. Optimizations

The final question we wanted to answer was how effective
our more complex optimizations were at reducing message
transmissions. Specifically, we were interested in in-network
transmission suppression, sophisticated report hints, and op-
portunistically sending readings to reduce the number of
rounds of binary search. To isolate the effect of each, we
removed one optimization from POS at a time and reran
our TOSSIM experiments. None of these optimizations sig-
nificantly reduced communication when readings exhibited
stability and locality because validation and local transmission
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Fig. 14. TOSSIM: Stratified Perturbations

suppression are already so effective. This reduces the impact
of the other optimizations in many common cases. However,
the more complex optimizations did prove useful in more
pathological environments.

For example, when readings were unstable and chosen from
a uniform distribution, opportunistically sending readings back
to the base station significantly shortened the runtime of the
update protocol. When POS stopped sending readings back to
the base station, the average number of rounds to recover the
median with binary search rose from 3.76 to 5.59 (an increase
of nearly 50%). It should be noted that the number of bytes
sent was similar in both cases; most of these extra search
rounds did not elicit responses from the motes because of our
transmission suppression optimizations. However, reducing the
number of rounds is important because it enables POS to
reduce the minimum epoch users can specify in persistent
queries.

In-network transmission suppression proved to be more
useful when readings were unstable and chosen from a bi-
nomial distribution. In this case, the number of bytes sent
increased without the optimization. Among motes with the
greatest communication burden, in-network filtering removed
approximately 18% of their load. As expected, nodes with the
least burden (i.e. leaf nodes) did not benefit from in-network
filtering at all, but they did benefit from our local transmission
suppression optimization.

The sophisticated report hints did not provide benefit rel-
ative to the simpler strategy of sending the max and min
movement hints (see SectionIII-E) in our previous experimen-
tal scenarios. Since we expect the more sophisticated hints
to provide the most benefit when there is some geographical
correlation in the changes of sensor readings, we applied a new

distribution of sensor readings with stratified perturbations.
Readings were initially chosen from the same binomial

distribution used in previous experiments. Each new epoch’s
reading was equal to the previous epoch’s reading plus a
perturbation. Motes’ perturbations decreased exponentially the
farther out they were from a disruptive center. We would
like to have explored moving the disruptive center around the
network, but this proved difficult.

The only approximation a mote has of its geographic
coordinate is its level in the spanning tree. Thus, each mote’s
level in the spanning tree determined its degree of perturbation.
The readings of motes closest to the base station varied more
than those of far away motes. Specifically, perturbations were
chosen uniformly from the range [−(M−l)2, (M−l)2], where
M was the maximum tree depth and l was a mote’s tree depth.
Thus, the base station’s reading varied the most, while motes
at depth M did not vary at all.

We ran POS under this distribution of sensor readings using
our normal report hints and a more conservative approach
of using the maximum and minimum of changed values as
hints. Figure 14 shows the distribution of bytes sent by each
approach to compute 20 median readings over a 100 mote
network in TOSSIM. The maximum bytes sent by a mote
using extreme hints was nearly two and one third times more
than those sent using our report hints. This demonstrates that
our report hints can effectively narrow the search scope by
canceling extreme changes whenever possible.

V. RELATED WORK

TAG [4] represents the most common model for collect-
ing data from wireless sensor networks. Through persistent
queries and in-network aggregation, TAG can power efficiently
compute statistics like min, max, count, and average. Unfor-
tunately, TAG requires motes to send all values back to the
base station to compute the median reading.

One facet of TAG that is similar in spirit to POS, however,
is its use of hypothesis testing. With hypothesis testing, motes
attempt to infer their local reading’s impact on the global state
by snooping on the network. If the values a mote hears from its
neighbors are similar to its own, it suppresses its transmission.
Persistent order statistics give motes the precise global state
rather than just a local approximation. This allows motes to
make better decisions about the effect of their own reading.

In addition to TAG, several projects have recently looked
at computing order statistics in sensor networks using ap-
proximations. One such system [5] uses compressing data
structures called q-digests. Q-digests are tree-like structures
that summarize how many values lie within pre-determined
intervals of the reading range. Because q-digests are fixed-size
and easy to aggregate, motes send O(1) bytes per computation.
Unfortunately, fixed-size q-digests must be relatively large
to maintain acceptable accuracy. For example, a 50 byte q-
digest gives between 20 and 25 percent error. The authors
suggest reducing percent error to two percent by using 400
bytes messages. By comparison, POS also requires O(1) bytes



per node transmitted, but needs less than the 29 byte packet
payload provided by TinyOS to provide full accuracy.

A similar project applies techniques from data base re-
search [6] to the problem of sensor network order statistics.
This approach employs quantile summaries as well as mul-
tiple passes of the network to approximate order statistics.
For a network of size n, this approach requires motes to
send O(log2n/ε) values per computation, where ε < 1 is
the percent error. To compute the exact value, motes must
send O(log3n) values. In comparison, POS places an O(1)
transmission load on all motes and provides exact values.

Lastly, Patt-Shamir [7] describes a technique to compute
order statistics using binary searches that is similar to our
update protocol. This technique achieves O(1) communication
complexity per sensor node but our results show that the
constants involved are large. It requires more messages to
compute a median than sending all the sensor readings to the
base station even for networks with as many as 100 nodes.
A technique similar to Patt-Shamir’s is presented in [14].
POS improves on these techniques by adding a validation
protocol that can avoid the binary search in many epochs when
computing persistent queries. Additionally, it uses knowledge
of the previous sample of an order statistic or the value
computed during the previous iteration of a binary search to
suppress communication and reduce the number of iterations
of binary search. Our results show that these improvements
have a large impact on performance.

VI. CONCLUSION

Wireless sensor networks are used to monitor a wide range
of environments. Since energy efficiency is critical in these
deployments, almost all use a combination of persistent queries
and in-network aggregation to collect data and conserve en-
ergy. These techniques work well for statistics such as max,
min, and average, but not for order statistics such as median.
Current techniques for computing order statistics either for-
ward all sensor readings to a collection point or calculate
approximate results. Neither provides both energy efficiency
and accuracy. This is unfortunate because order statistics are
more resilient to faulty sensor readings than max, min, or
average.

To ease this tension between resilience and energy ef-
ficiency, we propose POS, an energy-efficient, in-network
service that computes accurate order statistics. POS returns
a stream of periodic samples of any order statistic. It initially
computes the value of the order statistic and then periodically
runs a validation protocol to determine whether the value is
still valid. If not, it uses an optimized binary search to deter-
mine the new value and then resumes periodic validation. POS
uses in-network aggregation and transmission suppression to
achieve O(1) communication complexity per node.

We presented the design and implementation of POS and
an evaluation of the POS prototype using Harvard Univer-
sity’s MoteLab and the TOSSIM simulator. Results from
these experiments demonstrate that POS can compute order

statistics accurately while consuming less energy than the best
techniques to compute averages in common cases.
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