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Abstract

There has been much interest in both unstructured and
structured overlays recently. Unstructured overlays, like
Gnutella, build a random graph and use flooding or random
walks on the graph to discover data stored by overlay nodes.
Structured overlays assign keys to data items and build a
graph that maps each key to a specific node. The structure
of the graph enables efficient discovery of data items given
their keys but it does not support complex queries.

Should we build Gnutella on a structured overlay? We be-
lieve the answer is yes. We replaced the random graph in
Gnutella by a structured overlay while retaining the con-
tent placement and discovery mechanisms of unstructured
overlays to support complex queries. Our preliminary re-
sults indicate that we can use structure to improve the per-
formance of floods and random walks. They also indicate
that structure can be used to reduce maintenance overhead,
which is surprising because it is commonly believed that un-
structured overlays have lower maintenance overhead than
structured overlays.

1 Introduction

In recent years, there has been much interest in peer-to-
peer (p2p) overlays because they provide a good substrate
for building large scale data sharing and content distribution
applications. There are two types of overlays: unstructured
and structured.

Unstructured overlays, like Gnutella [1], are widely used
and there has been a large amount of work on improving
Gnutella, for example, [6, 8, 9]. Unstructured overlays or-
ganize nodes in a random graph and use flooding or ran-
dom walks on the graph to query content stored by overlay
nodes. Each visited node evaluates the query locally on its
own content. This supports arbitrarily complex queries but
it is inefficient because queries for content that is not widely
replicated must be sent to a large fraction of nodes.

Structured overlays [11, 15, 13, 17] were developed to over-
come the performance inefficiencies of unstructured over-
lays. They assign keys to data items and organize the over-

lay nodes into a graph that maps each key to a responsible
node. The graph is structured to enable efficient discovery
of data items given their keys but it does not support com-
plex queries. Additionally, it is necessary to store a copy or
a pointer to each data item at the node responsible for the
item’s key.

This paper argues that we should build Gnutella on a struc-
tured overlay. We replace the random graph in Gnutella by
a structured overlay while retaining the content placement
and discovery mechanisms of unstructured overlays to sup-
port complex queries. We call the new system Structella.

Like Gnutella, Structella does not use structure to organize
the content in the overlay. Each node stores its own con-
tent and it does not store copies or pointers to it on other
nodes. Structella also uses either a form of flooding or ran-
dom walks to discover content but it takes advantage of
structure to ensure that nodes are visited only once during
a query and to control the number of nodes that are visited
accurately. We provide preliminary results comparing the
query overheads of Structella and an optimized version of
Gnutella. The results indicate that there is a significant per-
formance improvement when using our system.

It is commonly believed that unstructured overlays have
lower maintenance overhead than structured overlays, espe-
cially when there is a high churn rate. This could negate
the performance benefit that we observed for queries in
Structella. We show how to use structure to reduce main-
tenance overhead in structured overlays. We compare the
maintenance overheads of Structella and the optimized ver-
sion of Gnutella using a real world trace of node arrivals
and departures in a Gnutella overlay. The results show that
Structella incurs lower overhead. So, we see no reason to
build Gnutella on top of an unstructured overlay!

In Section 2, we describe the structured overlay that we use
to build Structella and the unstructured overlay that we use
for comparison. Section 3 compares the maintenance algo-
rithms and overheads of both systems, and Section 4 dis-
cusses how we implement complex queries in Structella and
evaluates their performance. Finally, we conclude and de-
scribe future work in Section 5.



2 Background: Overlays

We used Pastry to implement Structella but we could have
used most of the other structured overlays. We chose Pastry
because it has low maintenance overhead [10]. This section
provides a brief description of Pastry and the optimized ver-
sion of Gnutella that we used to evaluate Structella.

2.1 Pastry

Pastry uses a circular 128-bit id space. It assigns each over-
lay node a nodeId that is chosen randomly with uniform
probability from the id space. Keys are chosen from the
same space. NodeIds and keys are interpreted as a sequence
of digits in base 2b. We use b = 1 in the experiments in this
paper. Given a message and a destination key, Pastry routes
the message to the node whose nodeId is numerically closest
to the key.

Each node maintains a routing table and a leaf set to route
messages. The routing table is a matrix with 128/b rows and
2b columns. The entry in row r and column c of the rout-
ing table contains a nodeId that shares the first r digits with
the local node’s nodeId, and has the (r + 1)th digit equal to
c. If there is no such nodeId, the entry is left empty. The
uniform random distribution of nodeIds ensures that only
log2bN rows have non-empty entries on average. Addition-
ally, the column in row r corresponding to the value of the
(r+1)th digit of the local node’s nodeId remains empty. We
implemented Structella using a version of Pastry that does
not use proximity-aware routing. The routing table entries
are filled with a random node with the required prefix match.

The leaf set contains the l/2 closest nodeIds clockwise from
the local nodeId and the l/2 closest nodeIds counter clock-
wise. The leaf set ensures reliable message delivery. We use
l = 8 in the experiments in this paper.

At each routing step, the local node normally forwards the
message to a node whose nodeId shares a prefix with the
key that is at least one digit longer than the prefix that the
key shares with the local node’s nodeId. If no such node is
known, the message is forwarded to a node whose nodeId
is numerically closer to the key and shares a prefix with the
key at least as long. The leaf set is used to determine the
destination node in the last hop. A full description of Pastry
can be found in [13, 3].

2.2 Gnutella

In order to evaluate the performance and overhead of
Structella, we implemented a Gnutella-like unstructured
overlay. The implementation is based on the Gnutella 0.4
protocol [1], except that it was optimised to improve query
performance and reduce maintenance overhead.

Gnutella is based on a random graph. Each node in the
overlay maintains a neighbour table with the network ad-
dresses of its neighbours in the graph. The neighbour tables
are symmetric; if node x has node y in its neighbour table
then node y has node x in its neighbour table. The neigh-
bour tables are designed to be symmetric in order to reduce
maintenance load.

There is an upper and lower bound on the number of entries
in each node’s neighbour table. We use a lower bound of 4
and an upper bound of 8. These bounds were chosen based
on the values used in other unstructured overlays.

3 Overlay maintenance

It is necessary to maintain the overlay to ensure that it re-
mains working as nodes join and leave. This section com-
pares the mechanisms used by the Gnutella-like system and
by Pastry (and Structella) to maintain the overlay.

To join either overlay, the joining node contacts a bootstrap
node that is randomly chosen from the current members of
the overlay. In the Gnutella-like system, the bootstrap node
initiates a search for overlay nodes that have less neighbour
table entries than the upper bound. The original Gnutella
uses flooding to discover these nodes. We evaluated two
different versions: flooding and random walk.

In the flooding version, the bootstrap node floods a message
with a time-to-live (TTL) to all nodes in its neighbour table.
Each node that receives the message decrements the TTL.
If the result is greater than zero and the message has not
been received by this node before, it sends the message to
all entries in its neighbour table except to the sender. The
nodes that receive the message also check if the number of
entries in their neighbour table is below the upper bound and
if it is, they send a reply message back to the joining node.
The joining node inserts the nodes that reply in its neighbour
table until the number of entries reaches the upper bound. It
is likely to receive replies from nodes that it does not insert
in the neighbour table. These nodes are stored in a cache
and are used to replace failed neighbours. We used TTL=4
in the experiments described in this paper.

In the random walk version, the bootstrap node chooses one
of the entries in its neighbour table at random and sends the
message to that node. The message includes a counter that is
initialized to the number of neighbours being sought by the
joining node. Each node that receives this message checks
if the number of entries in its neighbour table is below the
upper bound. If it is, the node sends a reply message back to
the joining node and decrements the message counter. If the
message counter drops to zero, the message is not forwarded
further; otherwise, it is forwarded to a randomly selected



node in the neighbour table. As with flooding, the joining
node adds the nodes it receives replies from to its neighbour
table.

Both approaches have the side effect that neighbour table
entries are likely to point to nodes that are close to the boot-
strap node. This can increase the probability of partitioning
the overlay when there are node failures but it should not
affect content discovery. This could be avoided by refining
the joining approaches at the expense of increased overhead.
Since we do not evaluate the resilience of the overlay, we
opted for the less expensive approaches described.

Node joining in Pastry exploits the overlay structure. A join-
ing node x picks a random nodeId X and asks a bootstrap
node a to route a special join message using X as the desti-
nation key. This message is routed to the node z with nodeId
numerically closest to X . x obtains the ith row of its routing
table from the ith node encountered along the route from a
to z and it obtains the leaf set from z.

In addition to node joining, overlays need to detect failures
and repair faulty neighbours. The simplest approach to de-
tect failures is to periodically send a probe request to each
neighbour and wait for a reply. We exploit the symmetry of
neighbour tables in the Gnutella-like overlay to reduce fail-
ure detection overhead. Periodically, each node sends an I’m
alive message to every node in its neighbour table. Since its
neighbours do the same, each node should receive a message
from each neighbour in each period. If it does not receive
this message, it probes the node and if the node does not re-
ply it marks it faulty. In the experiments in this paper we set
the period to 30 seconds. Faults are repaired using cached
nodes when available or using a flood or random walk from
a known node (depending on the version).

Pastry uses different strategies to detect failures in the rout-
ing table and the leaf set. Since the routing table is not sym-
metrical, a node explicitly probes every member every tr

seconds to detect failures. But we exploit the structure of
the overlay to detect failures in leaf set members. Each node
sends a single I’m alive message every tl seconds to its left
neighbour in the id space. If a node does not receive a mes-
sage from its right neighbour, it probes the neighbour and
marks it faulty if it does not reply. When it marks the neigh-
bour faulty, it discovers the new member of its leaf set and
informs all the members of the new leaf set about the failed
node. In the experiments tl = 30 seconds and tr is set dy-
namically by each node based on the node failure rate in the
overlay observed by the node [10]. We configured Pastry to
achieve a 10% loss rate.

In both the Gnutella-like implementation and Pastry, mes-
sages sent between the nodes are used to replace explicit
fault detection messages.

3.1 Maintenance overhead: preliminary results

We ran an experiment to evaluate the maintenance overhead
of both the Gnutella-like overlay and Structella (Pastry). We
used a packet-level discrete-event simulator with a transit-
stub network topology model [16]. This model has 5050
routers arranged hierarchically. There are 10 transit domains
at the top level with an average of 5 routers in each. Each
transit router has an average of 10 stub domains attached,
and each stub has an average of 10 routers.

Routing is performed using the routing policy weights of the
topology generator [16]. The simulator models the propaga-
tion delay on the physical links. The average delay of core
links was 40.7ms. In the experiments each end system node
was attached to a randomly selected stub router with a link
delay of 1ms.

We obtained a trace of node arrivals and failures from a
measurement study of Gnutella. The study [14] monitored
17,000 unique nodes in the Gnutella overlay over a period of
60 hours. It probed each node every seven minutes to check
if it was still part of the overlay. The average session time
over the trace was approximately 2.3 hours and the num-
ber of active nodes in the overlay varied between 1300 and
2700. The failure rate and arrival rates are similar but there
are large daily variations (more than a factor of 3). We used
this trace to control node arrivals and failures in our exper-
iment for both systems. There was no query traffic during
this experiment.

Figure 1 shows the average number of messages per second
per node for Structella and for the Gnutella-like unstructured
overlay using both flooding and random walks to build the
neighbour table. The x-axis represents simulation time. In
all three systems, most of the overhead is due to fault de-
tection messages. The results demonstrate the benefit of ex-
ploiting overlay structure to reduce maintenance overhead.
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Figure 1: Maintenance overhead in messages per second per
node over time.



4 Content Discovery

Structella is implemented on top of Pastry and inherits its
low maintenance overhead. It uses Pastry’s overlay routing
and maintenance algorithms but it does not use structure to
organize the content in the overlay. Each node stores its own
content and it does not store copies or pointers to it on other
nodes when it joins. This reduces maintenance overhead and
ensures that the content is distributed across the nodes in the
overlay independently from their nodeIds.

We could implement support for structured queries using ex-
actly the same flooding and random walk techniques used in
Gnutella, but can we exploit the structure in the overlay to
do better?

Flooding in random graphs is inefficient because each node
is likely to be visited more than once. In a graph with an
average degree of k, a flood that visits all nodes will send on
average (k − 1) × N messages (where N is the size of the
overlay). Additionally, it is difficult to control the number
of nodes visited during a constrained flood; the time-to-live
field provides only very coarse control.

We can do better by replacing flooding with the broadcast
mechanisms that have been proposed for structured over-
lays [12, 5, 7]. Structella uses Pastry’s broadcast mecha-
nism [5] to broadcast queries to overlay nodes. The nodes
that receive the query evaluate it against the local content
and send matching content back to the sender. This broad-
cast is efficient because it exploits the overlay structure; it
sends approximately N messages in about logN hops and it
does not require any state beyond the routing state already
maintained by Pastry.

The broadcast works as follows. A node y broadcasts a mes-
sage by sending the message to all the nodes x in its routing
table. Each message is tagged with the routing table row r
of node x. When a node receives a message tagged with r,
it forwards the message to all nodes in its routing table in
rows greater than r. This continues until a node receives a
message tagged with r and it has no entries in rows greater
than r. Usually, each node receives the message only once
but the technique to deal with empty routing table slots [5]
may result in a small number of duplicate messages.

The other technique used for searching unstructured over-
lays like Gnutella is the random walk. We implement ran-
dom walks in Structella by walking along the ring formed by
neighbouring nodes in the id space. This is an effective ran-
dom walk over the content because nodeIds are independent
of the content stored by the nodes. When a node receives a
query in a random walk, it uses the leaf set to forward the
query to its left neighbour in the id space. It also evaluates
the query against the local content and sends matching con-

tent back to the query originator. We terminate the random
walk when we find matching content. This approach ensures
that each node is visited only once and it can be trivially ex-
tended to use multiple concurrent random walks to improve
query times while ensuring that each random walk explores
a disjoint set of nodes. Concurrent or long random walks in
unstructured overlays have a non-negligible probability of
visiting the same node more than once.

One of the advantages of random walks over flooding in un-
structured overlays is that random walks provide more pre-
cise control over the number of overlay nodes that is visited
to satisfy a query. It is possible to constrain floods using the
TTL mechanism but this provides only very coarse-grained
control. By exploiting structure, we can implement a flood-
ing algorithm that provides very accurate control over the
number of visited nodes. For example, we can use the broad-
cast mechanism described above with an upper bound on the
row number of entries to which the query is forwarded. This
enables the query originator to choose the number of nodes
visited from the set of powers of 2b. This can be extended to
provide arbitrarily fine grained control over the number of
nodes visited. We refer to this as a constrained flood.

4.1 Query performance: preliminary results

We ran experiments to compare query performance in
Structella and the Gnutella-like overlay. We started by cre-
ating 20,000 nodes and then we ran the query experiments
on a stable overlay without joins or leaves. Otherwise, the
experimental setup was similar to the one described above.
The average number of links per node in the Gnutella-like
overlay was 7.8.

The performance of queries depends on the number of nodes
that store content matching the query. We ran queries with
0, 1, 200, 2000, and 5000 nodes with content matching the
query (0%, 0.005%, 1%, 10% and 25% of the nodes in the
overlay). The results that we present are the average for
100 queries. The queries originated from a node selected
randomly from the overlay nodes without matching content.

We evaluate both flooding and random walks in the
Gnutella-like overlay, and we evaluate flooding, constrained
flooding, and random walks in Structella. We bound the
number of nodes to visit when using random walk or con-
strained flooding to 128. The Gnutella-like overlay uses
query id caching to suppress duplicates; if a node has re-
ceived a query message, it ignores all further copies it re-
ceives. In both overlays, a node stops forwarding a query if
it has matching content.

Figure 2 shows the average number of messages required
when flooding a query with a varying fraction of nodes with
matching content. In all cases (except 0%), all queries suc-
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Figure 2: Number of messages per query with flooding.
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Figure 3: Query delay with flooding.

ceeded in finding matching content.

When no nodes have matching content, the number of mes-
sages in the Gnutella-like overlay is 136,456. This is ex-
pected because a node forwards a query message to all nodes
in its neighbour table (except the node from which it re-
ceived the query) and it discards any duplicates it receives.
Since nodes have on average 7.8 neighbours, the expected
number of messages is (7.8 − 1) × 20, 000. For Structella,
the number of messages is only 20,125 where the 125 extra
messages are due to missing entries in routing tables.

The results also show that the query overheads remain high
when only a few nodes have content matching the query.
Even when 25% of the nodes have matching content, the
number of messages in the Gnutella-like overlay is 102,391.
This is also expected because 25% of the nodes have match-
ing content and do not forward the query message. Since
nodes have on average 7.8 neighbours, the expected number
of messages is (7.8−1)×20, 000×0.75. When 10% of the
nodes match the content, Structella flooding uses an order of
magnitude less messages and over 26 times less messages
when 25% of the nodes match the content. We therefore
conclude that exploiting structure when flooding provides a
large reduction on query overhead.

Figure 3 shows delay between the time a query is issued and
the time when the first node with matching content receives

the query. The delays are similar as expected.

Figure 4 shows the average number of messages required per
query when using the random walk and constrained flood-
ing. The success probability of the queries was very similar
for the three techniques. As expected, the number of mes-
sages used by the random walks is similar in Structella and
the Gnutella-like overlay. However, the message overhead
is higher with constrained flooding because query forward-
ing does not stop when the first node with matching content
is found.

The benefit of constrained flooding can be seen in Fig-
ure 5, which shows delay between the time a query is is-
sued and the time when the first node with matching con-
tent receives the query. The random walks in Structella and
the Gnutella-like overlay perform similarly. However, con-
strained flooding in Structella performs significantly better,
especially when there are few nodes with matching content.
The improvement is due to parallelism in the search.
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or constrained flooding.
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Whilst the results are preliminary, they suggest that ex-
ploiting structure improves query performance and reduces
maintenance overhead.



5 Conclusions and Future Work

This paper argued that we should build Gnutella on a struc-
tured overlay. There are two perceived obstacles to doing
this: (i) the high maintenance overhead of structured over-
lays; and (ii) the lack of support for complex queries in
structured overlays. Structella addresses these issues. It re-
places the random graph in Gnutella by a structured over-
lay but it does not use the structure to organize the content.
Structella supports complex queries using variants of flood-
ing and random walks like Gnutella but it takes advantage of
structure to ensure that nodes are visited only once during a
query and to control the number of nodes that are visited
accurately. Structella also leverages the structured overlay
to reduce the maintenance overheads. This results in signif-
icant performance improvements for complex queries and
lower maintenance overhead than Gnutella.

The results and ideas presented in this paper are preliminary.
A number of issues require further investigation. It is impor-
tant to study the behavior of Structella’s search mechanisms
with frequent node arrivals and departures. We also plan
to improve our Gnutella-like overlay by adopting the tech-
niques proposed in [6] and version 0.6 of the Gnutella pro-
tocol. In particular, Gnutella 0.6 introduces the concept of
ultra-peers, which are high capacity nodes that act as prox-
ies for lower capacity nodes. There are several ways to ex-
tend Structella to support ultra-peers; the simplest is to form
a structured overlay containing only ultra-peers and attach
other peers to ultra-peers as done in Gnutella 0.6. We could
also exploit efficient anycast implementations in structured
overlays [4] to help balance load across ultra-peers. An-
other interesting issue to explore is whether structure can
help protect against malicious nodes in the overlay. There
have been proposals on how to secure structured overlays
in the presence of malicious nodes [2], which we could po-
tentially exploit. Finally, the current version of Structella
uses a variant of Pastry that does not exploit network local-
ity. Future work will examine the benefit and cost trade-offs
of exploiting locality in Structella.

Should we build Gnutella on a structured overlay? So far,
we see no reason to build Gnutella on top of an unstructured
overlay!
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