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Abstract

Structured peer-to-peer (p2p) overlay networks provide
a useful substrate for building distributed applications.
They map object keys to overlay nodes and offer a primi-
tive to send a message to the node responsible for a key.
They can implement, for example, distributed hash tables
and multicast trees. However, there are concerns about the
performance and dependability of these overlays in realis-
tic environments. Several studies have shown that current
p2p environments have high churn rates: nodes join and
leave the overlay continuously. This paper presents tech-
niques that continuously detect faults and repair the over-
lay to achieve high dependability and good performance in
realistic environments. The techniques are evaluated using
large-scale network simulation experiments with fault injec-
tion guided by real traces of node arrivals and departures.
The results show that previous concerns are unfounded; our
techniques can achieve dependable routing in realistic en-
vironments with an average delay stretch below two and a
maintenance overhead of less than half a message per sec-
ond per node.

1. Introduction

Structured peer-to-peer overlays, such as CAN [18],
Chord [23], Pastry [20] and Tapestry [11], provide a use-
ful substrate for building distributed applications. Theymap
object keys to overlay nodes and offer alookupprimitive
to send a message to the node responsible for a key. Over-
lay nodes maintain routing state to route messages towards
the nodes responsible for their destination keys. Struc-
tured overlays have been used to implement, for example,
archival stores [8, 21], file systems [16], Web caches [12],
and application-level multicast systems [26, 7, 6].

However, there are concerns about the performance and
dependability of these overlays in realistic environments.
Several studies [22, 1] have shown that current p2p envi-
ronments have high churn rates: nodes join and leave the
overlay continuously and do not stay in the overlay for long.
This paper presents MSPastry, which is a new implementa-
tion of Pastry [20] that includes techniques to achieve high
dependability and good performance in realistic environ-
ments.

MSPastry is dependable because it ensures that lookup
messages are delivered to the node responsible for the des-
tination key with high probability even with high churn and
link loss rates. It prevents delivery of lookup messages to
the wrong nodes by using a new algorithm to manage the
routing state and it ensures that messages eventually get de-
livered with a combination of active failure detection probes
and per-hop retransmissions.

MSPastry also performs well and its performance de-
grades gracefully as the node failure rate and the link loss
rate increase. It achieves low delay by using Proximity-
aware routing [5] and the combination of active probing and
aggressive per-hop retransmissions that exploit redundant
overlay routes. It achieves low control traffic bandwidth by
self-tuning the active probing period to achieve a target de-
lay with minimum overhead and by exploiting the overlay
structure to divide up the responsibility to detect failures.
We present the techniques in the context of MSPastry for
concreteness but they could be applied to other overlays.

The paper presents a detailed experimental evaluation of
MSPastry using large scale simulations. We use fault injec-
tion guided by real traces of node arrivals and departures in
deployed peer-to-peer systems to evaluate the dependabil-
ity and performance of MSPastry in realistic environments.
We also explore the performance of MSPastry when varying
environmental parameters like network topology, node ses-
sion times, link loss rates, and amount of application traffic.
The paper also presents simulation experiments to evaluate
the impact of individual techniques and of varying impor-
tant algorithm parameters. We validate the simulation re-
sults with measurements from a deployment of the Squirrel
Web cache [12], which runs on top of MSPastry, in our lab.

The results show that concerns about the performance
and dependability of structured overlays are no longer war-
ranted; our techniques can achieve dependable routing in
realistic environments with an average delay that is withina
factor of two of the minimum and a maintenance overhead
of less than half a message per second per node.

The rest of the paper is organised as follows. Section 2
provides an overview of structured overlays. Sections 3
and 4 discuss the techniques used to achieve dependabil-
ity and performance in MSPastry. The experiments are de-
scribed in Section 5 and we conclude in Section 6.
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Figure 1: Routing table and leaf set of a node with nodeId
203231, and route taken by a lookup message sent by that
node to key323310. The * in the routing table represents an
arbitrary suffix.

2. Overview of structured overlays

Structured overlays map keys to overlay nodes. Nodes
are assignednodeIdsselected from a large identifier space
and application objects are identified by keys selected from
the same space. A key is mapped to the node whose nodeId
is closest to the key in the identifier space. This node is
called the key’s root. For example, Pastry selects nodeIds
and keys uniformly at random from the set of 128-bit un-
signed integers and it maps a keyk to theactivenode whose
identifier is numerically closest tok modulo2128. Nodes are
initially inactive and they become active after they join the
overlay. They become inactive when they leave the overlay
either voluntarily or because of a failure.

The mapping is exposed through a primitive that al-
lows users to send alookupmessage to a destination key.
These messages are routed through the overlay to the key’s
root node. To route lookups efficiently, overlay nodes main-
tain some routing state with the identifiers and network ad-
dresses of other nodes in the overlay. For example, each Pas-
try node maintains arouting tableand aleaf set.

Pastry’s routing algorithm interprets nodeIds and keys as
unsigned integers in base2b (whereb is a parameter with
typical value 4). The routing table is a matrix with128/b
rows and2b columns (as in [17, 11]). The entry in rowr and
columnc of the routing table contains a nodeId that shares
the firstr digits with the local node’s nodeId, and has the
(r + 1)th digit equal toc. If there is no such nodeId, the
entry isnull. The uniform random distribution of nodeIds
ensures that onlylog2bN rows have non-empty entries on
average (whereN is the number of nodes in the overlay).

The leaf set of a Pastry node contains thel/2 closest
nodeIds to the left of the node’s nodeId and thel/2 clos-
est nodeIds to the right (wherel is a parameter with typical
value 32). The leaf sets connect the overlay nodes in a ring.
Figure 1 shows the routing table and leaf set of a node with
nodeId203231 in a Pastry overlay withb = 2 andl = 4.

Pastry routes a lookup message by forwarding it to nodes
that match progressively longer prefixes with the destina-
tion key. Figure 1 shows the route followed by an exam-
ple lookup message sent by node203231 to a key323310.
Node203231 searches the first level of its routing table for
a nodeId starting with digit 3, which is the first digit in the
key. It finds node313221 and forwards the message to this

node. Node313221 searches the second level of its routing
table for a nodeId starting with32. This is repeated until the
root node is reached.

Routing takes approximately2
b
−1

2b log2bN overlay hops
on average [5] because of the random uniform distribution
of nodeIds. But it is important for overlay routing to exploit
proximity in the underlying network. Otherwise, each over-
lay hop has an expected delay equal to the average delay
between a pair of random overlay nodes, which stretches
route delay by a factor equal to the number of overlay hops.

Pastry uses proximity neighbor selection (PNS) [17, 11,
20, 5, 10] to achieve low delay routes. PNS picks the clos-
est node in the underlying network to fill a routing table slot
from among those whose nodeIds have the required prefix.

Pastry implements PNS usingconstrained gossipingas
described in [5] and uses round-trip delay as the proximity
metric. A joining nodei starts by obtaining a random over-
lay nodej. It uses this random node and thenearest neigh-
bor algorithmin [4, 5] to locate a nearby overlay node. The
overlay node returned by the nearest neighbor algorithm is
used toseedthe join process. Nodei sends a join request
to the seednode and this node routes the message toi’s
nodeId. The nodes along the overlay route add routing table
rows to the message; nodei obtains therth row of its rout-
ing table from the node encountered along the route whose
nodeId matchesi’s in the firstr − 1 digits.

It is also important to update other node’s routing tables
to ensure that they remain near perfect after nodes join the
overlay. After initializing its routing table,i sends therth
row of the table to each node in that row. Each node that re-
ceives a row sends probes to measure the distance to nodes
in the row that are not in its table and it replaces old en-
tries by new ones if they are closer. This serves both to an-
nouncei’s presence and to gossip information about nodes
that joined previously.

Pastry also has aperiodic routing table maintenancepro-
tocol to repair failed entries and prevent slow deterioration
of the locality properties over time. This protocol imple-
ments a form of constrained gossiping. Each nodei asks a
node in each row of the routing table for the corresponding
row in its routing table. Then, it sends probes to measure the
distance to nodes in the received row that are not in its table
and replaces old entries by new ones if they are closer. This
is repeated periodically, for example, every 20 minutes in
the current implementation. Additionally, Pastry has apas-
sive routing table repairprotocol: when a routing table slot
is found empty during routing, the next hop node is asked
to return any entry it may have for that slot.

3. Routing dependability

Overlay routing is dependable if a lookup message sent
to a key is delivered to the key’s root node. To achieve de-
pendability, it is necessary for routing to provide a con-
sistent mapping from keys to overlay nodes. Additionally,
messages may be lost when they are routed through the
overlay because of link losses or node failures. Therefore,



it is also necessary to detect and recover from failures to
achieve reliable routing. We developed MSPastry, which is
a new version of Pastry that achieves consistent and reli-
able routing. We focus the presentation on MSPastry for
concreteness but the techniques that we describe could be
applied to other overlays.

3.1. Consistent routing

We say that routing isconsistentif overlay nodes never
deliver a lookup message when they are not the current
root node for the message’s destination key. We make the
usual distinction between receiving a message (at the over-
lay level) and delivering a message (at the application level).

Consistent routing is important. Inconsistencies can lead
to degraded application performance and user experience.
For example, Ivy [16] implements a mutable file system us-
ing a structured overlay. Inconsistent routing can result in an
inconsistent file system; users may fail to find existing files
or they may complete conflicting operations. Ivy provides
conflict detection mechanisms but repairing conflicts re-
quires user input. Other applications have similar problems.
CFS [8] and Past [21] provide archival file storage on top of
a structured overlay. Inconsistent routing may prevent users
from finding their archived files or require additional data
transfer to move incorrectly stored files to the correct over-
lay nodes. Bayeux [26], Scribe [7], and SplitStream [6] are
application-level multicast systems using structured over-
lays. Routing inconsistencies can cause group members to
lose multicast messages in these systems. Therefore, it is
important to minimize routing inconsistencies.

MSPastry guarantees consistent routing with crash fail-
ures assuming that each active node has at least one non-
faulty node in each side of its leaf set and that non-faulty
nodes are never considered faulty. Additionally, MSPastry
includes a leaf set repair mechanism that restores consis-
tency quickly after a violation. This is confirmed by our ex-
perimental results; routing was always consistent in all our
experiments without link losses even with extremely high
churn rates. We observed a small probability of inconsisten-
cies with high link loss rates because the second assumption
was violated but MSPastry was able to recover quickly.

We do not know of any other structured overlay im-
plementation that provides consistency guarantees for rout-
ing. They provide best-effort consistency that can be im-
proved at the expense of higher overhead. For example, a
recent study [19] shows that existing implementations have
a significant number of inconsistent deliveries in scenarios
where MSPastry should have none while incurring a higher
overhead than MSPastry.

Figure 2 describes a simplified version of MSPastry’s
consistent routing algorithm. The algorithm maintains the
leaf sets consistent to ensure consistent routing. The state in
the routing table is important for performance but it is not
necessary to ensure consistency. Therefore, we omit details
on the maintenance of routing tables. The figure shows the
code executed by a node with identifieri. Actions (in capi-

tal letters) are executed in response to events like receiving
a message. The auxiliary functions (in italics) are invoked
from action code. For simplicity, we assume asendfunction
that takes a node identifier instead of a network address.

Each nodei has a routing tableRi and a leaf setLi,
as described in the previous section. Initially, they contain
only i. The boolean variableactivei records whetheri is
active. The variablesprobingi andprobe-retriesi keep track
of nodes being probed byi and the number of probe retries
sent to each node, andfailedi is a set with nodes thati be-
lieves to be faulty. Initially,probingi andfailedi are empty,
andactivei is false.

Theroutei function implements the Pastry routing algo-
rithm described earlier. If the destination key,k, is between
the leftmost and rightmost identifiers in the leaf set,routei

picks the leaf set element closest tok as the next hop. Other-
wise, it computes the lengthr of the prefix match between
k and i, and sets the next hop to the entry in rowr and
columnc of the routing table, wherec is the r-th digit ofk.
In the unlikely case that this entry is null, the next hop is set
to a nodeId in the routing table or leaf set that is closer to
k thani and shares a prefix withk of length at leastr. The
last case allows MSPastry to route around missing entries in
the routing table for fault tolerance. If the next hop chosen
by routei is equal toi or null, the message has reached its
destination and the functionreceive-rooti is invoked.

The routei function is used to route both lookups and
join requests as in the original Pastry [20] except that
receive-rooti does not deliver messages ifi is not active.
This is important to ensure consistent routing. In our imple-
mentation,i buffers messages and invokesroutei on them
after it becomes active. We discard these messages in Fig-
ure 2 for simplicity.

Joins proceed as described in Section 2 but the join-
ing node does not become active when it receives the
JOIN-REPLY. Instead, it first probes all the elements in its
leaf set to ensure consistency. AnLS-PROBEsent by a node
j contains a copy ofj’s L andfailed. Wheni receives a leaf
set probe fromj, it addsj to its leaf set and routing table (if
appropriate), sends probes for the nodes in its leaf set that
are in failed, and removes these nodes from its leaf set. It
probes the removed nodes to confirm that they are faulty.
This is important to recover from false positives. Then,i
creates a cloneL′ of its leaf set and adds nodes inL that
it does not think are faulty toL′. The nodes inL′ that are
not in Li are candidates for inclusion ini’s leaf set; they
are probed before inclusion to ensure consistency. Finally, i
sends anLS-PROBE-REPLY back toj.

LS-PROBE-REPLY messages contain the same infor-
mation asLS-PROBE messages and they are handled in
the same way but no reply is sent back to the sender.
After processing a probe reply fromj, a node invokes
done-probingi(j). This function removesj from the set of
nodes being probed. If there are no outstanding probes and
the leaf set is complete, the function marks the node active
andfailedi is cleared.

Nodes are marked faulty inPROBE-TIMEOUTi. If i



JOINi(seed)
send〈JOIN-REQUEST, {}, i〉 to seed

RECEIVEi(〈JOIN-REQUEST, R, j〉)
R.add(Ri)
routei(〈JOIN-REQUEST, R, j〉, j)

receive-rooti(〈JOIN-REQUEST, R, j〉, j)
if (activei)

send〈JOIN-REPLY, R, Li〉 to j

RECEIVEi(〈JOIN-REPLY, R, L〉)
Ri.add(R ∪ L); Li.add(L)
for eachj ∈ Li do{ probe(j) }

probei(j)
if (j 6∈ probingi ∧ j 6∈ failedi)

send〈LS-PROBE, i, L, failedi〉 to j
probingi := probingi ∪ {j}; probe-retriesi(j) := 0

RECEIVEi(〈LS-PROBE| LS-PROBE-REPLY, j, L, failed〉)
failedi := failedi − {j}
Li.add({j}); Ri.add({j})
for eachn ∈ Li ∩ failed do{ probei(n) }
Li.remove(failed)
L′ := Li; L′.add(L − failedi)
for eachn ∈ L′ − Li do{ probei(n) }
if (message isLS-PROBE)

send〈LS-PROBE-REPLY, i, Li, failedi〉 to j
else

done-probingi(j)

SUSPECT-FAULTYi(j)
probei(j)

LOOKUPi(m, k) | RECEIVEi(〈LOOKUP, m, k〉)
routei(〈LOOKUP, m, k〉, k)

receive-rooti(〈LOOKUP, m, k〉, k)
if (activei)

deliveri(m, k)

done-probingi(j)
probingi := probingi − {j}
if (probingi = {})

if (Li.complete)
activei := true; failed := {}

else
if (|Li.left| < l/2)

probe(Li.leftmost)
if (|Li.right| < l/2)

probe(Li.rightmost)

PROBE-TIMEOUTi(j)
if (probe-retriesi(j) < max-probe-retries)

send〈LS-PROBE, i, Li, failedi〉 to j
probe-retriesi(j) := probe-retriesi(j) + 1

else
Li.remove(j); Ri.remove(j)
failedi := failedi ∪ {j}
done-probingi(j)

routei(m, k)
if (k betweenLi.leftmostandLi.rightmost)

next:= pick j ∈ Li such that|k − j| is minimal
else

r := shared-prefix-length(k, i)
next:= Ri(r, r-th-digit(k))
if (next= null)

next:= pick j ∈ Li ∪ Ri : |k − j| < |k − i|
∧ shared-prefix-length(k, j) ≥ r

if (next 6= i ∧ next 6= null)
sendm to next

else
receive-rooti(m, k)

Figure 2: Simplified MSPastry overlay routing and maintenance algorithm.

does not receive a probe reply fromj within To seconds,
PROBE-TIMEOUTi(j) fires. Probes are retried a few times
and we use a large timeout to reduce the probability of false
positives, i.e., marking a live node faulty. But if no reply is
received after the maximum number of retries,j is marked
faulty. Currently, MSPastry usesmax-probe-retries= 2 and
To = 3s (same as the TCP SYN timeout). We experimented
with other values but this setting provides a good trade-
off between the probability of false positives and overhead
across a large range of environments.

A node that is marked faulty is removed from the routing
state and added tofailedi, and done-probingi is invoked.
If there are no outstanding probes and the leaf set is not
complete,done-probingi initiates aleaf set repair. This is
achieved simply by probing the leftmost node in the leaf
set if the left side of the leaf set has less thanl/2 nodes
and similarly for the right side. It is important to prevent
repair from propagating dead nodes, otherwise, dead nodes
could bounce back and forth between two nodes. This is
avoided because a node never inserts another node in its leaf
set without receiving a message directly from that node.

We have generalized leaf set repair to handle the case
whenLi.left or Li.right are empty. The idea is to use the
routing tables to aid repair. For example, ifLi.right is
empty,i sends a leaf set probe to the closest nodej in Ri or
Li to the right. Nodej replies with thel + 1 nodes closest

to i that are inRj or Lj. This enables efficient repair be-
cause it converges in O(log N) iterations even when a large
fraction of overlay nodes fails simultaneously. We do not
deliver messages toi while Li.left or Li.right is empty.

SUSPECT-FAULTY i abstracts the mechanism by whichi
comes to suspect that another node is faulty. For example,
nodes can send heartbeats to other nodes in their leaf set
and triggerSUSPECT-FAULTY if they miss a heartbeat. We
discuss a more efficient implementation in Section 4.1.

The intuition behind the consistent routing algorithm is
that probing iterates along the ring towards the correct leaf
set while informing probed nodes about the probing node.
A nodei becomes active after receiving probe replies that
agree on its leaf set value from all nodes in its leaf set. Since
these leaf set members addi to their leaf set before sending
the probe reply, nodes that join later will be informed about
i and will probe it before they become active.

3.2. Reliable routing

Consistency is not sufficient for dependable routing.
Messages may be lost when they are routed through the
overlay because of link losses or node failures along the
route. It is necessary to detect failures and repair routes to
achieve reliable routing. MSPastry achieves reliable routing
with good performance by using a combination ofactive



probingandper-hop acks. The importance of this combina-
tion has been noted in concurrent work [19, 9, 14].

MSPastry uses active probing to detect when nodes in
the routing state fail. We already described active probing
of leaf set nodes and eager repair of leaf sets when faults
are detected. This is sufficient for consistency but it is also
important to probe nodes in routing tables for reliability.
Every nodei sends a liveness probe to each nodej in its
routing table everyTrt seconds. If no response is received
from j within To seconds,i sends another probe toj. This
is repeated a few times beforej is marked faulty and we use
a large timeout to reduce the probability of false positives.
The number of retries and timeout are the same for leaf set
and routing table probing.

Since routing table repair is not crucial for consistency
and MSPastry can route around missing routing table en-
tries, repair is performed lazily using the periodic routing
table maintenance and passive routing table repair (as de-
scribed earlier). To prevent repair from propagating dead
nodes back and forth,i never inserts a node in its routing ta-
ble during repair without first receiving a message directly
from that node.

The experimental results show that active probing can
achieve an end-to-end loss rate in the order of a few per-
cent with low overhead even with high churn. However, the
probing frequency required to achieve significantly lower
loss rates is very high and is limited by the inverse of the
round-trip time to the probed node. Additionally, active
probing provides little help with link losses.

MSPastry uses per-hop acks to achieve lower loss rates
with low overhead and to deal with link losses. Every node
i, along a message’s overlay route, buffers the message and
starts a timer after forwarding the message to the next node
j. If j does not reply with an ack,i reroutes the message to
an alternative node by executingroutei with j excluded. The
experimental results show that per-hop acks can achieve
loss rates in the order of10−5 with low overhead even with
a high rate of node failures and link losses.

Fast recovery from node and link failures is important to
achieve low delay routes. We achieve this with aggressive
retransmissions on missed per-hop acks. Timeouts are esti-
mated as in TCP [13] but we set the retransmission timeouts
more aggressively. This is possible because Pastry provides
a node with several alternative next hops to reach a destina-
tion key (except at the very last hop). It is important not to
mark a node faulty when it fails to send back an ack because
this is prone to false positives with aggressive timeouts. The
node is temporarily excluded from the routing state but it is
probed as usual before being marked faulty. We stop exclud-
ing the node from routing if it replies to a probe. MSPastry
uses this technique for all hops including the last one by
default. It is possible to improve consistency at the expense
of latency by not excluding the root node for a key from
routing when it fails to send back an ack but only when it is
marked faulty.

Per-hop acks are not sufficient to achieve low delay
routes because faults are detected only when there is traffic.

The timeouts to recover from previously undetected node
failures can still result in large delays. It is important to
use active probing to keep the probability of finding faulty
nodes along the route low and independent of the amount
and distribution of application traffic.

Using both active probing and per-hop acks ensures very
low loss rates with low delay and overhead. Applications
that require guaranteed delivery can use end-to-end acks
and retransmissions. Applications that do not require reli-
able routing can flag lookup messages to switch off per-
hop-acks.

4. Routing performance

Routing performance is as important as dependability.
The overlay should deliver lookup messages with low delay
and overhead. Furthermore, performance should degrade
gracefully with both node and link failures. This section de-
scribes the techniques used by MSPastry to achieve good
performance in the presence of failures.

4.1. Low overhead failure detection

Failure detection traffic is the main source of overhead
in structured overlays. MSPastry uses three techniques to
reduce failure detection traffic.

Exploiting overlay structure MSPastry exploits the
structure of the overlay to detect faulty leaf set members
efficiently. Instead of sending heartbeat messages to all the
nodes in its leaf set, each node sends a single heartbeat mes-
sage to its left neighbour in the id space everyTls seconds. If
a nodei does not receive a message from its right neighbour
j for Tls + To seconds, it triggersSUSPECT-FAULTY i(j)
(see Figure 2) to probej. If it marks j as faulty (in
PROBE-TIMEOUTi(j)), it sends leaf set probes to the other
members of its leaf set to announce thatj is faulty. The
failedset in these probes informs other leaf set nodes thatj
has failed but the probes also provide a candidate for each
of these nodes to repair its leaf set. The replies from the
nodes onj’s side of the leaf set providei with a candidate
replacement forj.

It is possible for several consecutive nodes in the ring to
fail within a small time window. The left neighbor of the
leftmost node in the set will eventually detect the failure but
it can take time linear on the number of nodes in the set to
detect this failure. This is not a problem because it is ex-
tremely unlikely for a large number of consecutive nodes in
the ring to fail because nodeIds are chosen randomly with
uniform probability from the identifier space.

This optimization is important because it makes the
maintenance overhead independent of the leaf set size
when there are no node arrivals or departures. This enables
MSPastry to use large leaf sets to improve routing consis-
tency and reduce the number of routing hops without incur-
ring high overhead.

Self tuning probing periods The traces of deployed
peer-to-peer systems in Section 5 show that failure rates



vary significantly with both daily and weekly patterns, and
that the failure rate in open systems is more than an order
of magnitude higher than in a corporate environment. This
argues for adapting probing periods to achieve a target delay
with a minimum amount of control traffic.

We can compute the expected probability of finding a
faulty node along an overlay route as a function of the pa-
rameters of the algorithm. We call this probability theraw
loss ratebecause it is the loss rate in the absence of acks and
retransmissions. The probability of forwarding a message to
a faulty node at each hop isPf (T, µ) = 1− 1

Tµ
(1− e−Tµ),

whereT is the maximum time it takes to detect the fault
and µ is the failure rate. There are approximatelyh =
2

b
−1

2b log2bN overlay hops in a Pastry route on average. Typ-
ically, the last hop uses the leaf set and the others use the
routing table. So the raw loss rate,Lr, can be computed as
follows:
Lr = 1−(1−Pf (Tls+(r+1)To, µ)).(1−Pf (Trt+(r+1)To, µ))h−1

We fix the number of retriesr = 2 andTo = 3s as dis-
cussed earlier. The current implementation also fixesTls =
30s which provides good performance and strong consis-
tency in realistic environments. We tuneTrt to achieve the
specified target raw loss rate with minimum overhead by pe-
riodically recomputing it using the loss rate equation with
the current estimates ofN and µ. We can chooseLr to
achieve a target delay because the average increase in delay
due to failed nodes isδ ≈ Lr ×Th, whereTh is the average
timeout used in per-hop retransmissions.

We use the density of nodeIds in the leaf set to estimate
N [3]. The value ofµ is estimated by using node failures in
the routing table and leaf set. If nodes fail with rateµ, a node
with M unique nodes in its routing state should observeK
failures in time K

Mµ
. Every node remembers the time of the

lastK failures. A node inserts its current time in the history
when it joins the overlay. If there are onlyk < K failures in
the history, we compute the estimate as if there was a failure
at the current time. The estimate ofµ is k

M×Tkf

, whereTkf

is the time span between the first and the last failure in the
history. Every node computesT l

rt using the local estimates
of µ andN and piggybacks the current estimate in protocol
messages. Nodes setTrt to the median of the values ofT l

rt

received from other nodes in their routing state. There is a
lower bound of(retries+ 1)To onTrt.

Our experiments indicate that self-tuning is very effec-
tive; we can setLr to a fixed value and achieve nearly con-
stant delay over a wide range of node failure rates while
using the minimum amount of probing traffic for the rout-
ing table. This technique builds on preliminary work that
appeared in [15].

Supression of failure detection traffic MSPastry uses
any messages exchanged between two nodes to replace fail-
ure detection messages. For example, ifi forwards a mes-
sage toj and receives back an ack, this suppresses a routing
table liveness probe fromi to j or a leaf set heartbeat in ei-
ther direction. This is very effective; it eliminates all routing
table probes when there is enough lookup traffic.

4.2. Low overhead proximity neighbor selection

Proximity neighbour selection (PNS) provides low de-
lay but it increases overhead because it requires distance
probes to measure round-trip delays. MSPastry measures
round-trip delays by sending a sequence of distance probes
spaced by a fixed interval and taking the median of the val-
ues returned. For example, the default configuration sends
3 probes spaced by one second. But MSPastry uses a sin-
gle probe to estimate round-trip delays when running the
nearest neighbour algorithm (see Section 2). This reduces
join latency and it does not affect route delays significantly
because the remaining probes use more samples.

It is frequent for nodes to estimate the round-trip delay to
each other in the constrained gossiping implementation of
PNS. MSPastry exploits this symmetry: afteri measures the
round-trip delay toj, it sends a message toj with the mea-
sured value andj considersi for inclusion in its routing ta-
ble. If i andj start estimating the distance concurrently, this
optimization is not effective. We avoid this by using nodeIds
to break the symmetry and by having a joining node initiate
distance probing of the nodes in its routing state while these
nodes wait for the measured distances. Symmetric probing
almost halves the number of messages in distance probes.

5. Experimental evaluation

This section presents results of experiments to evaluate
the performance and dependability of MSPastry. The first
set of experiments ran on a network simulator to explore
the impact of controlled variations in environmental param-
eters at large scale. We also measured a real deployment of
the Squirrel Web cache [12] on top of MSPastry. The code
that runs in the simulator and in the real deployment is the
same with the exception of low level messaging.

5.1. Experimental setup for simulations

We used a simple packet-level discrete event simulator
that supports trace-based fault-injection and different net-
work topologies.

Traces of node arrivals and departures The traces
specify the time of node arrivals and failures. We used three
traces that were derived from real-world measurements of
deployed peer-to-peer systems.

The Gnutella trace was obtained from a measurement
study of node arrivals and departures in the Gnutella
file sharing application [22]. The study monitored 17,000
unique nodes for 60 hours by probing each node every seven
minutes. The average session time in the trace is 2.3 hours
and the median is 1 hour. The number of active nodes varies
between 1300 and 2700.

TheOvernettrace is based on a study of the OverNet file
sharing application [1]. The study monitored 1,468 unique
OverNet nodes for 7 days by probing them every 20 min-
utes. The average session time is 134 minutes and the me-
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Figure 3: Node failure rates for the Gnutella, OverNet and Microsoft traces, respectively

dian is 79 minutes. The number of active nodes varies be-
tween 260 and 650.

TheMicrosoft trace is derived from an availability study
of machines on the Microsoft corporate network [2]. The
study monitored 65,000 machines by probing each every
hour for 37 days. To reduce simulation times, we picked
20,000 machines randomly from among the 65,000. The
average session time is 37.7 hours and the number of active
nodes varies between 14700 and 15600.

Figure 3 shows the node failure rate for the three traces.
This is averaged over 10 minute windows for OverNet and
Gnutella and over one hour for Microsoft. All traces show
clear daily and weekly patterns and the failure rates vary
significantly across the traces. Gnutella and OverNet are
representative of peer-to-peer systems running in an open
Internet environment and they are similar. The failure rate
in the Microsoft trace is an order of magnitude lower and is
representative of a more benign corporate environment.

We also generated artificial traces with Poisson node ar-
rivals and an exponential distribution of node session times
with the same rates. The average number of nodes in these
traces was 10,000. To investigate the performance and de-
pendability of MSPastry with varying session times, we
used traces with session times of 5, 15, 30, 60, 120 and 600
minutes. Note that most of these session times are signifi-
cantly lower than those observed in real traces.

Network topologies We also evaluated the impact of
varying the network topology. We simulated three differ-
ent topologies: GATech, Mercator, and CorpNet.GATech
is a transit-stub topology generated using the Georgia Tech
topology generator [25]. It has 5050 routers arranged hier-
archically, with 10 transit domains at the top level with an
average of 5 routers in each. Each transit router has an av-
erage of 10 stub domains attached, with an average of 10
routers each. The delay between core routers is computed
by the topology generator and routing is performed using
the routing policy weights of the graph generator. The sim-
ulator uses the round-trip delay (RTT) between two nodes
as the proximity metric. End nodes running MSPastry are
attached to randomly selected stub routers by a LAN link
with a delay of 1ms.

Mercatorhas 102,639 routers grouped into autonomous
systems (AS) and is based on real data [24]. The AS over-
lay has 2,662 AS and routing is performed hierarchically
as in the Internet. A route follows the shortest path in the
AS overlay between the AS of the source and the AS of the

destination. The routes within each AS follow the shortest
path to a router in the next AS of the AS overlay path. Since
there is no delay information in the Mercator topology, the
simulator uses the number of network-level (IP) hops be-
tween two nodes as the proximity metric. Each end node
was directly attached to a randomly chosen router.

CorpNetis a topology with 298 routers generated from
measurements of the world-wide Microsoft corporate net-
work. The simulator uses the minimum RTT as the proxim-
ity metric. Each end node was directly attached by a LAN
link with a delay of 1ms to a randomly chosen router.

The simulator can be configured with a uniform proba-
bility of network message loss but it does not model con-
gestion delays and losses.

Base configuration The base MSPastry configuration
usesb = 4, l = 32, Tls = 30 seconds, per-hop acks, rout-
ing table probing tuned withLr = 5%, probe suppression,
and symmetrical distance probes. Each active node gener-
ates 0.01 lookup messages per second according to a Pois-
son process with destination keys chosen uniformly at ran-
dom from the identifier space. This configuration provides
a good balance between performance and overhead and it is
highly dependable as the results will show.

Unless otherwise stated, the simulator was configured
with a loss rate of 0% with the GATech network topology
and the experiments ran the Gnutella trace.

5.2. Evaluation metrics

We measure dependability using two metrics: theincor-
rect delivery rateand theloss rate. The first metric is the
fraction of lookup messages that are delivered to an incor-
rect node, and the second is the fraction of lookup messages
which are never delivered to any node. We observed an in-
correct delivery rate of zero in all the experiments without
network losses as expected.

Performance is also measured using two metrics:relative
delay penalty(RDP) andcontrol traffic. RDP is the average
ratio between the delay achieved by MSPastry when rout-
ing between two nodes and the network delay between the
same nodes. Control traffic is the average number of control
messages sent per second per node. This includes all traf-
fic except lookup messages. For the Gnutella and OverNet
traces, the metrics are averaged over a 10 minute window.
In the Microsoft trace, this window is 1 hour.



5.3. Experimental results

The first set of experiments evaluates the impact of envi-
ronmental parameters on the performance and dependabil-
ity of MSPastry.

Network topology The fraction of lookup messages lost
by MSPastry averaged over the whole Gnutella trace was
below1.6× 10−5 for all three topologies and there were no
routing inconsistencies. The control traffic was mostly inde-
pendent of the underlying network topology as expected: it
was 0.239 messages per second per node for CorpNet, 0.245
for GATech, and 0.256 for Mercator. The RDP varies signif-
icantly with the network topology. We obtained an RDP of
1.45 for CorpNet, 1.80 for GATech, and 2.12 for Mercator.
There is an explanation for the different RDP values with
the different topologies in [5].

Failure Traces Figure 4 shows RDP and control traf-
fic for the different traces with normalized time. The graph
on the center shows the fluctuation in control traffic that
follows the daily and weekly variations in node arrival and
failure rates. The graph on the right, which breaks down
control messages by type for the Gnutella trace, shows that
the fluctuations are due predominantly to increased distance
probes with increased arrival rate and to self-tuning of ac-
tive probing periods with changing failure rate. Self-tuning
ensures that the RDP remains approximately constant de-
spite the changing node arrival and failure rates as shown in
the graph on the left.

OverNet and Gnutella have similar failure and arrival
rates and, therefore, they have a similar amount of control
traffic. The control traffic is approximately 3 times lower in
the Microsoft trace because the failure and arrival rate is an
order of magnitude lower. The RDP in the Microsoft trace is
also lower than in the other traces; the failure detection pro-
vided by the lookup traffic with acks is sufficient to achieve
anLr lower than 5% because of the low failure rate, con-
sequently, the delay penalty due to faulty nodes along the
route also decreases.

The left and center graphs in Figure 5 show the RDP and
control traffic averaged over the whole trace for the Poisson
traces with different session times. The control traffic in-
creases significantly as the average session time drops. The
control traffic is 22 times higher when the average session
time is 15 minutes than when it is 600. The control traffic
drops when the session time decreases to 5 minutes because
7% of the nodes die before they become active due to in-
creased failure rate.

Self-tuning maintains the RDP fairly constant when ses-
sion times are one hour or more. The RDP increases signif-
icantly with 5 minute session times becauseTls = 30s and
Trt > 9s; achieving the desiredLr of 5% would require
smaller periods. The RDP increases by only 40% when
the session time decreases from 600 to 15 minutes, which
shows that MSPastry can achieve low delays even when the
failure rate is unrealistically high.

The graph on the right of Figure 5 shows a cumulative
distribution function of the join latency for two traces. The

join latency is the time from the moment a node initiates
the join till it becomes active. It shows that nodes join the
overlay quickly.

Network loss rate Figure 6 shows the impact of vary-
ing the network loss rate between 0 and 5%. A network loss
rate of 5% is high in wired networks. The graph on the right
shows that MSPastry achieves consistent and reliable rout-
ing with high probability even with high network loss rates.
We did not observe routing inconsistencies with rates of 1%
or less and even with 5% the fraction of incorrect deliveries
is only1.6×10−5. The use of per-hop acks ensures reliable
routing; the fraction of lost lookups varies from1.5× 10−5

with no network losses to3.3 × 10−5 with 5% losses.
The graphs on the left and center show that the RDP and

control traffic increase slightly as the network loss rate in-
creases. The RDP increases because there is an increased
number of per-hop timeouts and retransmissions due to net-
work losses. The delay remains low because of MSPastry’s
aggressive retransmission strategy. The increase in control
traffic is mostly due to the additional probes to check if
nodes are alive after message losses.

Parameters: l and b We ran experiments to evaluate the
impact of varying the algorithm parametersl andb. The left
graph of Figure 7 shows the effect of varying the leaf set
size on control traffic. Increasingl from 16 to 32 increases
control traffic by only 7%. The variation is small because
MSPastry exploits overlay structure; nodes only send heart-
beats to their left neighbour. So the overhead of sending
heartbeats is independent ofl and it is the dominant cost
of leaf set maintenance in the Gnutella trace. This enables
using large leaf sets with low overhead. Larger leaf sets re-
duce the average number of hops and, therefore, the RDP as
shown in the graph on the center. So we chosel = 32.

The graph on the right of Figure 7 shows the impact of
varyingb on RDP. The RDP increases significantly whenb
decreases because of the increased number of hops; the ex-
pected number of hops in an overlay route is2

b
−1

2b log2bN .
Decreasingb reduces control traffic because there is less
routing table state to maintain but this is offset by an in-
crease in the number of per-hop acks because the number
of hops increases, and by an increase in the routing table
probing traffic to achieve the targetLr = 5% also because
the number of hops increases. As a result, the control traffic
only decreases by 0.05 messages per second per node when
b drops from 4 to 1. Therefore, we choseb = 4.

Active probing and per-hop acks We ran experiments
to evaluate the impact of active routing table probing and
per-hop acks on reliability, delay, and control traffic. Relia-
bility is poor without active probes and per-hop acks: 32%
of the lookup messages are never delivered. The loss rate
drops to2.8 × 10−5 using only per-hop acks and it drops
to 1.6 × 10−5 with active probing and per-hop acks. Using
only active probing, it is not possible to achieve a loss rate
on the order of10−5 because of constraints on the minimum
probing period.

Using only per-hops acks, results in high delay if the ap-
plication traffic is low. The RDP achieved using only per-
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Figure 4: RDP and control traffic for the different real-world traces.
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Figure 5: RDP, control traffic, and join delays for the Poisson traces.

hop acks is 17% higher than using both techniques when
nodes generate 0.01 lookups per second and it is 61% higher
if nodes generate 0.001 lookups per second. Using active
probing reduces delay because it reduces the number of per-
hop timeouts. In an application whose traffic is non-uniform
or experiences daily/weekly traffic variations, it is important
to use both techniques.

The active probing rate can be tuned to achieve a tar-
get raw loss rateLr (to achieve a target delay). Results for
all traces show that self-tuning can effectively achieve the
target raw loss rate. For example without per-hop acks, it
achieves a message loss rate of 5.3% when tuning to5%
and 1.2% when tuning to1%. A lower raw loss rate results
in lower delay but decreasing the targetLr increases control
traffic. For example, changing the target from 5% to 1% in-
creases control traffic by 2.6 times. We chose tuning to 5%
in the base configuration because it provides a good trade-
off between overhead and delay with per-hop acks.

Active probing generates extra control traffic that pro-
vides little benefit when application traffic is high. MSPas-
try uses application traffic to suppress probes and heartbeats
to reduce the overhead. Increasing application traffic from
0 to 1 lookups per second per node suppresses over 70%
of the active probes. Additionally, RDP improves by 13%
because the average time to failure detection is reduced.

5.3.1. Simulator Validation We have been running sev-
eral applications that are built using MSPastry. We ran a
video broadcast using SplitStream [6] on 108 desktop ma-
chines on the Microsoft network (about 40 in Cambridge,
UK and the rest in Redmond, Washington). The Squirrel
web cache [12] has been the primary web cache for 52 ma-
chines at Microsoft Research Cambridge for the last few
months. We used traces collected from the Squirrel deploy-
ment to validate our simulator.

Squirrel users run an instance of the Squirrel proxy on
their machine and Web requests from the browser are redi-
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Figure 8: Total traffic generated in Squirrel deployment and
validated in simulator.

rected through the Squirrel proxy running on the local ma-
chine. Squirrel generates keys for Web objects by hashing
the object’s URL using SHA-1. Lookup messages are sent
through MSPastry to the key of the requested object. The
root node of each key is responsible for caching the object
identified by the key.

We logged node arrivals, node failures, and page lookups
in the Squirrel deployment. This log was used to generate a
workload trace that we fed to our simulator. Figure 8 shows
the total traffic per node in the simulator and the deployment
from the morning of the 11th December 2003 to the night
of the 17th December 2003. The six day trace contains 4
week days and one weekend, which are clearly visible. The
simulation results are very similar to the statistics obtained
from the real deployment.

6. Conclusions

Structured peer-to-peer overlays provide a useful sub-
strate for building distributed applications but there arecon-
cerns about their performance and dependability. This paper
has described MSPastry which incorporates techniques to
achieve good performance and high dependability in realis-
tic environments with high churn rates. Previous implemen-
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tations failed to provide routing consistency guarantees and
performed poorly in environments with high churn rates.
The paper has presented results of large-scale simulations
with fault injection guided by real traces of node arrivals
and departures showing that MSPastry achieves dependable
routing with low delay stretch and a maintenance overhead
of less than half a message per second per node. Further-
more, the results show that the performance of MSPastry
degrades gracefully with failures.

Squirrel, SplitStream, MSPastry, and the simulator are
available to academic institutions upon request.
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